/0

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See: P&H Chapter 6.5-6

Goals for Today

Computer System Organization ﬁf/(bc(.
How to talk to device? 2 %7&666 /(
* Programmed I/O or I\Wped /O =5
How to get events?

* Polling or Interrupts

How to transfer lots of data?

 Direct Memory Access (DMA) ___

P€V{‘CC€ S

"2 & 7 gf

Computer System Organization
Computer System =

Input +
Output +
Memory +
Datapath +
Control

N

Keyboard

) Mouse

/

/

CPU

z ‘
Registers

USB

Serial

Aud

To)

Challenge
How do we interface to other devices
e Keyboard
* Mouse
e Disk
* Network
e Display
* Programmable Timer (for clock ticks)
* Audio
* Printer(s)
* Camera
* iPod
* Scanner

Interconnects

Bad Idea #1: Put all devices on one interconnect

* We would have to replace all devices as we improve/
change the interconnect

* keyboard speed == main memory speed ?!

CPU

|
Cache

& interconnect

\ Serial

Memory BIN Audio

Video Network

Keyboard

/0O Controllers
Decouple via I/O Controllers and “Bridges”

* fast/expensive busses when needed; slow/cheap elsewhere
* |/O controllers to connect end devices

Intel Xeon 5300
processor—~

FB DDR2 667
(5.3 GB/sec) Memory ‘ PCle x16 (or 2 PCle x8)

controller (4 GB/sec) ﬂ/
hub

(north bridge)
5000P

Serial ATA 2 GB/sec) (2 GB/$ec)

(300 MB/sec

FroméSide Bus (1333 MHz, 10.5 GB/seC}l//c

PCle x4
1 GB/sec
PCle x4

1/0 I 1 GB/sec
controller PCI-X bus

hub (1 GB/sec)
(south bridge) ' PCI-X bus

Keyboard, Entreprise South (1 GB/sec)
mouse, ... Bridge 2 —
USB 2.0 Parallel ATA

(60 MB/sec) (100 MB/sec) @

/0O Controllers
Decouple via I/O Controllers and “Bridges”

* fast/expensive busses when needed; slow/cheap elsewhere

* |/O controllers to connect end devices) p”/’l/‘ﬂa//](/
/\/ r ~CXTTY 6(“’(/<
A urs o £
/10‘7-—6(/\/74/["" 10 HUB l"?Cn«(”'(Pf(
e ol e 2) - aj %‘K
Arch gl nieD [EEb (inveD Tk ej
(/VO _.. W Y4| Nehabsm €x Nehalear€X ej i
Shied T ') eSS
g 1 Q—E ,AQ_E/_'—VY ~n
— iy K-
_-' QI Nehacmex (T wonalem eX = B
= 2 / — oy
— | Memory
< Intel’ Scalable
— Memory&metJ 7

Interconnecting Components

Interconnects are (were?) busses
& 7/

» parallel set of wires for data and control /
o channel /’ch'é

— multiple senders/receivers >(€ 0/]

— everyone can see all bus transactions

* bus protocol: rules for using the bus wires

Alternative (and increasingly common): /l/
9445/647

* dedicated point-to-point channels

Bus Parameters

Width = number of wires
Transfer size = data words per bus transaction

Synchronous (with a bus clock)
or asynchronous (no bus clock / “self clocking”)

Bus Types

Processor — Memory (“Front Side Bus”. Also QPI)
e Short, fast, & wide
* Mostly fixed topology, designed as a “chipset”

— CPU + Caches + Interconnect + Memory Controller

/0 and Peripheral busses (PCl, SCSI, USB, LPC, ...)
* Longer, slower, & narrower
* Flexible topology, multiple/varied connections
* Interoperability standards for devices
e Connect to processor-memory bus through a bridge

10

Typical x86 PC I/0O System

Q§-é€

Intel Xeon 5300
proces(sor

r\[__———\

Front Side Bus (1333 MHz, 10.5 GB/sec)

FB DDR2 667

Main

DIMMs

memory—

(5.3 GB/sec)

M
/m{ﬁt oller

o \/
(north bridge)

5000P

ory
hpb

PCle x16 (or 2 PCle x8)
(4 GB/sec)

PCle x8

Serial ATA

(2 GB/sec)

(800 MB/sec)

isk

e

58

_\/

4o

Keyboard,
mouse, ...

