Synchronization and
Prelim 2 Review

Hakim Weatherspoon
CS 3410, Spring 2011
Computer Science
Cornell University

* Winner: Team HakimPeterSpoon

Announcements

FarmVille pizza Party was fun!

Joseph Mongeluzzi and Jason Zhao

1% Round Sweet 16

Elite Eight

Final Four

1 hakimPeterSpoon

hakimPeterSpoon

32 bossbot

—_—

hakimPeterSpoon

16 seeder

seeder
17 ryanbot

9 tsapanzerhalis

tsapanzerhalis
24 superfarmer

tsapanzerhalis

hakimPeterSpoon

8 drunkbot
drunkbot
25 housandFlippingVegetables
4 WALLE
WALLE

29 retter_than_peters_bots

WALLE

13 petey9

enb_lw_farmer
20 enb_Iw_farmer

12 aen_dpm_farmer

aen_dpm_farmer
21 exploit

QihoTheShark

QihoTheShark

hakimPeterSpoon

Championship

hakimPeterSpoon

gaxir

Final Four

Elite Eight

gaxir

gaxir

5 QihoTheShark

QihoTheShark

better_greedy

vanessaKensington

Sweet 16 1% Round
gaxir 2
gaxir
ams_jhj_test 31
Sparkles 15

eli_whitney
eli_whitney 18

vanessaKensington 10

vanessaKensington
our_farmer 23

phantom

cheese 7

cheese
jhl_ncn_farmer 26
phantom 3

phantom
testExploit12 30

better_greedy

dcv_prd_farmer 14

dcv_prd_farmer
fastfiller 19

better_greedy 1

better_greedy
chomp 22

frl_hd_farmer 6

frl_hd_farmer
mjbebe 27

Announcements

HW4 due today, Tuesday, April 26t
* Work alone

Next two weeks

* Prelim2 will in-class this Thursday, April 28t
— 90 minutes in class: 1:25pm — 2:55pm

— Topics: Caching, Virtual Memory, Paging, TLBs, 1/0, Traps,
Exceptions, multicore, and synchronization

 PA4 will be final project (no final exam)
— Available this Friday, April 29t and due Friday, May 13t
— Need to schedule time for presentation May 16, 17, or 18.
— Will not be able to use slip days

Goals for Today

Finish Synchronization
* Threads and processes
e C(Critical sections, race conditions, and mutexes

Prelim 2 review

 Caching,

e Virtual Memory, Paging, TLBs
 |/Oand DMA

* Operating System, Traps, Exceptions,
 Multicore and synchronization

Multi-core is a reality...

... but how do we write multi-core safe code?

Processes and Threads

Processes are heavyweight

Parallel programming with processes:

* They share almost everything
code, shared mem, open files, filesystem privileges, ...

e Pagetables will be almost identical
* Differences: PC, reﬁrs, stack>

Recall: process =@Execution context ¥»address space

Wﬁeq/j /Of ICess

RC
[ed §

Stack
" Z{’P(Q C ey 60/7 C&q‘éxé

54qfi0ﬂ Smg_ a/ﬂlf q)q(é

Processes and Threads

Process Thread
OS abstraction of a running OS abstraction of a single
computation thread of control
* The unit of execution * The unit of scheduling
< Theumitefsehedahng * Lives in one single process
* Execution state From thread perspective

N :
address space * one virtual CPU core on a

From process perspective virtual multi-core machine
* avirtual CPU
e some virtual memory
e avirtual keyboard, screen, ...

Multithreaded Processes

registers ||| registers

stack stack stack

o III

single-threaded multithreaded

Threads

#include read.h>
int counter = 0;

void PrintHello(int arg) {
printf(“I’m thread %d, counter is %d\n”, arg, counter++);
. do some work ...
pthread_exit(NULL);

int main () {
for (t = 0; t < 4; t++) {

intf(“in main: creating thread %d\n", t);
Zgitﬁ;;d_creatgyNULL, NULL, PrintHello, t);
}

pthread exit(NULL);

10

Threads versus Fork

in main: creating thread ©
I°m thread 0, counter 1is
in main: creating thread
I°m thread 1, counter 1is
in main: creating thread
in main: creating thread

0
1
1
2
3
I°’m thread 3, counter 1is 2

I°’m thread 2, counter is<i7

If processes?

