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Execution time after improvement =

affected execution time

amount of improvement

+ execution time unaffected



Q: How to improve system performance?
- Increase CPU clock rate?

— But |/O speeds are limited
Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism

Problem Statement



Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline

Pipeline depth limited by...

— max clock speed (less work per stage = shorter clock cycle)

— min unit of work
— dependencies, hazards / forwarding logic



Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Multiple issue pipeline

— Start multiple instructions per clock cycle in duplicate stages



Static Multiple Issue

Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t.

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* Instructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)



Compiler scheduling for dual-issue MIPS...

TOP:

TOP:

lw  $to, 0($s1)
Iw  $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw  $t1, 4($s1)
addi $s1, $s1, +8
bne $s1, $s3, TOP

ALU/branch slot

nop

nop

addu $to, $to, $s2

addu $t1, $t1, $s2

addi $s1, $s1, +8

bne $s1, $s3, TOP

# $t0 = A[i]

# $t1l = A[i+1]

# add $s2

# add $s2

# store A[1i]

# store A[i+1]

# increment pointer

# continue if $sl!=end
Load/store slot cycle
lw  $to, 0(%$s1) 1
Iw  $t1, 4($s1) p)
gle]s) 3
sw $to, 0(%$s1) 4
sw  $t1, 4(%$s1) 5
nop 6

Scheduling Example



Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
lw  $to, 0($s1) # load A

addi $to, $to, +1 # increment A

sw $to, 0($s1) # store A

lw  $to, 0($s2) # load B

addi $to, $to, +1 # increment B

sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop lw  $to, 0($s1) 1
gle]s) nop 2
addi $to, $to, +1 nop 3
nop sw $to, 0($s1) 4
nop lw  $to, 0($s2) 5
gle]s) nop 6
addi $to, $to, +1 nop V4
nop sw $to, 0($s2) 8



Dynamic Multiple Issue

Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)

* CPU examines instruction stream and chooses multiple
instructions to issue each cycle

e Compiler can help by reordering instructions....
... but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming
e Guess results of branches, loads, etc.
Roll back if guesses were wrong
* Don’t commit results until all previous insts. are retired

10



Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?

* Programs dependencies

* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;
Hard to expose parallelism

— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

11



Q: Does multiple issue / ILP cost much?

Power Efficiency

— Dynamic issue and speculation requires power

Out-of-order/ Cores Power

A: Yes.
CPU Year
1486 1989
Pentium 1993

Pentium Pro 1997
P4 Willamette 2001
UltraSparc [l 2003
P4 Prescott 2004
Core 2006
UltraSparc T1 2005

- Multiple simpler cores may be better?

Clock
Rate

25MHz

66MHz
200MHz
2000MHz
1950MHz
3600MHz
2930MHz
1200MHz

Pipeline
Stages

5

5
10
22
14

31
14

§

Issue
width

1

- WO A~ WO O DD

Speculation

No
No
Yes
Yes
No
Yes
Yes
No

OO N = = ek kA

SW
10W
29W
75W
90w

103W
75W
70W
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Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die

* And smaller means faster too

But: Power consumption growing too...

14
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Power = capacitance * voltage? * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall
* We can’t reduce voltage further

e We can’t remove more heat

16



Why Multicore?

Performance
Power

Single-Core
1.7x Overclocked +20%

Performance
Power

1.0x
1.0x

Power -- 1.02x Underclocked -20%

Single-Core
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Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores
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Inside the Processor

Intel Nehalem Hex-Core




Hyperthreading

Multi-Core vs. Multi-Issue vs. HT

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
e Easy to keep HT pipelines full + share functional units

20



Example: All of the above

21



Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
* Coordination & synchronization
e Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?

Py



Work Partitioning

Partition work so all cores have something to do

23



Load Balancing

Load Balancing
Need to partition so all cores are actually working

24



Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results
Recall: Amdahl’s Law
As number of cores increases ...

* time to execute parallel part?

* time to execute serial part?

25



Amdahl’s Law
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Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
* Coordination & synchronization
e Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?
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