
•  Question 1.C, 1.D
•  Question 5
•  Quiz
•  Preview of HW3
•  Introduction to Unix

Quiz

•  Write an MIPS assembly program that
computes the factorial of a given input.
The integer input is passed through
register $a0, and the result is returned in
register $v0.

•  Show the contents of the stack after each
function calls, assuming that the input is 4.

Why Bother?

•  Most programmers who learn UNIX end
up finding it useful

•  Provides powerful command-line interface
– Many simple tasks are easier to accomplish
– Possible to script repetitive operations

•  Widely used in research and industry, and
runs most of the servers on the Internet

UNIX Philosophy

•  Multiuser / multitasking
•  Toolbox approach

– Combine multiple simple commands instead
of using a single complex application

•  Designed by programmers for
programmers

Shelling into CSUG

•  From Windows, use PuTTY
http://www.chiark.greenend.org.uk/~sgtatham/putty/
(Google can give you this URL)
– Demo

•  From MacOS, open a terminal and type
–  ssh netid@csug01.csuglab.cornell.edu

Command Line Environment

•  Shell is the command line interpreter
– Just another program
– Bourne shell (bash)
– C Shell (csh)

•  Default shell in CSUG is tcsh
•  This talk uses bash

– Switch to bash: exec bash

Running Commands
•  Commands follow the form:

–  command <options> <arguments>
–  Options modify the command
–  Arguments indicate what file to operate on

•  Get help by typing man command
•  Example:
[msiegen@tiger ~]$ ls -l /usr
total 301
drwxr-xr-x 2 root root 69632 Oct 18 08:43 bin/
drwxr-xr-x 2 root root 4096 Aug 12 2004 etc/
drwxr-xr-x 2 root root 4096 Aug 12 2004 games/
drwxr-xr-x 117 root root 20480 Sep 12 20:40 include/
...

Plumbing

•  I/O Redirection
> Redirect standard output to file
>> Append standard output to file
< Get input from file

•  Pipes (|) are used to take the output of one
program and use it as input to another
e.g. du -sk /home/* | sort -nr | head -10
> disk_hogs.txt

Practical Tips

•  Use less to view output that will not fit on your
screen
e.g. ls -lR | less

•  Use grep to filter output, and wc to count lines
e.g. ps aux | grep “vim” | wc -l

•  Use && to run multiple commands in sequence
e.g. ./configure && make && make install

•  Many more possibilities!

File System

/

bin etc lib usr dev tmp home

sh ls cat

passwd group

libc.so

bin man local

cs316

ttya null

egs msiegen kwalsh

bin mail stuff

File System
•  Case sensitive!
•  Moving around, working with directories
 cd Change working directory

pwd Print working directory
ls -la List all files in working directory
mkdir Make directory
rmdir Remove directory
cp Copy file
mv Move or rename file
rm Delete a file

•  Searching
e.g. find -name Makefile

Setting Up for HW1

•  Copy the HW1 files into your home
directory:
cp –R /usr/local/cs316/hw1_codeExamples ~

•  Fix your path:
export PATH=\
$PATH:/usr/local/cs316/mipsel-linux/bin

•  Demo compiling hw1.s and hw2.s

Viewing File Contents

•  Use cat or less:
$ cat hw1.c # use cat for short files
#include “test-include.h”

_start() {
}

$ less hw1.s # use less for long files

Comparing Files
•  Use diff:

$ cat file1
Hello!
This is the contents of file1.
Goodbye.
$ cat file2
Hello!
This is the contents of file2.
Goodbye.
$ diff –u file1 file2
--- file1 2007-10-11 04:25:28.000000000 -0400
+++ file2 2007-10-11 04:25:45.000000000 -0400
@@ -1,3 +1,3 @@
Hello!
-This is the contents of file1.
+This is the contents of file2.
Goodbye.

