
Introduction to C

Why use C instead of Java

•  Intermediate-level language:
–  Low-level features like raw memory tweaking
–  High-level features like complex data-structures

•  Access to all the details of the implementation
–  Explicit memory management
–  Explicit error detection

•  More power than Java (so may be made faster)
•  All this make C a far better choice for system

programming.

Common Syntax with Java
•  Basic types are similar (int, short,
double…)

•  Operators:
–  Arithmetic:

 + - * / %
 ++ -- *= += ...

–  Relational: <,>,<=,>=,==,!=
–  Logical: &&, ||, !, ? :
–  Bit: &,|,^,!,<<,>>

Common Syntax with Java
(cont.)

•  Language constructs:
if() {...} else {...}
while() {...}
do {...} while();
for (i=0; i<100; i++) {...}
switch() { case 0: ... break; ... }
break, continue, return

•  No exception handling statements
 most functions return errors as special values

(e.g., a negative number). Check for these!

Hello World Example

/* Hello World program */
#include <stdio.h>
#include <stdlib.h>

int main(int ac, char **av) {
 printf("Hello World.");
}

$./hello
Hello World.

hello.c

bash or
cmd.exe

Primitive Types
•  Integer types:

–  char : used to represent ASCII characters or one byte of data
(not 16 bit like in Java)

–  int, short and long : versions of integer (architecture
dependent, usually 4, 2, and 4 bytes)

–  signed char/short/int/long
–  unsigned char/short/int/long
è conversion between signed/unsigned often does unexpected

things
•  Floating point types: float and double like in Java.
•  No boolean type, int usually used instead.

–  0 == false
–  everything else == true

Primitive Types Examples

char c='A';
char c=65;
int i=-2343234;
unsigned int ui=100000000;

float pi=3.14;
double long_pi=0.31415e+1;

Arrays and Strings
•  Arrays:

int A[10]; // declare and allocate space for array
for (int i=0; i<10; i++) // initialize the elements
 A[i]=0;

•  Strings: arrays of char terminated by ‘\0’ char
 char name[] ="CS316"; //{'C','S',‘3','1',‘6','\0'}
name[2] = '3';
name[4]++;
–  Strings are mutable
–  Common functions strcpy, strcmp, strcat, strstr, strchr,

strdup.
–  Use #include <string.h>

Pointers
•  An 'address' is an index to a memory location (where some variable

is stored).
•  A 'pointer' is a variable containing an address to data of a certain

type.
Declaring pointer variables:

 int i;
 int* p; // p points to some random location – null pointer

Creating and using pointer values
 p = &i; // p points to integer i – p stores the address of i
 (*p) = 3; // variable pointed by p takes value 3

•  & is the address-of operator, * is the dereference operator.
•  Similar to references in Java.
•  Pointers are nearly identical to arrays in C

–  array variables can not be changed (only the contents can change)

1054

6346

's'

Memory
addresses

 0000
 0004
 0008
 …

 1054
 …

 1820
 1824
 1828
 …

 6344
 6348
 …

variable names

 i

 name

 c

 A

 p

 ps

int i = 6;
...
char name[] = "cs316";
...
char c = name[1];
...
short A[6];
for (i = 0; i < 6; i++)
 A[i] = i*i;

int *p;
p = &i;

short *ps;
ps = &A[1];

6

0
4

's' 'c' '1' '3'
\0 '6'

1
9

16 25

Pointers (cont.)
 Attention: dereferencing an uninitialized pointer can

have arbitrary effects (bad!) (including program crash).
 Dereferencing a NULL pointer will crash the program

(better!)
•  Advice:

–  initialize with NULL, or some other value
–  if not sure of value, check it before dereferencing

if (p == NULL) {
printf("ack! where's my pointer!\n"); exit(1);

}

Structures
•  Like Java classes, but only member variables

–  no static variables
–  no functions

struct birthday {
 char* name;
 char month;
 short day;
 int year;
};

struct birthday mybirthday = {"elliot",8,21,2002};
mybirthday.name[0] = 'E';
if (mybirthday.month == 6)
 printf("%s is a Cancer\n", mybirthday.name);

2002
8 21

0xdeadbeef mybirthday

Structures (cont.)
•  Members of a struct can be of any type that is already

defined.
•  Trick: 'struct X' can contain a pointer to 'struct X'

struct intlist {
 int data;
 struct intlist* next;

 };

•  -> is syntax sugaring for dereference and take element:

 struct intlist one = {10, NULL};
 struct intlist two = {20, NULL};
 struct intlist *head = &one;
 one->next = &two;
 (*one).next = &two; // Does same thing as previous line

printf function
•  printf(formating_string, param1, ...)
•  Formating string: text to be displayed containing special markers

where values of parameters will be filled:
–  %d for int
–  %c for char
–  %f for float
–  %g for double
–  %s for null-terminated strings

•  Example:
int numstudents = 39;
printf("The number of students in %s is %d.", name,

numstudents);
è printf will not complain about wrong types, number of params, etc.

enum: enumerated data-types
enum months {
 JANUARY,
 FEBRUARY,
 MARCH,
 ...

};

•  Each element of enum gets an integer value and can be used as an
integer.

enum signs {
 CANCER = 6,
 ARIES = 1,
 ...

