Synchronization and Prelim 2 Review

Hakim Weatherspoon CS 3410, Spring 2011 Computer Science Cornell University

Announcements

FarmVille pizza Party was fun!

Winner: Team HakimPeterSpoon
 Joseph Mongeluzzi and Jason Zhao

Announcements

HW4 due *today*, Tuesday, April 26th

Work alone

Next two weeks

- Prelim2 will in-class this Thursday, April 28th
 - 90 minutes in class: 1:25pm 2:55pm
 - Topics: Caching, Virtual Memory, Paging, TLBs, I/O, Traps,
 Exceptions, multicore, and synchronization
- PA4 will be final project (no final exam)
 - Available this Friday, April 29th and due Friday, May 13th
 - Need to schedule time for presentation May 16, 17, or 18.
 - Will not be able to use slip days

Goals for Today

Finish Synchronization

- Threads and processes
- Critical sections, race conditions, and mutexes

Prelim 2 review

- Caching,
- Virtual Memory, Paging, TLBs
- I/O and DMA
- Operating System, Traps, Exceptions,
- Multicore and synchronization

Multi-core is a reality...

... but how do we write multi-core safe code?

Processes and Threads

Processes are heavyweight

Parallel programming with processes:

- They share almost everything code, shared mem, open files, filesystem privileges, ...
- Pagetables will be almost identical
- Differences: PC, registers, stack

Recall: process = execution context + address space

Threads

Regs

stack

Multiple execution contexts

Sharing single adds space

Processes and Threads

Process

OS abstraction of a running computation

- The unit of execution
- The unit of scheduling
- Execution state+ address space

From process perspective

- a virtual CPU
- some virtual memory
- a virtual keyboard, screen, ...

Thread

OS abstraction of a single thread of control

- The unit of scheduling
- Lives in one single process

From thread perspective

 one virtual CPU core on a virtual multi-core machine

Multithreaded Processes

Threads

```
#include <pthread.h>
int counter = 0;
void PrintHello(int arg) {
  printf("I'm thread %d, counter is %d\n", arg, counter++);
  ... do some work ...
  pthread_exit(NULL);
int main () {
  for (t = 0; t < 4; t++) {
      printf("in main: creating thread %d\n", t);
      pthread_create(NULL, NULL, PrintHello, t);
   pthread_exit(NULL);
```

Threads versus Fork

```
in main: creating thread 0
I'm thread 0, counter is 0
in main: creating thread 1
I'm thread 1, counter is 1
in main: creating thread 2
in main: creating thread 3
I'm thread 3, counter is 2
I'm thread 2, counter is 3
```

If processes?

Example Multi-Threaded Program

Example: Apache web server

```
void main() {
  setup();
 while (c = accept_connection()) {
     req = read request(c);
    hits[req]++; - Shared counter
     send response(c, req);
  cleanup();
```

Race Conditions

Example: Apache web server

Each client request handled by a separate thread (in parallel)

• Some shared state: hit counter, ...

Thread 205
read hits 3 h.ts=10
addi 4 h.ts=11
write hits 6 h.ts=11

(look familiar?)

Timing-dependent failure > race condition

hard to reproduce ⇒ hard to debug

Programming with threads

Within a thread: execution is sequential

Between threads?

- No ordering or timing guarantees
- Might even run on different cores at the same time

Problem: hard to program, hard to reason about

- Behavior can depend on subtle timing differences
- Bugs may be impossible to reproduce

Cache coherency isn't sufficient...

Need explicit synchronization to make sense of concurrency!

Managing Concurrency Races, Critical Sections, and Mutexes

Goals

Concurrency Goals

Liveness

Make forward progress

Efficiency

Make good use of resources

Fairness

• Fair allocation of resources between threads

Correctness

Threads are isolated (except when they aren't)

Race conditions

Race Condition

Timing-dependent error when accessing shared state

Depends on scheduling happenstance
 ... e.g. who wins "race" to the store instruction?

Concurrent Program Correctness = all possible schedules are safe

- Must consider every possible permutation
- In other words...
 - ... the scheduler is your adversary

Critical sections

What if we can designate parts of the execution as critical sections

Rule: only one thread can be "inside"

Thread 52

Thread 205

Interrupt Disable

Q: How to implement critical section in code?

A: Lots of approaches....

Disable interrupts?

CSEnter() = disable interrupts (including clock)

CSExit() = re-enable interrupts

read hits
addi
write hits

Works
but (inited)
use
does not work well
up mult, core

Works for some kernel data-structures Very bad idea for user code

Preemption Disable

Q: How to implement critical section in code?

A: Lots of approaches....

Modify OS scheduler?

CSEnter() = syscall to disable context switches CSExit() = syscall to re-enable context switches

read hits
addi
write hits

Doesn't work if interrupts are part of the problem Usually a bad idea anyway

Mutexes

Q: How to implement critical section in code?

A: Lots of approaches....

Mutual Exclusion Lock (mutex)

acquire(m): wait till it becomes free, then lock it

release(m): unlock it

Q: How to implement mutexes?