Example Multi-Threaded Program

Example: Apache web server

void main() {
setup();

while (c = accept_connection()) {

req = read request(c);

@‘t’s[r‘eg]j;)‘ S4areL Cou 7((’/

send_response(c, req);

}

cleanup();

¥

12

Race Conditions

Example: Apache web server
Each client request handled by a separate thread

(in parallel) 4ég — O

* Some shared state: hit counter, ...

Thread 52 Thread 205,.<“

read hits(® 4¢s=(0 read hits(3 %&L

addi @A,z‘s—’— // addi 2 4,&://

write hits(3D h.fs=// write hits@é,&}y
RY%

(look familiar?)

Timing-dependent failure =r i
* hard to reproduce = hard ta_.debug

13

Programming with threads

Within a thread: execution is sequential

Between threads?
* No ordering or timing guarantees

 Might even run on different cores at the same time

Problem: hard to program, hard to reason about
* Behavior can depend on subtle timing differences
* Bugs may be impossible to reproduce

Cache coherency isn’t sufficient...

Need explicit synchronization to
make sense of concurrency!

14

Managing Concurrency
Races, Critical Sections, and Mutexes

15

Goals

Concurrency Goals
Liveness
* Make forward progress
Efficiency
* Make good use of resources
Fairness
* Fair allocation of resources between threads
Correctness

* Threads are isolated (except when they aren’t)

16

Race Conc

Race conditions
Ition
nendent error when

Timing-de
accessin

g shared state

» Depends ongscheduling happenstance
... .2. who wins “race” to the store instruction?

Concurrent Program Correctness =
all possible schedules are safe

* Must consider every possible permutation

* |n other words...

... the scheduler is your adversary

17

Critical sections

What if w designate parts of the execution as

* Rule: only one thread can be “inside”
Thread 52 Thread 205

CS enter() CS ewkery)

read hits read hits

addi
write hits

18

Interrupt Disable
Q: How to implement critical section in code?

A: Lots of approaches....

Disable interrupts?

CSEnter() = disable interrupts (including clock)
CSExit() = re-enable interrupts

r*eaq hits L) or /(s
addi _
write hits 6«1 ¢ ((',u, ,{pJ

0SS

/005 /Mf oK el
“ mult-. core
Works for some kernel data-structures

Very bad idea for user code 9

Preemption Disable
Q: How to implement critical section in code?

A: Lots of approaches....

Modify OS scheduler?

CSEnter() = syscall to disable context switches
CSExit() = syscall to re-enable context switches

read hits
addi
write hits

Doesn’t work if interrupts are part of the problem
Usually a bad idea anyway o

Mutexes
Q: How to implement critical section in code?

A: Lots of approaches....
Mutual Exclusion Lock (mutex)

acquire(m): wait till it becomes free, then lock it
release(m): unlock it

apache got hit() {
pthread_mutex_lock(m); |
Znits = hits + 1; 7 sz?(/C&(Svcﬂ;,
hthread_mutex_unlock(m)

21

Q: How to implement mutexes?

/(/ ex 7/ Z(//aq

Py

Prelim 2 Review

Caches

24

Cache Design 101

\Jau £
Lo st ‘f\//j

1 cycle access (early in pipeline)

1-3 cycle access

L3 becoming more

o m omn 5-15 cycle access
L2 Cache ('2-32MB y

(sometimes VER ache (')

LARGE)
Memory (128MB - few GB) 50-300 cycle access

Disk (Many GB) Millions cycle access!

