Caches

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H 5.2 (writes), 5.3, 5.5

Announcements
HW3 available due next Tuesday

e HWS3 has been updated. Use updated version.
 Work with alone

Be responsible with new knowledge
Use your resources

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

Next six weeks

 Two homeworks and two projects
e Optional preliml has been graded
* Prelim2 will be Thursday, April 28t
* PA4 will be final project (no final exam)

Goals for Today: caches

Caches vs memory vs tertiary storage

* Tradeoffs: big & slow vs small & fast
— Best of both worlds

* working set: 90/10 rule
 How to predict future: temporal & spacial locality

Cache organization, parameters and tradeoffs
associativity, line size, hit cost, miss penalty, hit
rate

 Fully Associative = higher hit cost, higher hit rate

 Larger block size =2 lower hit cost, higher miss penalty

3

Cache Performance

Cache Performance (very simplified):

L1 (SRAM): mytycm direct mapped
Data cost: 3 cycle per word access

Lookup cost: 2 cycle
— 0,
Mem (DRAM): 4GB Lo = /G endls

Data cost: 50 cycle per word, pIuD@cJ_e_pﬂr_cmgtive \gLQI:eP
PC,F#'; CUSLL)‘(‘/é X/()#(6_/- Cdgé M SS)(6”4/55

QoSé AL(tL:‘_ 5,c,gC{‘?5 P /
costMss = § +—50 L 3x/5 = /OO0 e ylés
IW(J:_A /§'WOfJJ
Per(-: b 70 + /00 x ! - 5
—.5 (O

Performand&dépends ox: , 95~ L /00 x. 05 _ 93725
Access time for hit, misé’ﬁeﬁaﬂtyj—hit rate

4

Misses
Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

Avoiding Misses
Q: How to avoid...

Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Other Misses
* Buy more SRAM
* Use a more flexible cache design

@gger cache doesn’t always help...

em access trace: 0, 16, 1, 17, 2,183,719, 4, ...

Hit rate with four direct-mapped 2-byte cache lines?

[& Rate :()9:_5;.71/_::#
’ — 1

With eight 2-byte cache lines?

O%

1

!

With four 4-byte cache lines?

> y 4 2

0% [=F

L

-

00DO O = O

lovoo =16
/’I/Q)(
00000 = ()
l oo = (6
——r

O 0N O Ul b W N RL|O

e e
o U A W N - O

NN R R
= O W 00

Misses
Cache misses: classification

The line is being referenced for the first time
e Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted...

... because some other access with the same index
* Conflict Miss

... because the cache is too small

* j.e. the working set of program is larger than the
cache

* Capacity Miss

Avoiding Misses
Q: How to avoid...

Cold Misses

e Unavoidable? The data was never in the cache...
* Prefetching!

Capacity Misses
* Buy more SRAM
Conflict Misses

@ore flexible cache dep

Three common designs
AN ta block | -
glvgn data b oc. can be p aceo} 7 N@f(.
* ...inany cache line =2 Fully As@ Cont i
* ...in exactly one cache line = Direct Mapped

e ...in a small set of cache lines = Set Associative

\

10

A Simple Fully Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Fully Associative
' Cache

0 21 M QP10)=
b $2 < M[13] A = | [_J,%(L
Ib$3eM:OZ/)ﬂéP - g
o B8 <ML, SO0 =
b SZ@MS/}} : \,_//
b &2 =[le. V tag
Ib SZeM:lo]/!? I owo (7/?'[_\: | O3]
b $S2 <~ M[12] 51— .

(Q e S | ¢=
> |29V] 13) | 13FA
Sz /|2°/0| 1/3 B
S3
S4 Hits:” Misses: “

' v

Memory
of 101
5 19 103 a
2 107
39 109 a
I (4 113
SE 127 a
<6 131
'7E 137 a
L8 139
9E 149 a
10 151
11 157
(125 R 3
139 167 a
14 173
15 179
16F 181 q

Fully Associative Cache (Reading)

® Tag Qffset
V Tag Block /\
| ¢ | ® | ® AN
g g g %
/7 = lineselect /
- 64bytes
\, word select A
-T 32bits
hit?

data

12

Fully Associative Cache Size

Tag Qffset

A

m bit offset , 2" cache lines
Q: How big is cache (data only)?
Q: How much SRAM needed (data + overhead)?