};

Data-type Synonyms
•  Syntax: typedef X Y; // Y is a synonym for X

typedef int CornellID;
CornellID me = 373333;

typedef struct elt* classlist; // bizarre but legal
struct elt {
 CornellID id;
 char *name;
 classlist next; // this is legal

}

Memory Allocation and Deallocation

•  Global variables: declared outside any
function.

•  Space allocated statically before program
execution.

•  Initialization statements (if any) done before
main() starts.

•  Space is deallocated when program finishes.
•  Name has to be unique for the whole program.

Memory Allocation and Deallocation

•  Local variables: declared in the body of a
function or inside a '{ }' block.

•  Space allocated when entering the function/
block.

•  Initialization (if any) before function/block starts.
•  Space automatically deallocated when function

returns or when block finishes
 Attention: referring to a local variable (by means of a

pointer for example) after the function returned will
cause unexpected behavior.

•  Names are visible only within the function/block

Memory Allocation and Deallocation

•  Heap variables: memory has to be explicitly
–  allocated: void* malloc(int) (similar to new in Java)
char *message = (char *)malloc(100);
intlist *mylist = (intlist *)malloc(sizeof(intlist));

mylist->data = 1;
mylist->next = (intlist *)malloc(sizeof(intlist));
mylist->next->data = 2;

mylist->next->next = NULL;

–  deallocated: void free(void*)
free(msg); msg = NULL;
free(mylist->next);

free(mylist);
mylist = NULL;

Malloc/Free and pointers
You must malloc()

 reading/writing from random addresses is bad.
 You must malloc() the right amount:

 reading/writing over the end of the space is bad
 sizeof(struct birthday)
 strlen(name)+1; // +1 is for the '\0'

 You must free()
No garbage collector; if you don't have a free() for every
malloc(), you will eventually run out of memory.

 … but not too much
Freeing same memory twice is bad ("double free").

 …and don't use the memory after it is freed
 set pointers to NULL after free.

Memory Allocation and Deallocation

struct birthday *clone_student(struct birthday *b) {

 struct birthday *b2 = (struct birthday *)malloc(sizeof(struct birthday));
 b2->name = (char *)malloc(strlen(b->name)+1); // or use strdup()
 memcpy(b2->name, b->name, strlen(b->name)+1);
 b2->day = b->day;
 b2->year = b->year;
 b2->month = b->month;
 return b2;

}

void rename(struct birthday *b, char *new_name) {

 free(b->name); // danger: b->name must be a heap variable
 b->name = strdup(new_name); // same as malloc(...) then memcpy(...)

}

Functions

•  Can declare using a prototype, then
define the body of the function later
–  lets function be used before it is defined.

•  Arguments passed by value
– Use pointers to pass by reference

•  Return value passed by value
– Use malloc()'ed pointer to return by reference

Functions - Basic Example
#include <stdio.h>

int sum(int a, int b); // function declaration or

prototype

int main(int ac, char **av){
 int total = sum(2+2,5); // call function sum with

parameters 4 and 5
 printf("The total is %d\n", total);
}

/* definition of sum; has to match prototype */
int sum(int a, int b) {// arguments passed by value
 return (a+b); // return by value
}

Why pass via pointers?
void swap(int, int);
int main(int ac, char **av) {
 int five = 5, ten = 10;
 swap(five, ten);
 printf("five = %d and ten = %d", five, ten);
}
void swap(int n1, int n2) /* pass by value */
 int temp = n1;
 n1 = n2;
 n2 = temp;
}

$./swaptest
five = 5 and ten = 10 NOTHING HAPPENED

Why pass by reference?(cont.)
void swap(int *, int *);
int main(int ac, char **av) {
 int five = 5, ten = 10;
 swap(&five, &ten);
 printf("five = %d and ten = %d", five, ten);
}
void swap(int *p1, int *p2) /* pass by value */
 int temp = *p1;
 *p1 = *p2;
 *p2 = temp;
}

$./swaptest
five = 10 and ten = 5

Pointer to Function
void kill(int d) { /* do something */ ... }
void eat(int d) { /* do something else */ ... }
typedef void (*simple_function)(int);
 // simple_function is synonym for a pointer to
 // a function returning void and taking an int

void do_stuff(simple_function f, int param) {
 f(param); /* call function f with param */
}

int main(int ac, char **av) {
 kill(3);
 simple_function g = (ac == 1 ? eat : kill);
 do_stuff(g, 8);

}

The Preprocessor
•  File copy-and-paste
/* include standard library declaration */
 #include <stdio.h>
/* include custom declarations */
 #include "myheader.h"

•  Text substitution
 #define DEBUG 0
 #define MAX_LIST_LENGTH 100
 if (DEBUG)
 printf("Max length of list is %d.", MAX_LIST_LENGTH);

•  Conditional compilation
 #ifdef DEBUG
 printf("DEBUG: line " _LINE_ " has been reached.");
 #endif

Programs with Multiple Files
•  Header file: my_program.h:

–  function prototypes
–  global variable prototypes: extern int x;

•  Program files: one.c, two.c, …
–  each file uses #include "my_program.h"
–  one of them defines main()
–  each prototype defined in exactly one of the files

•  compiler produces one.o, two.o, …
(or one.obj, two.obj on windows)

•  compiler then links together to form program