These are rough numbers: mileage may vary for latest/greatest

Caches USUALLY made of SRAM

Cache Misses

* Three types of misses
— Cold

* The line is being referenced for the first time
— Capacity

= The line was evicted because the cache was not
large enough

— Conflict

= The line was evicted because of another access
whose index conflicted

Direct Mapped Cache

« Simplest

* Block can only be in one line in the
cache

 How to determine this location?
—Use modulo arithmetic
— (Block address) modulo (# cache blocks)

—For power of 2, use log (cache size in
blocks)

Fully Associative Cache

V Tag

Block

w
7

hit encode

2-Way Set-Associative Cache

\YAIETe Block

V Tag Block

Offset

tag_[i
-G
i |
|
..
|
|

Eviction

- Which cache line should be evicted from
the cache to make room for a new line?
— Direct-mapped

* no choice, must evict line selected by index
— Associative caches

* random: select one of the lines at random

= round-robin: similar to random

* FIFO: replace oldest line

* | RU: replace line that has not been used in the
longest time

oy

MRUC

Cache Writes

addr Cache

— =—> | Memory
CPU
o L oRAl > | DRAM

* No-Write

— writes invalidate the cache and go to memory
* Write-Through

— writes go to cache and to main memory

« Write-Back

— write cache, write main memory only when block is evicted

l«/"/(ﬁ‘ 6@”0!‘

Tags and Offsets
- Tag: matching

« QOffset: within block
« Valid bit: is the data valid?

- Hx AT

Cache Performance

 Consider hit (H) and miss ratio (M)
+ M x AT

cache memory

 Hit rate = 1 — Miss rate

» Access Time is given in cycles
- Ratio of Access times, 1:50 M

* 90% :.90'/+.1x50 =59

* 95% :.95 +.05x50 =.95+2.5=3.45

* 99% :.99 +.01x50 =1.49

* 99.9%:.999 + .001 x 50 = 0.999 + 0.05 = 1.049

Cache Hit/Miss Rate

- Consider processor that is 2x times faster
— But memory is same speed

- Since AT is access time in terms of cycle
time: it doubles 2x

(H)ZATcache +M X ATmemory
- Ratio of Access times, 1:100

* 99% :.99/+ .01 x100 =1.99

Cache Hit/Miss Rate

» Original is 1GHz, 1ns is cycle time
- CPI (cycles per instruction): 1.49

. Therefore @m ch
[4] CPL x las= [
ns

Fo,

* New is 2GHz, 0.5 ns is cycle time. /s
- CPI:1.99, 0.5ns.0.995 ns-foreachinstruction. >

 So it doesn’t go to 0.745 ns for each instruction.
« Speedup is 1.5x (not 2x)

/p!/‘%: ZPIK 7«("/"(/”""/'/1.5‘Z X Hﬂ)

Cache Conscious Programming

int a[NCOL][NROW]; -
int sum = 0;

14

15

for(j = 0;] < NCOL,; ++j)

for(i=0; i < NROW,; ++i)

© (o] ~ (e} o &~

sum += a[j][i];

» Every access is a cache miss!

Cache Conscious Programming

int sum = 0;

for(i = 0; i < NROW; ++i)
for(j = 0; j < NCOL,; ++j)
sum += a[j][i];

« Same program, trivial transformation, 3 out
of four accesses hit in the cache

Can answer the question.....

* A:fori=01o0 99

—forj =01to0 999
= A[i][j] = complexComputation ()

» B:forj=0to 999

—fori =010 99
= A[i][j] = complexComputation ()

* Why is B 15 times slower than A?

- MMU, Virtual Memory, Paging, and TLB’s

Processor & Memory

 Currently, the
processor s address - _
lines are directly

routed via the system 4

bus to the memory
banks Processor

— Simple, fast
- What happens when
the program issues a

load or store to an 0x1000
invalid location?

— e.g. 0x000000000 ?
— uninitialized pointer

Memory

Physical Addressing Problems

- What happens when

another program is
executed concurrently on i
another processor?
— The addresses will conflict H
- We could try to relocate
the second program to
0x4000

another location

— Assuming there is one
— Introduces more problems! Processors

0x1000

Address Space

- Memory Management Unit (MMU)
— Combination of hardware and software

Virtual Address Physical Address
View View

Virtual Memory Advantages

» Can relocate program while running

* Virtualization

— In CPU: if process is not doing anything,
switch

— In memory: when not using it, somebody else
can use it

How to make it work?

 Challenge: Virtual Memory can be slow!