LPC
(1 MB/sec)

USB 2.0
(60 MB/sec)

PCle x4
(1 GB/sec)

PCle x4
(1 GB/sec)

PCI-X bus
(1 GB/sec)

PCI-X bus
(1 GB/sec)

00 MB/sec)

S~—_

Typical x86 PC I/O System

e 5 | N
’ 1o HB
" o = A
n = ln/j mﬁ » =
= Nehdenex "' —
--—- . 1 e -—
w
. R YAy 9
T O - _~ mj (intel) o j’
2 Te NehabnEX uehalenex j-

| aj—
e lntel'Scalable
- . Hemory&m«J

12

/0O Device API

,] How 4o i/*!(’chk
Typical I/O Device API WA
0

* a set of read-only or read/write registers
Command registers
e writing causes device to do something

Status registers

* reading indicates what device is doing, error codes, ...

ata registers
 Write: transfer data to a device
e Read: transfer data from a device

EWI‘j 0’/CVICC5 uses é455 A /0/

13

Simple (old) ?xampjﬁg

PE [TO

AUXB

LOCK

AL2

SYSF

8-bit Status:

8-bit Cmd:
OxAA = “self test”
OxAE = “enable kbd”
OXED = “set LEDs”

8-bit Data:

scancode (when reading)

LED state (when writing) or ...

14

Communication Interface
Q: How does pregram- -OS- code talk to device?
A: special instructions to talk over special busses

Programmed I/O —)}, \(e/@{ iyl
* inb Sa, Ox64 K//‘/s(‘(C 5{414«.? e

* outb $a, 0x60 & /<6 (7 /\géﬁ/ﬁ/pps Aot
* Specifies: device, data, direction ¢
* Protection: owed i rnel mode

QX/p”S//(

*x86: Sa implicit; also inw, outw, inh, outh,

Communication Interface
Q: How does pregram- -OS- code talk to device?

A: Map registers into virtual address space

Memory-mapped I/0 Cecs ppundire X

&/
* Accesses to &Eﬂﬁma@redirected to /O devices

* Data goes over the memory bus

* Protection: via bits in pagetable entries
*_0S+MMU+devices configure mappings

16

Memory-Mapped I/0O
RN

= FEEEFEF

—

Virtua

Address
Space

\

sica

Address
Space

Video
Registers &
Memory

Audio

_Registers

/

3

=

N

/

&(0 o 00 0090

Dx ”000 O

RAM

Keyboard

Registers

17

Device Drivers

Progra /0O
e
A /Lj/
char read_kbd() Arple
{ A
do {
sleep();
status = inb(0x64
} while (!(1));
return inb(@x6@))
} —

/

7%

fyg €/ Sgﬁm/

Memory Mapped I/O
struct kbd {
char status, pad[3];
char data, pad[3];

s

kbd *k ﬂ)fj

do {
sleep();
status = k->status;

Pwhile (!(status & 1));

m

return k->data;

¥

—_— 18

Communication Method

Q: How does program learn device is ready/done?
A: Polling: Periodically check I/O status register

 |f device ready, do operation
* |If device done, ...
* If error, take action

Pro? Con? //06 N

* Predictable timing & inexpensive
e But: wastes CPU cycles if nothing to do

e Efficient if there is always work to do

Common in small, cheap, or real-time embedded systems
Sometimes for very active devices too... 19

Communication Method

Q: How does program learn device is ready/done?

A: Interrupts: Device sends interrupt to CPU
* Cause identifies the interrupting device
* interrupt handler examines device, decides what to do

Priority interrupts

* Urgent events can interrupt lower-priority interrupt
handling

* OS can -disable- defer interrupts ,
more eALcien s 0:/){7 /724/@/7‘

on ?{fl//l‘f fﬂa/
/{55 @’[’(/('/Wz(l; More Rxpnsi -
Sare £ P co:z

20

Typical x86 PC I/0O System

Intel Xeon 5300
processor
r’

Main
memory
DIMMs

I

N

FB DDR2 667
(5.3 GB/sec) ory

contholler

Front Side Bus (1333 MHz, 10.5 GB/sec

¢

PCle x16 (or 2 PCle x8)

7 WaY = WP

(north byidge)

500pP

T ST oSl

Serial ATA

ESI l PCle x8
(2 GB/sg¢c) |(2 GB/sec)

(800 MB/sec)

/0

N~

conjtroller
LPC ub
(1 MB/sec) (south bridge)

Keyboard,
mouse, ...

