IT TOOK A LOT OF WORK, BUT THIS
LATEST LINUX PATCH ENABLES SUPPORT
FOR MACHINES WITH Y4096 (PUs,

UP FROM THE OLD LIMIT OF 1,024.

/ DO YOU HAVE SUPPCRT FOR SMOOTH
FULL-SCREEN FlASH VIDEDYET?

NO, BUTWHO USES 7HA77)

\

OEXO.

xkecd/619

Multicore & Parallel Processing

Guest Lecture: Kevin Walsh
CS 3410, Spring 2011
Computer Science
Cornell University

Execution time after improvement =

affected execution time

amount of improvement

+ execution time unaffected

Q: How to improve system performance?
- Increase CPU clock rate?

— But |/O speeds are limited
Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism

Problem Statement

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline

Pipeline depth limited by...

— max clock speed (less work per stage = shorter clock cycle)

— min unit of work
— dependencies, hazards / forwarding logic

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Multiple issue pipeline

— Start multiple instructions per clock cycle in duplicate stages

Static Multiple Issue

Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t.

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* Instructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)

Compiler scheduling for dual-issue MIPS...

TOP:

TOP:

lw $to, 0($s1)
Iw $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw $t1, 4($s1)
addi $s1, $s1, +8
bne $s1, $s3, TOP

ALU/branch slot

nop

nop

addu $to, $to, $s2

addu $t1, $t1, $s2

addi $s1, $s1, +8

bne $s1, $s3, TOP

$t0 = A[i]

$t1l = A[i+1]

add $s2

add $s2

store A[1i]

store A[i+1]

increment pointer

continue if $sl!=end
Load/store slot cycle
lw $to, 0(%$s1) 1
Iw $t1, 4($s1) p)
gle]s) 3
sw $to, 0(%$s1) 4
sw $t1, 4(%$s1) 5
nop 6

Scheduling Example

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
lw $to, 0($s1) # load A

addi $to, $to, +1 # increment A

sw $to, 0($s1) # store A

lw $to, 0($s2) # load B

addi $to, $to, +1 # increment B

sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop lw $to, 0($s1) 1
gle]s) nop 2
addi $to, $to, +1 nop 3
nop sw $to, 0($s1) 4
nop lw $to, 0($s2) 5
gle]s) nop 6
addi $to, $to, +1 nop V4
nop sw $to, 0($s2) 8

Dynamic Multiple Issue

Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)

* CPU examines instruction stream and chooses multiple
instructions to issue each cycle

e Compiler can help by reordering instructions....
... but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming
e Guess results of branches, loads, etc.
Roll back if guesses were wrong
* Don’t commit results until all previous insts. are retired

10

Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?

* Programs dependencies

* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;
Hard to expose parallelism

— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

11

Q: Does multiple issue / ILP cost much?

Power Efficiency

— Dynamic issue and speculation requires power

Out-of-order/ Cores Power

A: Yes.
CPU Year
1486 1989
Pentium 1993

Pentium Pro 1997
P4 Willamette 2001
UltraSparc [l 2003
P4 Prescott 2004
Core 2006
UltraSparc T1 2005

- Multiple simpler cores may be better?

Clock
Rate

25MHz

66MHz
200MHz
2000MHz
1950MHz
3600MHz
2930MHz
1200MHz

Pipeline
Stages

5

5
10
22
14

31
14

§

Issue
width

1

- WO A~ WO O DD

Speculation

No
No
Yes
Yes
No
Yes
Yes
No

OO N = = ek kA

SW
10W
29W
75W
90w

103W
75W
70W

12

2,000,000,000 - Dual-core Itanium 2. ::
1,000,000,000 — - ,’ ‘

Hanum 2 with C'l'-lv|‘ -.' (rgl.) ‘ K 1 O

100,000,000 Itanium 2

Curve shows ‘Moore's Law". L’
10,000,000 — transistor count doubling 7 g erl

Pl
avery two years o Kb

486. Pentium

386,
100,000 286?/’

1,000,000 —

-E
-
o
(&)
-
o
@
n
c
(l'i
}_

’3088

2,300 .»""5080
~774004° 8008

1980 2000 2008

10,000 —

Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die

* And smaller means faster too

But: Power consumption growing too...

14

Watts/cm’

10000 ¢

.
S I I E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEENN

1000

100

10

- Surface of Sun

' Nuclear Reactor

Pentium lll ® processor
Pentium ll ® proce ssor

Pentium Pro ® processor
Pentium ® processor

'Hot Plate

E E E I EEEEEEEEERN
{386
- 486

1.5 1p D.7u O.5p D.35p 0.254 0.18p 0.13u 0.1u 0.0Tp

Power Limits

 Rocket Nozzle /
IEIIIIIIIIlllllllllllllIIIIIIIIIIIIIIIIIII1

15

Power = capacitance * voltage? * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall
* We can’t reduce voltage further

e We can’t remove more heat

16

Why Multicore?

Performance
Power

Single-Core
1.7x Overclocked +20%

Performance
Power

1.0x
1.0x

Power -- 1.02x Underclocked -20%

Single-Core

17

Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 |Slow I/O|Fuses

128-bit FPU

Load/| L1 Data
2MB Store | Cache
Shared
Lg

Cache | Fetch/
Decode/ | L1 Instr
Branch | Cache

Northbridge

L]

HT PHY, link 2

RRREGE « QOGO TOLLTT

D
D
R
P
H
Y

e aN)
| nmam s ?t: i
11
THI RIS
I T %

HT PHY, link 3

HT PHY, link 4 |Slow I/O

18

Inside the Processor

Intel Nehalem Hex-Core

Hyperthreading

Multi-Core vs. Multi-Issue vs. HT

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
e Easy to keep HT pipelines full + share functional units

20

Example: All of the above

21

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
* Coordination & synchronization
e Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?

Py

Work Partitioning

Partition work so all cores have something to do

23

Load Balancing

Load Balancing
Need to partition so all cores are actually working

24

Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results
Recall: Amdahl’s Law
As number of cores increases ...

* time to execute parallel part?

* time to execute serial part?

25

Amdahl’s Law

26

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
* Coordination & synchronization
e Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?

27