2 @ég (PCr (1ne % l C/nej /l

512 e s
Z(L/ éS —
24)(27: 2/5 :BZK@
- (/0/\404&/ , l/'
(0 > D/‘L[S 0'[0‘/"/"6(/*;} [/40}

(39\~M+'

13

Fully-associative reduces conflict misses...

.. assuming gogd@%hgn/svt;at%@
Mem access trace: 0, 16,1, 17, 2, 18, 3, 19, 4, 20, ...
Hit rate with four fully-associative 2-byte cache lines?

o]

o
50% [z
[)] /g

0O N OO UV A W N PO

e e
o U b W N - O O

NN R R
= O W 00

14

.. but large blogk size ¢can stiliyeduce hit rate
vector add trace: 0, 100, 200, 1, 101, 201, 2, 202, .

Hit rate with four fully- assouatlve 2-byte cache lines?

—0 |
— /| /U/
5 O{) /7_dOI 2o

With two fully-associative 4-byte cache lines?

Z Lo [T 3T 3
1voflo) [ro2 [703

15

Misses
Cache misses: classification

Cold (aka Compulsory)

* The line is being referenced for the first time
Capacity

* The line was evicted because the cache was too small

* i.e. the working set of program is larger than the
cache

Conflict

* The line was evicted because of another access
whose index conflicted

16

Summary
Caching assumptions

* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* big & fast memory built from (big & slow) + (small & fast)
Tradeoffs:
associativity, line size, hit cost, miss penalty, hit
rate
* Fully Associative = higher hit cost, higher hit rate
 Larger block size = lower hit cost, higher miss penalty

Next up: other designs; writing to caches

17

Cache Tradeoffs

Direct Mapped Fully Associative
+ Smaller Tag Size Larger —
+ Less SRAM Overhead More —
+ Less Controller Logic More —
+ Faster Speed Slower —
+ Less Price More —
+ Very Scalability Not Very —
— Lots # of conflict misses Zero +
— Low Hit rate High +

— Common Pathological Cases? ?

18

Set Associative Caches

19

Compromise

Set Associative Cache L0 0X000000
5S¢ x000004

e Each block number ((Oxooooog
mapped to a single 0x00000c
cache line set index g (Ox000010

0x000014

* Within the set, block 0x000018

|

can go in any line (0x00001c
0x000020

2|
é 0x000024
% 0x00002c

Fure N
~4l line 0)j[f 0x000030

Q
N setO linel QLZ(Q O /Ox000034
' 4 0x000038
line 2 ~5SHC

: / (0x00003c¢
ine 3 { 0x000040
set1 line4 recC () 0§000044
line 5 (Ox000048

0x00004c

20

2-Way Set Associative Cache

Set Associative Cache

Like direct mapped cache

* Only need to check a few lines for each access...
so: fast, scalable, low overhead

Like a fully associative cache

e Several places each block can go...
so: fewer conflict misses, higher hit rate

21

3-Way Set %ssociﬁtive Cache (Reading)
Tag Index, Offset Lo

[@55
1oL < |[o] ¢ T

- _ & ! & ol © ®
pb ~~—
S~

i

O,

<:-—':/‘ >\ lineselect /
T -+ 64bytes
K j \ word select =
hit? datal 320"t #

A Simple 2-Way Set Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor

b $1< M[1]/]
b $2<=M[13]4 5 _
b $3< M[0] L4 7

b S3 < M[6]
b S2 <~ M[5]

b $2 < Mi6] |,V _tas O/OLQ.?O<
b$2<Mm[10] { (|220]| [0 | LOX

b $2<—M[12]5]]| Vol | 163 | /¢2=

% Moo 1371 [137

3 H AT T =224

S4 Hits: Misses:

Comparing Caches

A Pathological Case _— l%_’ 0(?'%6% D
Processor 55)5|rect Mapped /6 - ’(bogcf\/lemory
1 Ja b & 17+ [o] 101
3 éleM'l'M 'nJey [103
b $2 < M[8] /] |
b $3< M[1]/] 3 109
b S3<— M[8] i —— 4 113
b &2 e 5 A5 WaySet Associative M
S 6 131
b $2 < M[16]/] TG < | 7 (A i T
Hlb Szelvl:1: — i
Mb $2 <~ M[8] PR 9| 149
Sl /1 L)(// 10 151
\ Fully Assouatlve 11| 157
52 é “J\ / 7 12163
$3 1 5‘ Z 13| 167
[C / 14 173
54 15| 179
16| 181

Remaining Issues

To Do:

* Evicting cache lines

* Picking cache parameters
* Writing using the cache

e

25

Eviction

Q: Which line should we evict to make room?
For direct-mapped?
A: no choice, must evict the indexed line

For associative caches?

