
.

. .
CS 4110 – Programming Languages and Logics
Lecture #8: Denotational Semantics

.

We have now seen two operational models for programming languages: small-step and large-step. In
this lecture, we consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express themeaning of a program as themathematical function
that expresses what the program computes. We can think of an IMP program c as a function from stores to
stores: given an an initial store, the programproduces a nal store. For example, the program foo := bar+1
can be thought of as a function that when given an input store σ, produces a nal store σ′ that is identical
to σ except that it maps foo to the integer σ(bar) + 1; that is, σ′ = σ[foo 7→ σ(bar) + 1]. We will model
programs as functions from input stores to output stores. As opposed to operational models, which tell us
how programs execute, the denotational model shows us what programs compute.

1 A Denotational Semantics for IMP

For each program c, wewrite C[[c]] for the denotation of c, that is, themathematical function that c represents:

C[[c]] : Store ⇀ Store.

Note that C[[c]] is actually a partial function (as opposed to a total function), both because the store may
not be de ned on the free variables of the program and because program may not terminate for certain
input stores. The function C[[c]] is not de ned for non-terminating programs as they have no corresponding
output stores.

Wewill write C[[c]]σ for the result of applying the function C[[c]] to the store σ. That is, if f is the function
that C[[c]] denotes, then we write C[[c]]σ to mean the same thing as f(σ).

Wemust alsomodel expressions as functions, this time from stores to the values they represent. Wewill
writeA[[a]] for the denotation of arithmetic expression a, andB[[b]] for the denotation of boolean expression
b.

A[[a]] : Store ⇀ Int

B[[b]] : Store ⇀ {true, false}

Now we want to de ne these functions. To make it easier to write down these de nitions, we will describe
(partial) functions using sets of pairs. More precisely, we will represent a partial map f : A ⇀ B as a set
of pairs F = {(a, b) | a ∈ A and b = f(a) ∈ B} such that, for each a ∈ A, there is at most one pair of the
form (a,) in the set. Hence (a, b) ∈ F is the same as b = f(a).

1

We can now de ne denotations for IMP. We start with the denotations of expressions:

A[[n]] = {(σ, n)}
A[[x]] = {(σ, σ(x))}

A[[a1 + a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 + n2}

B[[true]] = {(σ, true)}
B[[false]] = {(σ, false)}

B[[a1 < a2]] = {(σ, true) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 < n2} ∪
{(σ, false) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 ≥ n2}

The denotations for commands are as follows:

C[[skip]] = {(σ, σ)}
C[[x := a]] = {(σ, σ[x 7→ n]) | (σ, n) ∈ A[[a]]}
C[[c1; c2]] = {(σ, σ′) | ∃σ′′. ((σ, σ′′) ∈ C[[c1]] ∧ (σ′′, σ′) ∈ C[[c2]])}

Note that C[[c1; c2]] = C[[c2]] ◦ C[[c1]], where ◦ is the composition of relations, de ned as follows: if R1 ⊆
A×B andR2 ⊆ B×C thenR2 ◦R1 ⊆ A×C isR2 ◦R1 = {(a, c) | ∃b ∈ B. (a, b) ∈ R1∧ (b, c) ∈ R2}.)
If C[[c1]] and C[[c2]] are total functions, then ◦ is function composition.

C[[if b then c1 else c2]] = {(σ, σ′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c1]]} ∪
{(σ, σ′) | (σ, false) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c2]]}

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]])}

But nowwehave a problem: the last “de nition” is not really a de nition because it expressesC[[while b do c]]
in terms of itself! This is not a de nition but a recursive equation. What wewant is the solution to this equa-
tion.

2 Fixed points

We gave a recursive equation that the function C[[while b do c]] must satisfy. To understand some of the
issues involved, let’s consider a simpler example. Consider the following equation for a function f : N →
N.

f(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise
(1)

This is not a de nition for f , but rather an equation that we want f to satisfy. What function, or functions,
satisfy this equation for f? The only solution to this equation is the function f(x) = x2.

In general, theremay be no solutions for a recursive equation (e.g., there are no functions g : N → N that
satisfy the recursive equation g(x) = g(x) + 1), or multiple solutions (e.g., nd two functions g : R → R
that satisfy g(x) = 4× g(x2)).

We can compute solutions to such equations by building successive approximations. Each approxi-
mation is closer and closer to the solution. To solve the recursive equation for f , we start with the partial

2

function f0 = ∅ (i.e., f0 is the empty relation; it is a partial function with the empty set for it’s domain). We
compute successive approximations using the recursive equation.

f0 = ∅

f1 =

{
0 if x = 0

f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0

f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0

f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

This sequence of successive approximations fi gradually builds the function f(x) = x2.
We canmodel this process of successive approximations using a higher-order function F that takes one

approximation fk and returns the next approximation fk+1:

F : (N ⇀ N) → (N ⇀ N)

where

(F (f))(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise

A solution to the recursive equation 1 is a function f such that f = F (f). In general, given a function
F : A → A, we have that a ∈ A is a xed point of F if F (a) = a. We also write a = x(F) to indicate that
a is a xed point of F .

So the solution to the recursive equation 1 is a xed-point of the higher-order function F . We can
compute this xed point iteratively, starting with f0 = ∅ and at each iteration computing fk+1 = F (fk).
The xed point is the limit of this process:

f = x(F)

= f0 ∪ f1 ∪ f2 ∪ f3 ∪ . . .

= ∅ ∪ F (∅) ∪ F (F (∅)) ∪ F (F (F (∅))) ∪ . . .

=
∪
i≥0

F i(∅)

3