•  Demo: diff –u hw1.s hw2.s

Transferring Files

•  Use WinSCP
http://winscp.net/

Further Reading

•  Manual (man) pages
•  O’Reilly Books

– Free access on campus:
http://proquest.safaribooksonline.com/
– Or from home through the Safari Tech Books

link at:
http://www.englib.cornell.edu/erg/shortlist.php

Plumbing

•  Running multiple commands in sequence
– Use semicolon (;) to run commands

unconditionally
– Use double ampersand (&&) to run

commands only until the first error occurs
•  Use parentheses to group a sequence and

redirect output
e.g. (date && ls) > logfile
Not the same as: date && ls > logfile

Wildcards

•  Shorthand for referencing multiple existing
files on the command line
– * any number of characters
– ? exactly one character
–  [abc] any one of a, b, or c
–  [!abc] any character except a, b, or c

•  Examples
ls -l *.c
lpr [Mm]akefile

File System Permissions
•  Permissions can be specified for

–  Owner
–  Group
–  All

•  Permissions are
–  Read
–  Write
–  Execute

•  Example:
-rwxr-xr-x 1 msiegen ta 10152 Sep 21 17:04 disassemble
-rw-r----- 1 msiegen ta 329 Sep 21 17:04 main.c

The disassembler may be executed by anyone on the system, but
the source file may only be read by people in the ta group. Both
files may only be edited by the user msiegen.

File System Permissions
•  For a directory, “read” means being able to list

its contents, “execute” means being able to
access files within the directory
–  Unless the files have more restrictive permissions

•  Use chmod to add or remove permissions (rwx)
for user, group, and others (ugo):
chmod ugo+x Let anyone execute
chmod go-w Prevent non-owner form writing

•  Or, specify absolute permissions in octal
–  4=r, 2=w, 1=x
–  e.g. 755=rwxr-xr-x, 640=rw-r-----

e.g. chmod 755 filename

Job Control

•  Use & after a command to place job in
background

•  Manage jobs:
–  jobs List jobs
–  fg %1 Bring job 1 to foreground
–  bg %2 Run job 2 in background
–  kill %3 Terminate job 3
–  ^Z (control+Z) suspend foreground job
–  ^C (control+C) terminate foreground job

Job Control
•  Example

[msiegen@tiger ~]$ sleep 800 &
[1] 16139
[msiegen@tiger ~]$ sleep 400 &
[2] 16141
[msiegen@tiger ~]$ jobs
[1]- Running sleep 800 &
[2]+ Running sleep 400 &
[msiegen@tiger ~]$ kill %1
[msiegen@tiger ~]$ jobs
[1]- Terminated sleep 800
[2]+ Running sleep 400 &
[msiegen@tiger ~]$ fg %2
sleep 400
 ^Z
[2]+ Stopped sleep 400
[msiegen@tiger ~]$ bg %2
[2]+ sleep 400 &

Environment Variables
•  Display all variables by typing env
•  Set a variable, example:

NETID=abc123; export NETID (bourne shell)
setenv NETID abc123 (c-shell)

•  Use a variable in a command, example:
echo $NETID

•  Environment variables are used to control various
behaviours of the shell, as well as pass global
information to other programs that are started from within
the shell

•  The variable $PATH is used to locate programs that are
run

Beyond a Single User

ps aux List all running processes
who; w Show who else is logged in
top Show CPU, memory usage

(useful for finding out why a system is
soooo slow, and who to blame)

Some Useful Commands

•  file Determine the type of a file
•  sort Sort lines in a text stream
•  uniq Eliminate duplicate lines
•  wc Count bytes, words, or lines
•  cal Display a calendar
•  grep Filter a text stream
•  sed Search and replace on text stream
•  awk (Slightly) more advanced scripting

Advanced Topics

•  Shell scripting
– Anything which can be done from the

command line, can be scripted
•  Regular expressions

– Fancier version of wildcards
– Allows complex matching and search and

replace operations on text
– Suppored by grep, awk, and many scripting/

programming languages