FO: oldest line (timestamp per line)
RU: least recently used (ts per line)

~U: (need a counter per line)

MRU: most recently used (?!) (ts per line)
RR: round-robin (need a finger per set)

RAND: random (free!)
Belady’s: optimal (need time travel)

26

Cache Parameters

27

Performance Comparison

direct mapped, 2-way, 8—\Way,fu\Hy associative

72)0»‘ KT [0//<

miss rate - ;

\>
cache size - j’?

28

Cache Design

Need to determine parameters:

Cache size

Block size (aka line size)

Number of ways of set-associativity (1, N, @)
Eviction policy

Number of levels of caching, parametersforeach
Separate I-cache from D-cache, o

Prefetching policies / instructions

Write policy

29

A Real Example

>(dmidecode -t cache
Ca i
Configuration: Enabled, Not Socketed, fevel 1 .
Operational Mode: Wri ack (purChased In 2009)
Installed Sizez:izgiiﬁf:F
Error Correction Type: None
Cache Information
Configuration: Enabled, Not Socketed, level 2
Operational Mode: Varies With Memory A
Installed Sizgziﬁifggﬁ§\\
Error Correction Type: Single-bit ECC
> c¢d /sys/devices/system/cpu/cpu@; grep cache/*/*
cache/index0@/level:1
cache/index0/t :

cache/index@/coherency_
cache/index0@/size:32K
cache/index1/level:1
cache/index1/type:Instructien
cache/indexIZways_of_associativity:;::::>
cache/index1/number_of_ sets:64
cache/index1/coherency_line size:64
cache/index1/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared_cpu_list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number of sets:4096
cache/index2/coherency line size:64
cache/index2/size:6144K

ine_size:64

ual-core 3.16GHz Intel

30

A Real Example
Dual-core 3.16GHz Intel

Dual 32K L1 Instruction caches (purchased in 2009)

@faxfset assoc@
* 64 byte line size %
Dual 32K L1 Data caches L) &N <) (=)

e Same as above
] —— | L 2
Sin cache

€ 24-way set assaciative {111} _—
: 1 %P]
mem

* 4096 sets—

* 64 byte line size

4GB Main memory

1TB Disk
/ 7_ 31

Basic Cache Organization

Q: How to decide block size?
A: Try it and see

But: depends on cache size, workload,
associativity, ...

Experimental approach!

32

Experimental Results

Block size

Tradeoffs

For a given total cache size,

larger block sizes mean....

* fewer lines

e so fewer tags (and smaller tags for associative caches)

* so less overhead

* and fewer cold misses (within-block “prefetching”)
But also...

* fewer blocks available (for scattered accesses!)

* so more conflicts

* and larger miss penalty (time to fetch block)

34

Writing with Caches

35

Cached Write Policies

Q: How to write data”?

idr) Cache — Memory
CPU d—) SRAM — DRAM
ata

If data is already in the cache...
No-Write
e writes invalidate the cache and go directly to memory

Write-Through

e writes go to main memory and cache

Write-Back

* CPU writes only to cache
e cache writes to main memory later (when block is evicted)

Write Allocation Policies
Q: How to write data”

addr) Cache > Memory
CPU d—) SRAM — DRAM
ata

If data is not in the cache...
Write-Allocate

 allocate a cache line for new data (and maybe write-through)

No-Write-Allocate
* ignore cache, just go to main memory

A Simple 2-Way Set Associative Cache

Using byte addresses in this example! Addr Bus =5 bits

Processor Direct Mapped Cache Memory
b $1 < M[1] + Write-through 0
b $2 < M[7] + Write-allocate ;
sb $2—->M[0] 3
sb $S1—>M[5] 4
b $2 < M[9] 2
sb $1—M[5] V tag °
sb $1— M[0] .
9
51 11
52 12
13
>3 14
54 Hits: Misses: 15
16