« At run-time: virtual address must be translated to a

physical address
- MMU (combination of hardware and software)

Physical
virtual addrs addrs

Elgs=ss

Two Programs Sharing Physical Memory

The starting location of each page (either in
main memory or in secondary memory) is
contained in the program’ s page table

Program 1
virtual address space

0\
e\ main memory
e N\
o \\
.\ \
| ______—@

Program 2
irtual address spa

swap |
\:/
o«
e

space

Page Table for Translation

Virtual page # Offset

thsi,cal—paqe#—l»

| —

B
Offset

Physical page P
V __ base addr
1 o—
| :><)\
I :
0] .\/ >
1 — Main memory
0 .\/ o A
O I — \\I‘

Page Table \\T
(in main memory) —+

Disk storage

swap
space

Virtual Addressing with a Cache

* Thus it takes an extra memory access to
translate a VA to a PA

VA PA miss |

Trans- Main
CPU lation Cache Memory

hit —I
data v

» This makes memory (cache) accesses
very expensive (if every access was really
two accesses)

A TLB in the Memory Hierarchy

VA 3 PA miss __
TLB 1 Main
CPU @)kup Cache 4 Memory

- / L]
miss hit

Trans-
lation

—_] data

- A TLB miss:

— If the page is not in main memory, thenit’' s a
true page fault
= Takes 1,000,000’ s of cycles to service a page fault

- TLB misses are much more frequent than
true page faults

Virtual vs. Physical Caches

addr

data

Cache
SRAM

Cache works on physical addresses

addr

data

Cache
SRAM

Cache works on virtual addresses

- L1 (on-chip) caches are typically virtual 4//

{ but plys 7e

» L2 (off-chip) caches are typically physical

&

Address Translation

 Translation is done through the page table

— A virtual memory miss (i.e., when the page is
not in physical memory) is called a page fault

Physical
address

Physical
memory

Hardware/Software Boundary

» Virtual to physical address translation is
assisted by hardware?
— Translation Lookaside Buffer (TLB) that
caches the recent translations

= TLB access time is part of the cache hit time

= May allot an extra stage in the pipeline for TLB
access

— TLB miss
= Can be in software (kernel handler) or hardware

Hardware/Software Boundary

» Virtual to physical address translation is
assisted by hardware?

— Page table storage, fault detection and
updating
» Page faults result in interrupts (precise) that are
then handled by the OS

» Hardware must support (i.e., update
appropriately) Dirty and Reference bits (e.g.,
~LRU) in the Page Tables

TLB miss
exception

Virtual address

TLB hit?

Physical address

A

Try to read data
from cache

Cache miss stall
while read block

Write protection
Yes exception

Cache hit?

Deliver data
to the CPU

Write access
biton?

\

Cache miss stall
while read block

Try to write data
to cache

Cache hit?

\

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer

,- Lrae i:':- g
q J

v/ backlng store

operating
gystem

reference
."r- .-H"l

14

I""H._ il

restart
nstruction

e
resel page
table

L
o

free frame =

physical

IMEMory

(4)
bring in
missing page

 Traps, exceptions, and operating system

user application

open ()

user
mode

system call interface

kernel
mode

open ()

Implementation
of open ()
system call

return

Exceptions

System calls are control transfers to the OS, performed
under the control of the user program

Sometimes, need to transfer control to the OS at a time
when the user program least expects it

— Division by zero,

— Alert from power supply that electricity is going out,
— Alert from network device that a packet just arrived,
— Clock notifying the processor that clock just ticked

Some of these causes for interruption of execution have
nothing to do with the user application

Need a (slightly) different mechanism, that allows
resuming the user application

Terminology

Trap
— Any kind of a control transfer to the OS
Syscall

— Synchronous, program-initiated control transfer from
user to the OS to obtain service from the OS

— e.g. SYSCALL
Exception

— Synchronous, program-initiated control transfer from
user to the OS in response to an exceptional event

— e.g. Divide by zero
Interrupt

— Asynchronous, device-initiated control transfer from
user to the OS

— e.g. Clock tick, network packet

» 1/0O and DMA

Memory-Mapped 1/0O

Processor
Address
Space

DMA: Direct Memory Access

< Non-DMA transfer: /0 device €-> CPU <~
= CPU sends transfer request to device

RAM
= |/O writes data to bus, CPU reads into registers

—for(i=1..n)
= CPU writes data to registers to memory W

< DMA transfer: 1/0 device €-> RAM

— CPU sets up DMA request on device
—for(i=1..n)
= |/O device writes data to bus, RAM reads data

» Multicore and Synchronization

Why Multicore?