Next time

Prelim 2 Review

Caches

Cache Design 101

These are rough numbers: mileage may vary for latest/greatest Caches USUALLY made of SRAM

Cache Misses

- Three types of misses
 - Cold
 - The line is being referenced for the first time
 - Capacity
 - The line was evicted because the cache was not large enough
 - Conflict
 - The line was evicted because of another access whose index conflicted

Direct Mapped Cache

- Simplest
- Block can only be in one line in the cache

- How to determine this location?
 - Use modulo arithmetic
 - –(Block address) modulo (# cache blocks)
 - For power of 2, use log (cache size in blocks)

Fully Associative Cache

2-Way Set-Associative Cache

Eviction

- Which cache line should be evicted from the cache to make room for a new line?
 - Direct-mapped
 - no choice, must evict line selected by index
 - Associative caches
 - random: select one of the lines at random
 - round-robin: similar to random
 - FIFO: replace oldest line
 - LRU: replace line that has not been used in the longest time

Cache Writes

- No-Write
 - writes invalidate the cache and go to memory
- Write-Through
 - writes go to cache and to main memory
- Write-Back
 - write cache, write main memory only when block is evicted write buffer

Tags and Offsets

- Tag: matching
- Offset: within block
- Valid bit: is the data valid?

Cache Performance

- Consider hit (H) and miss ratio (M)
- H x AT_{cache} + M x AT_{memory}
- Hit rate = 1 Miss rate
- Access Time is given in cycles
- Ratio of Access times, 1:50
- HIM
- 90% : $.90^{1} + .1 \times 50 = 5.9$
- 95% : .95 + .05 x 50 = .95+2.5=3.45
- 99% : $.99 + .01 \times 50 = 1.49$
- 99.9%: $.999 + .001 \times 50 = 0.999 + 0.05 = 1.049$

Cache Hit/Miss Rate

- Consider processor that is 2x times faster
 - But memory is same speed

- Since AT is access time in terms of cycle time: it doubles 2x
- H x AT_{cache} + M x AT_{memory}
 - Ratio of Access times, 1:100
 - 99% : $.99 / + .01 \times 100 = 1.99$

Cache Hit/Miss Rate

- Original is 1GHz, 1ns is cycle time
- CPI (cycles per instruction): 1.49
- Therefore, 1.49 ns for each instruction

1.49 CPI
$$\times$$
 lns = 1.49 ns e is evelo timo

- New is 2GHz, 0.5 ns is cycle time.
- CPI: 1.99, 0.5ns. 0.995 ns for each instruction.
- So it doesn't go to 0.745 ns for each instruction.
- Speedup is 1.5x (not 2x)

Cache Conscious Programming

1	11				
2	12				
4	14				
5	15				
6					
7					
8					
9					
10					

Every access is a cache miss!

Cache Conscious Programming

 Same program, trivial transformation, 3 out of four accesses hit in the cache

Can answer the question.....

- A: for i = 0 to 99
 - for j = 0 to 999
 - A[i][j] = complexComputation ()
- B: for j = 0 to 999
 - for i = 0 to 99
 - A[i][j] = complexComputation ()

Why is B 15 times slower than A?

• MMU, Virtual Memory, Paging, and TLB's

Processor & Memory

- Currently, the processor's address lines are directly routed via the system bus to the memory banks
 - Simple, fast
- What happens when the program issues a load or store to an invalid location?
 - e.g. 0x000000000 ?
 - uninitialized pointer

Physical Addressing Problems

- What happens when another program is executed concurrently on another processor?
 - The addresses will conflict
- We could try to relocate the second program to another location
 - Assuming there is one
 - Introduces more problems!

Address Space

- Memory Management Unit (MMU)
 - Combination of hardware and software

Virtual Memory Advantages

- Can relocate program while running
- Virtualization
 - In CPU: if process is not doing anything, switch
 - In memory: when not using it, somebody else can use it

How to make it work?

- Challenge: Virtual Memory can be slow!
- At run-time: virtual address must be translated to a physical address
- MMU (combination of hardware and software)

Two Programs Sharing Physical Memory

 The starting location of each page (either in main memory or in secondary memory) is contained in the program's page table

Page Table for Translation

Virtual Addressing with a Cache

 Thus it takes an extra memory access to translate a VA to a PA

This makes memory (cache) accesses
 very expensive (if every access was really two accesses)

A TLB in the Memory Hierarchy

- A TLB miss:
 - If the page is not in main memory, then it's a true page fault
 - Takes 1,000,000's of cycles to service a page fault
- TLB misses are much more frequent than true page faults

Virtual vs. Physical Caches

- L1 (on-chip) caches are typically virtual
- L2 (off-chip) caches are typically physical

Address Translation

- Translation is done through the page table
 - A virtual memory miss (i.e., when the page is not in physical memory) is called a page fault