Entrepfise South

USB 2.0 Brifige 2

(60 MB/sec)

fo

PCle x4
(1 GB/sec)

PCle x4
(1 GB/sec)

PCI-X bus
(1 GB/sec)

PCI-X bus
(1 GB/sec)

Parallel ATA

\—

(4
¢ ICI’\ I\AB'/SAA)

/O Data Transfer

How to talk to device?
Programmed I/O or Memory-Mapped |/O
How to get events?

Polling or Interrupts |
How to transfer lots of data? Q?ﬁ/) a7,

disk->cmd = READ 4K SECTOR;
disk->data = 12;
while (!(disk->status & 1) { }
for (i = 0..4k)

buf[i] = disk->data;

Py

DMA: Direct Memory Access

Programmed I/O xfer: Device €2 CPU &2 RAM
for(i=1..n) CPU [=— RAM

 CPU issues read request \

e Device puts data on bus W
%4

& CPU reads into registers <
- L o Aisf
* CPU writes data to memory o e
éueg > L
/\77 /ﬂ(pf/&

23

/O Data Transfer

Q: How to transfer lots of data efficiently?
A: Have device access memory directly

wy access (DMA) 7 \

* OS provides starting address, length /

e controller (or device) transfers data aUIQW@
* Interrupt on completion / error @

24

DMA: Direct Memory Access
Programmed I/O xfer: Device €<= CPU .é? RAM

for(i=1..n) CPU [€— RAM
* CPU issues read request v
e Device puts data on bus W

& CPU reads into registers

e CPU writes data to memory

DMA xfer: Device € > RAM L= o Fia
e CPU sets up DMA request B ;54/\
e for(i=1...n) Ruests s, 20
Device puts data on bus Mys CP&Q
& RAM accepts it aﬁ”ﬂ”c (o ooy,
belws or5s¢e

DMA Example

DMA example: reading from audio (mic) input
 DMA engine on audio device... or I/O controller ... or ...
int dma _size = 4*PAGE_SIZE;

int *buf = alloc dma(dma _size);

dev->mic_dma baseaddr = (int)buf;
dev->mic_dma count = dma_len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT ENABLE | DEV_DMA ENABLE;

26

DMA Issues (1): Addressing

RAM: physical addresses

Programs: virtual addresses

Solution: DMA uses physical addresses

ssue #1: DMA meets Virtual Memory

CPU

MMU

RAM

DISK

* OS uses physical address when setting up DMA

e OS allocates contiguous physical pages for DMA

e Or: OS splits xfer into page-sized chunks
(many devices support DMA “chains” for this reason)

27

DMA Example

DMA example: reading from audio (mic) input
 DMA engine on audio device... or I/O controller ... or ...
int dma _size = 4*PAGE_SIZE;

void *buf = alloc dma(dma_size);

dev->mic_dma baseaddr = virt to phys(buf);
dev->mic_dma count = dma_len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT ENABLE | DEV_DMA ENABLE;

28

DMA Issues (1): Addressing

RAM: physical addresses

Programs: virtual addresses

Solution 2: DMA uses virtual addresses
* OS sets up mappings on a mini-TLB

ssue #1: DMA meets Virtual Memory

CPU

MMU

é% RAM
N——

uTLB

DISK l

29

DMA lIssues (2): Virtual Mem
Issue #2: DMA meets Paged VirtualMemory

DMA destination page
may get swapped out

CPU

Solution: @e page before initiating DMA

Alternate solution: Bounce Buffer

RAM

* DMA to a pinned kernel page, then memcpy elsewhere

30

DMA Issues (4): Caches

Issue #4: DMA meets Caching

DMA-related data could
be cached in L1/L2 ¥

* DMA to Mem: cache is now stale m

e DMA from Mem: dev gets stale data

CPU || L2 RAM

Solution: (software enforced coherence)
e OS flush
e Or—donttouch pages during DMA

e Or: mark pages as uncacheable in page table entries
— (needed for Memory Mapped 1/O too!)

ns

31

DMA Issues (4): Caches

Issue #4: DMA meets Caching

DMA-related data could
be cached in L1/L2 ¥

* DMA to Mem: cache is now stale m

e DMA from Mem: dev gets stale data

Solution 2: (hardware coherence akam
* cache listens on bus, and conspires wit
* Bmato Mem: invalidate/update data seen on bus

* DMA from mem: cache services request if possible,
otherwise RAM services

CPU || L2 RAM

32

/O Summary

How to talk to device?

Programmed I/O or Memory-Mapped I/0O
How to get events?

Polling or Interrupts
How to transfer lots of data?

DMA

33