- Moore’ s law

— A law about transistors
(Not speed)

— Smaller means faster
transistors

CPU Transistor Counts 1971-2008 & Moore’s Law

* Power consumption growing with
transistors

Power Limits Performance
<4

Sun's
Surface

*
Hot plate Pentium lll & processer

_P Pentium Il @ processor

PE“tlum Prl:l @ PrOCE SRor
Pentium & processor

E
[
@
=
=

-
=]

1.5 1p DT7p O0.5p D35p 0,25 O.18p 0.13u O.1p 04T

N
I
=3
2
©
o
x
[}
e}
o

Power Trends

Pentium 4
Prescott
(2004)
Core 2
Kentsfield
(2007)

5V —- 1V

x1000

Uniprocessor Performance

Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
— 6505

52%/year

VAX1/780 ===
/et 25%Iyear o4 5 vax-11/785

Constrained by power, instruction-level parallelism,
memory latency

Why Multicore?

Moore’ s law
— A law about transistors
— Smaller means faster transistors

Power consumption growing with transistors

The power wall

— We can’t reduce voltage further
— We can’t remove more heat

How else can we improve performance?

Intel’ s argument

Power Limitations

1000

CPU I d
power 100 f 3
(w) i 1

Power = Capacitance x Voltage? x Frequency
also
Power ~ Voltage®

Amdahl’ s Law

Task: serial part, parallel part

As number of processors increases,
—time to execute parallel part goes to zero
—time to execute serial part remains the same

Serial part eventually dominates
Must parallelize ALL parts of task

Execution Time without £

Speedup(F) =
peedup(E) Execution Time with E

Amdahl’ s Law

- Consider an improvement E
+ F of the execution time is affected
« S is the speedup

Execution time (with E) = ((1 — F') + F'/S) - Execution time (without E)

: 1

Multithreaded Processes

registers ||| registers

stack stack stack

o III

single-threaded multithreaded

Shared counters

« Usual result: works fine.
« Possible result: lost update!

hits = 0

time ? Tl ?TZ

read hits (O)

hits =0+ 1
hits = 1

read hits (0)
hits =0 + 1

« Occasional timing-dependent failure = Difficult to debug
- Called a race condition

Race conditions

 Def: a timing dependent error involving shared
state

— Whether it happens depends on how threads
scheduled: who wins “races” to instructions that
update state

— Races are intermittent, may occur rarely
» Timing dependent = small changes can hide bug

— A program is correct only it all possible schedules are
safe

= Number of possible schedule permutations is huge

* Need to imagine an adversary who switches contexts at the
worst possible time

Critical Sections

- Basic way to eliminate races: use critical
sections that only one thread can be in

— Contending threads must wait to enter

Time ? Tl ?TZ

CSEnter(); CSEnter();
Critical section Critical section
CSExit(); CSExit();

? T1 ?TZ

Mutexes

Critical sections typically associated with mutual
exclusion locks (mutexes)

Only one thread can hold a given mutex at a time

Acquire (lock) mutex on entry to critical section
— Or block if another thread already holds it

Release (unlock) mutex on exit
— Allow one waiting thread (if any) to acquire & proceed

pthread mutex init(m);

pthread mutex lock (m); pthread mutex lock(m);
hits = hits+l; hits = hits+l;
pthread mutex unlock(m); pthread mutex unlock (m) ;

? T1 ?TZ

Protecting an invariant

// invariant: data is in buffer[first..last-1]. Protected by m.
pthread_mutex_t *m;
char buffer[1000];

int first = 0, last = O;

char get() {
pthread_mutex_lock(m):
char ¢ = buffer[first];
first++;

void put(char ¢) { pthread_mutex_unlock(m);

pthread_mutex_lock(m);)
buffer[last] = c;

last++;
pthread_mutex_unlock(m);

}

* Rule of thumb: all updates that can affect
iInvariant become critical sections.

See you on Thursday
Good Luck!