Hardware/Software Boundary

- Virtual to physical address translation is assisted by hardware?
 - Translation Lookaside Buffer (TLB) that caches the recent translations
 - TLB access time is part of the cache hit time
 - May allot an extra stage in the pipeline for TLB access
 - TLB miss
 - Can be in software (kernel handler) or hardware

Hardware/Software Boundary

- Virtual to physical address translation is assisted by hardware?
 - Page table storage, fault detection and updating
 - Page faults result in interrupts (precise) that are then handled by the OS
 - Hardware must support (i.e., update appropriately) Dirty and Reference bits (e.g., ~LRU) in the Page Tables

Paging

• Traps, exceptions, and operating system

Exceptions

- System calls are control transfers to the OS, performed under the control of the user program
- Sometimes, need to transfer control to the OS at a time when the user program least expects it
 - Division by zero,
 - Alert from power supply that electricity is going out,
 - Alert from network device that a packet just arrived,
 - Clock notifying the processor that clock just ticked
- Some of these causes for interruption of execution have nothing to do with the user application
- Need a (slightly) different mechanism, that allows resuming the user application

Terminology

- Trap
 - Any kind of a control transfer to the OS
- Syscall
 - Synchronous, program-initiated control transfer from user to the OS to obtain service from the OS
 - e.g. SYSCALL
- Exception
 - Synchronous, program-initiated control transfer from user to the OS in response to an exceptional event
 - e.g. Divide by zero
- Interrupt
 - Asynchronous, device-initiated control transfer from user to the OS
 - e.g. Clock tick, network packet

I/O and DMA

Memory-Mapped I/O

I/O Device Memory and Control Registers Processor Address Space

DMA: Direct Memory Access

- Non-DMA transfer: I/O device $\leftarrow \rightarrow$ CPU $\leftarrow \rightarrow$ RAM
 - for (i = 1 .. n)
 - CPU sends transfer request to device
 - I/O writes data to bus, CPU reads into registers
 - CPU writes data to registers to memory

- \bigcirc DMA transfer: I/O device $\leftarrow \rightarrow$ RAM
 - CPU sets up DMA request on device
 - for (i = 1 ... n)
 - I/O device writes data to bus, RAM reads data

Multicore and Synchronization

Why Multicore?

- Moore's law
 - A law about transistors (Not speed)
 - Smaller means faster transistors

 Power consumption growing with transistors

Power Limits Performance

Power Trends

In CMOS IC technology

Power = Capacitive load × Voltage² × Frequency

×30

 $5V \rightarrow 1V$

×1000

Uniprocessor Performance

Constrained by power, instruction-level parallelism, memory latency

Why Multicore?

- Moore's law
 - A law about transistors
 - Smaller means faster transistors
- Power consumption growing with transistors
- The power wall
 - We can't reduce voltage further
 - We can't remove more heat
- How else can we improve performance?

Intel's argument

Multi-Core Energy-Efficient Performance

Amdahl's Law

- Task: serial part, parallel part
- As number of processors increases,
 - time to execute parallel part goes to zero
 - time to execute serial part remains the same
- Serial part eventually dominates
- Must parallelize ALL parts of task

$$\operatorname{Speedup}(E) = \frac{\operatorname{Execution Time without } E}{\operatorname{Execution Time with } E}$$

Amdahl's Law

- Consider an improvement E
- F of the execution time is affected
- S is the speedup

Execution time (with E) = $((1 - F) + F/S) \cdot Execution$ time (without E)

Speedup (with
$$E$$
) = $\frac{1}{(1-F)+F/S}$

Multithreaded Processes

Shared counters

- Usual result: works fine.
- Possible result: lost update!

- Occasional timing-dependent failure ⇒ Difficult to debug
- Called a race condition

Race conditions

- Def: a timing dependent error involving shared state
 - Whether it happens depends on how threads scheduled: who wins "races" to instructions that update state
 - Races are intermittent, may occur rarely
 - Timing dependent = small changes can hide bug
 - A program is correct only if all possible schedules are safe
 - Number of possible schedule permutations is huge
 - Need to imagine an adversary who switches contexts at the worst possible time

Critical Sections

- Basic way to eliminate races: use *critical* sections that only one thread can be in
 - Contending threads must wait to enter

Mutexes

- Critical sections typically associated with mutual exclusion locks (mutexes)
- Only one thread can hold a given mutex at a time
- Acquire (lock) mutex on entry to critical section
 - Or block if another thread already holds it
- Release (unlock) mutex on exit
 - Allow one waiting thread (if any) to acquire & proceed

Protecting an invariant

```
// invariant: data is in buffer[first..last-1]. Protected by m.
pthread_mutex_t *m;
                               char get() {
char buffer[1000];
                                pthread_mutex_lock(m);
int first = 0, last = 0;
                                 char c = buffer[first];
                                first++; X what if first==last?
void put(char c) {
                                 pthread_mutex_unlock(m);
  pthread_mutex_lock(m);
  buffer[last] = c;
  last++;
  pthread_mutex_unlock(m);
```

 Rule of thumb: all updates that can affect invariant become critical sections.

See you on Thursday Good Luck!