IT TOOK A LOT OF WORK, BUT THIS
LATEST LINUX PATCH ENABLES SUPPORT
FOR MACHINES WITH Y4096 (PUs,

UP FROM THE OLD LIMIT OF 1,024.

/ DO YOU HAVE SUPPCRT FOR SMOOTH
FULL-SCREEN FlASH VIDEDYET?

NO, BUTWHO USES 7HA77 )

\

OEXO.

xkecd/619




Multicore & Parallel Processing

Guest Lecture: Kevin Walsh
CS 3410, Spring 2011
Computer Science
Cornell University



(—;XQ&J)\GV)
Execution time after improvement =

affected execution time

amount of improvement

+ execution time unaffected

A\M A‘t\’l\ s Lqu



Q: How to improve system performance?
- Increase CPU clock rate?
— But |/O speeds are limited
Disk, Memory, Networks, etc.

&

Recall: Amdahl’s Law
>

Solution: Parallelism

&

Problem Statement



Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Deeper pipeline

Al

Pipeline depth limited by...

— max clock speed (less work per stage = shorter clock cycle)

— min unit o@
— dependencies, hazards / forwarding logic

7/

.




Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Multiple issue pipeline
— Start multiple instructions perelock cycle in duﬁate stages
1S5S o0lw o—p

?43)‘@‘;——-9 DE

O azards, — hlefne — Deley Subs et
&&ahd,hg — Al&w‘zj é\’e"‘ W(ﬁd‘

F}/SWL -6,)60» QA‘LWSS



Static Multiple Issue

Statig Mulﬁple Issue
S Vc ,
a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?

A: It doesn’t.

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* Instructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)



Scheduling Example

Compiler scheduling for dual-issue MIPS...

TOP: 1w  $to, 0($sl) # $to = A[i]
Iw  $t1, 4($s1) $t1 = A[i+1]
addu $to, $to, $s2 # add $s2
addu $t1, $t1 $s2 # add $s2 Cyde}

sw  $te; # store A[i]

H

H

H

H

=
sw  $tly ﬁg store A[i+1]
addi $s1, +8

increment pointe
bne $31, $s3, TOP continue if $s1!#£end

ALU/branch slot Load/store slot cycle

0(%$s1)
_jl%‘: $1;(1\, 4($s1)

1

5)

g/
@t@ 0($s1) g §/

6

TOP:

4($s1)
noéVJ




Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
lw  $to, 0($s1) # load( A

addi $to, $to, +1 # increment A \\«S
sw $to, 0($s1) # store Eé/////
lw  $to, 0($s2) # load
addi $to, $to, +1 # increment B
sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop 1w $t@ 0(%$s1) 1
nop / 0%y GG 0(52‘3 2
addi $to, +1 nop 3
nop 4
(hnop lw $tp, @($52>; 5
gle]s) nop 6
3add1 $th, $@ non 7
no 8

p Sw th, @(SISSR




Dynamic Multiple Issue

Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)

* CPU examines instruction stream and chooses multiple
instructions to issue each cycle

e Compiler can help by reordering instructions....
... but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming L o aAMA
e Guess results of branches, loads, etc.

Roll back if guesses were wrong

* Don’t commit results until all previous insts. are retired

10



Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?

* Programs dependencies

* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;
Hard to expose parallelism

— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

11



Q: Does multiple issue / ILP cost much?
A: Yes.
9 Dvnamic issue and speculation requires power

Year Clock Pipeline Issue Out-of-order/ Cores Power
Rate Stages width  Speculation

486 UFC 1989  25MHz 4 No
'}Nm

1
Pentium 1993 66MHz 2 No 1 10W
Pentium Pro 1997 200MHz 3 Yes 1 29W
P4 Willamette 2001 2000MHz 3 Yes 1 75W
UltraSparc Il 2003  1950MHz & 14 D No 1| oow
P4 Prescott 2004 3600MHz @ 3 Yes 1 103W
Core (¢ 2006 2930MHz 14 4 \CE 2

UItraSparc@ 2005 1200MHz 6 1 No 8 70W

- Multiple simpler cores may be better?

12



2,000,000,000 - Dual-core Itanium 2. ::
1,000,000,000 — - ,’ ‘

Hanum 2 with C'l'-lv|‘ -.' (rgl. ) ‘ K 1 O

100,000,000 Itanium 2

Curve shows ‘Moore's Law". L’
10,000,000 — transistor count doubling 7 g erl

Pl
avery two years o Kb

486. Pentium

386,
100,000 286?/’

1,000,000 —

-E
-
o
(&)
-
o
@
n
c
(l'i
}_

-'2088

2,300 .»""5080
~774004° 8008

1980 2000 2008

10,000 —




Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die

* And smaller means faster too

But: Power consumption growing too...

14



Watts/cm’

10000 ¢

.
S I I E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEENN

1000

100

10

- Surface of Sun

'Rocket Nozzle

' Nuclear Reactor

@..................-------------------..1

Pentium lll ® processor
entium Il ® processor

Pentium Pro ® processor
entium ® processor "
1486 \gM

'Hot Plate

E E EEEEEEEEEEEN
<

{386

1.5 1p D.7n O.5p D.35p 0.2%5u O.IEp 0.134 0.1p o.o|7p

Power Limits

!

31"&

15



PPPPPPP

_ 2 %
er = capacitance * voltage irequencyj

In practice: Power -73\%3 = u[l‘e(/

| ol \[8\(}‘){

Reducing voltage helps (a lot)
.. S0 does reducing clock speed
Better cooling helps

The&ri)wer wﬂ

* We can’t reduce voltage further

e We can’t remove more heat

16



Why Multicore?

Power _1.7)( Overclocked
oV

ol ,
Performance _ 1.0x mf,
Power >ingle-Core

1.0x

Power -- 1.02x “Underclocked -20%

17



Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 |Slow |/o
|

128-bt FPU

N

‘ “'

Zeoha  1512kE

L]

I_EXxecution | L2
Fetch/ ct

Decode/ | L1 Instr
Branch Cache '

Northbridge

HT.BHY, link 2

Qaddd i s
SCIRICRNS

D
D
R
P
H
Y

. I
8 i,

10 O

10 0

HT PHY, link 3

HT PHY, link 4  |Slow I/O

18



Inside the Processor

Intel Nehalem Hex-Core

ot el e e

il -"- - J.-l




Hyperthreading

Crofems

Progra e N I NE
Num. Pipelines: N { !
Pipeline Width: , N, N

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
e Easy to keep HT pipelines full + share functional units

20



Example: All of the above

% A (eg

l/‘ (a8y &'ve(’ é\{

2, Wy

T wie MNTC
\yn@éxhe

\ L, ﬂ\y? \ne Q-,ﬁg

—J

. Memory

Intel” Scalable Mer:

21



Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
* Coordination & synchronization
e Communications overhead
* Balancing load over cores
* How do you write parallel programs?

— ... without knowing exact underlying architecture?

Py



Work Partitioning

Partition work so all cores have something to do

NN S S - E— —

23



Load Balancing
Need to partition so all cores are actually working

24



Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results
Recall: Amdahl’s Law
As number of cores increases ...

* time to execute parallel part?

* time to execute serial part?

25



Amdahl’s Law

26



Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties

* Partitioning work)~ SW 5@
e Coordination & synchronizaﬁgﬁ(@

& Cgmmunications overhead o

W

* How do you write parallel programs?

\Balancing load over cores \—

— ... without knowing exact underlying architecture?

27



