Section 2

Overview

* Finite state machine
* Homework 2 preparation
e Q&A

Finite State Machine

FSM

* Finite automata / State machines
* Mathematical abstraction
* Wide application

— Digital design

— Communication protocol

— Language parsing

— Neural System modeling

DFA and NFA

e Deterministic and Non-deterministic

 Deterministic means there is only one outcome for each
state transition

1

L

AP Na

o

Deterministic

:)H

-

.

Non-deterministic

2
=
o

©)
()

~<

Design an FSM

 We will design a synchronization circuitry that
is used in Gigabit Ethernet.

Server

Connection running
at 1 Gbit/s Gerrsrprers e

..... 10011001011110011....

/

85 B

FSM example: sync_fsm

 FSM that looks for a specific sequence of bits,
called comma character.
* The Gigabit Ethernet standard specifies a few
comma characters,
— 0011111001
— 0011111010
— 0011111000
* inthis example, we will design for this pattern:

0011111xxx.
* The leading zero is the first bit received.

Example Bit Stream

* For example, if the incoming bit streams is
0001100111000100111000111001110001110
0110011100001111100001100111000111000

* The synchronization circuitry will catch the
patterns in red, and flags the output sync bit

to 1, (O for not-in-sync).

Similar to ...

* Remember when you learn about regular
expression?

* ab*(c|e) denotes the set of strings starting
with a, then zero or more bs and finally
optionally a c: {a, ac, ab, abc, abb, abbc, ...}

* The circuit we design operateson Oor 1
instead of a, b, c...

Elements of FSM

* Combinational logic that computes next state

* Memory element that remembers the current
state

* |[nput and output

State Machine Design Process

* 1. Determine the inputs and outputs
e sync_fsm

— Input: bit_in, 1-bit

— Output: comma_detect, 1-bit

State Machine Design Process

e 2. Determine the machine states

e sync_fsm, 0011111xxx
— SO, initial state
— S1, received first O
— S2, received second O
— S3 ~S7, received 1s
— S8 ~ S10, received either O or 1.
— In S10, signal comma_detect

State Machine Design Process

* 3. Create state/bubble diagram — Mealy or
Moore?

State Machine Design Process

e 4, State assignment — give each state a
particular value.
— We have 11 states

* Needs at least 4 bits to encode (compact)
* One hot encoding (minimize decoding logic)

— We use the 4 bit encode.

State Machine Design Process

* 5. Create Transition/Output Table

Current | Next State Next State Current | Next State Next State
State (Input==0) | (Input ==1) State (Input==0) | (Input ==1)
0 0

0000 0111

0001 0 1000 0
0010 0 1001 0
0011 0 1010 1
0100 0

0101 0

0110 0

State Machine Design Process

* 6. Derive Next State Logic for each state
element.

State Machine Design Process

* Derive Output Logic
* Ouput =5[3] & ~S[2] & S[1] & ~S][0]

State Machine Design Process

* 8. Implement in Logisim

Homework 2 preparation

e Use tunnel
 Demo

e 8-bit input => 10-bit output
e 8-bit input divided into

— 3-bit blocks (HGF)

— 5-bit blocks (EDCBA)

e 10-bit output divided into
— 4-bit blocks (fghj)
— 6-bit blocks (abcdei)

code group DX-XI

10babcde| fgh.j

Running Disparity

 The difference between the number of 1s
transmitted and the number of Os transmitted
is always limited to 2, and at the end of each
state, it is either +1 or -1. This difference is
known as the running disparity (RD).

* This scheme only needs two states for running
disparity of +1 and —1. It starts at —-1.

Power Up otharwise

f the 10-bit

if the 10-bit
encoded data of R D R D encoded data of
the current - + the current
transmitting transmitting

use BRD- column use RD+ column code group is

code group is
disparity neutral

for encoding for encoding disparity neutral

otharwise

e Difference between RD- and RD+ for an
encoding is XOR.

e Can minimize to figure out when to XOR and
when not.

* Split the circuit into smaller components
— Cleaner design and easier for testing
— 5b/6b encoder, 3b/4b encoder, circuit to figure
out more 1 or zero, fsm

* Find resource (or ask for help) to understand
how the encoding works
— Make sure any resource you find is the same as

what we have on the appendix (Wikipedia isn’t
always right)

Table 1. 3-Bit to 4-Bit Encoding Values

3b Decimal 3b Binary (HGF) 4b Binary (fghl)
0 000 0100 or 1011
1 001 1001
2 o010 0101
3 011 0011 or 1100
4 100 0010 eor 1101
5 101 1010
g 110 0110
7 11 0001 or 1110 or 1000 or 0111
Table 2. 5-Bit to 6-Bit Encoding Values
5b Decimal 5b Binary (EDCBA) 6b Binary (abcdel)
0 00000 100111 or 011000
1 00001 011101 or 100010
2 00010 101101 or 010010
3 00011 110001
4 00100 110101 or 001010
5 00101 101001
-] 00110 011001
7 00111 111000 or
3 01000 111001 or 000110
9 01001 100101
10 01010 010101
1 01011 110100
12 01100 001101
13 01101 101100
14 01110 011100
15 01111 010111 or 101000
18 10000 011011 or 100100
17 10001 100011
18 10010 010011
12 10011 110010
0 10100 001011
21 10101 101010
22 10110 011010
23 10111
24 11000
25 11001 100110
25 11010 010110
27 11011 110110 or 001001
28 11100 001110
22 11101 101110 or 010001
0 11110 011110 or 100001
1 11111 101011 or 010100

Hints

* Split the circuit into smaller components
— Cleaner design and easier for testing
— 5b/6b encoder, 3b/4b encoder, circuit to figure
out more 1 or zero, fsm

* Find resource (or ask for help) to understand
how the encoding works
— Make sure any resource you find is the same as

what we have on the appendix (Wikipedia isn’t
always right)