How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem
* 5 misses 2 10 mem reads

Each store writes an item to mem
* 4 mem writes

Evictions don’t need to write to mem
* no need for dirty bit

39

A Simple 2-Way Set Associative Cache

Using byte addresses in this'example! Addr Bus =5 bits

Processor Direct Mapped Cache Memory
b $1< M[1] + Write-back
b $2 < M[7] + Write-allocate
sb $2— M[O]
sb $S1—>M[5]
b $2 < M[9]

sb $1—-M[5] N tag
sb S1—>M[O0]

0]
1
2
3
4
5
6
7
8

S4 Hits: Misses:

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem
mem reads

rite a block to mem

1 dirty eviction 2 2 mem writes

* (+ 2 dirty evictions later 2 +4 mem writes)
* need a dirty bit

41

Write-Back Meta-Data
\ D. Tag. Byte 1 Byfz .. Byte N

V =1 means the line has valid data
D = 1 means the bytes are newer than main memory
When allocating line:
e SetV=1,D=0,fillin Tag and Data
When writing line:
e SetD=1
When evicting line:
e IfD=0:justsetV=0
 If D=1:write-back Data, thensetD=0,V =0

42

Performance: An Example

Performance: Write-back versus Write-through
Assume: large associative cache, 16-byte lines

for (i=1; i<n; i++)
Ale] += A[1];

for (i=0; i<n; i++)
B[i] = A[i]

43

Performance: An Example

Performance: Write-back versus Write-through
Assume: large associative cache, 16-byte lines

for (i=1; i<n; i++)
Ale] += A[1];

for (i=0; i<n; i++)
B[i] = A[i]

44

Performance Tradeoffs

Q: Hit time: write-through vs. write-back?

A: Write-through slower on writes.

Q: Miss penalty: write-through vs. write-back?
A: Write-back slower on evictions.

45

Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer
* A small queue holding dirty lines
* Add to end upon eviction
 Remove from front upon completion

Q: What does it help?
A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

46

Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer
* A small queue holding dirty lines
* Add to end upon eviction
 Remove from front upon completion

Q: What does it help?
A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

47

Write-through vs. Write-back

Write-through is slower

e But simpler (memory always consistent)

Write-back is almost always faster
* write-back buffer hides large eviction cost

e But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol
* Inconsistent views of memory
* Need to “snoop” in each other’s caches

e Extremely complex protocols, very hard to get right

48

Cache-coherency

Q: Multiple readers and writers?
A: Potentially inconsistent views of memory
CPU CPU CPU CPU

LI LI {L2| LT (L2 {jLL] LD ||LL
L2 L2

net Mem

Cache coherency protocol
* May need to snoop on other CPU’s cache activity
* Invalidate cache line when other CPU writes
* Flush write-back caches before other CPU reads
* Or the reverse: Before writing/reading...
e Extremely complex protocols, very hard to get right

49

Cache Conscious Programming

50

Cache Conscious Programming

// H =12, W= 10 1 [11]21]]
int A[H][W]; T 2 [12]22
3 13|23
4 (14|24
for(x=0; X < W; X++) .
for(y=0; y < H; y++) Je
sum += A[y][x]; 6|16(26
7 |17
8|18
9 (19
10{20

Every access is a cache miss!
(unless entire matrix can fit in cache)

51

Cache Conscious Programming
// H =12, W =10 12345678-

int A[H][W]; [l 15|

for(y=0; y < H; y++)

for(x=0; x < W; X++)

sum += A[y][x];

Block size = 4 - 75% hit rate
Block size = 8 = 87.5% hit rate
Block size =16 = 93.75% hit rate
And you can easily prefetch to warm the cache.

52

Summary

Caching assumptions
* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* (big & fast) built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate

53

Summary
Memory performance matters!

e often more than CPU performance
* ... because it is the bottleneck, and not improving much
* ... because most programs move a LOT of data
Design space is huge
 Gambling against program behavior

e Cuts across all layers:
users = programs = os =2 hardware

Multi-core / Multi-Processor is complicated
* Inconsistent views of memory

e Extremely complex protocols, very hard to get right

54

