RISC, CISC, and Assemblers

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H Appendix B.1-2, and Chapters 2.8 and 2.12

Announcements
PA1 due this Friday
Work in pairs
Use your resources
* FAQ, class notes, book, Sections, office hours, newsgroup, CSUGLab

Prelims1: next Thursday, March 10t in class

 Material covered
 Appendix C (logic, gates, FSMs, memory, ALUs)
 Chapter 4 (pipelined [and non-pipeline] MIPS processor with hazards)
 Chapters 2 and Appendix B (RISC/CISC, MIPS, and calling conventions)
 Chapter 1 (Performance)
 HWI1, HW2, PA1, PA2

* Practice prelims are online in CMS

e C(Closed Book: cannot use electronic device or outside material

Goals for Today

Instruction Set Architetures

 Arguments: stack-based, accumulator, 2-arg, 3-arg
 Operand types: load-store, memory, mixed, stacks, ...
 Complexity: CISC, RISC

Assemblers
 assembly instructions
* psuedo-instructions
 data and layout directives
* executable programs

Instruction Set Architecture

ISA defines the permissible instructions

: load/store, arithmetic, control flow, ...
ARM: similar to MIPS, but more shift, memory, & conditional ops

VAX: arithmetic on memory or registers, strings, polynomial
evaluation, stacks/queues, ...

Cray: vector operations, ...
x86: a little of everything

One Instruction Set Architecture
Toy example: subleq a, b, target
Mem[b] = Mem[b] — Mem|[a]
then if (Mem[b] <= 0) goto target
else continue with next instruction

clear a == subleq a, a, pc+4
jmp c==subleq?Z, 7, c
add a, b ==subleq a, Z, pc+4;

subleq Z, b, pc+4;
subleq Z, Z, pc+4

PDP-8

Not-a-toy example: PDP-8
One register: AC
Eight basic instructions:

AND a # AC = AC & MEM[a]

TAD a # AC = AC + MEM[a]

ISZ a # if (1++MEM][a]) skip next

DCA a # MEM[a] = AC; AC=0

JMS a # jump to subroutine (e.g. jump and link)
JMP a # jump to MEM[a]

|OT x # input/output transfer

OPR x # misc operations on AC

Stack Based

Stack machine
e data stack in memory, stack pointer register

* Operands popped/pushed as needed
add

[Java Bytecode, PostScript, odd CPUs, some x86 |
Tradeoffs:

Accumulator Based

Accumulator machine

* Results usually put in dedicated accumulator register
add b
store b

| Some x86]
Tradeoffs:

Load-Store

Load/store (register-register) architecture
 computation only between registers

| MIPS, some x86]
Tradeoffs:

Axes

Axes:
* Arguments: stack-based, accumulator, 2-arg, 3-arg
 Operand types: load-store, memory, mixed, stacks, ...
* Complexity: CISC, RISC

10

Complex Instruction Set Computers

People programmed in assembly and machine code!
* Needed as many addressing modes as possible
* Memory was (and still is) slow

CPUs had relatively few registers
 Register’'s were more “expensive” than external mem
 Large number of registers requires many bits to index

Memories were small

* Encoraged highly encoded microcodes as instructions
* Variable length instructions, load/store, conditions, etc

11

Reduced Instruction Set Computer

Dave Patterson John L. Hennessy

* RISC Project, 1982 MIPS, 1981

 UC Berkeley e Stanford

 RISC-I: %2 transtisters & 3x * Simple pipelining, keep full

faster .

 |nfluences: Sun SPARC,
namesake of industry

Influences: MIPS computer
system, PlayStation, Nintendo

12

Complexity

MIPS = Reduced Instruction Set Computer (RISC)
= 200 instructions, 32 bits each, 3 formats

e all operands in registers
— almost all are 32 bits each

=1 addressing mode: Mem[reg + imm]

x86 = Complex Instruction Set Computer (CISC)
e >1000 instructions, 1 to 15 bytes each

e operands in dedicated registers, general purpose registers,
memory, on stack, ...

— can be 1, 2, 4, 8 bytes, signed or unsigned
* 10s of addressing modes
— e.g. Mem[segment + reg + reg*scale + offset]

13

RISC vs CISC

RISC Philosophy CISC Rebuttal
Regularity Compilers can be smart
_eaner means Transistors are plentiful
Optimize the Legacy is important
common case Code size counts

Micro-code!

14

Goals for Today

Instruction Set Architetures

 Arguments: stack-based, accumulator, 2-arg, 3-arg
 Operand types: load-store, memory, mixed, stacks, ...
 Complexity: CISC, RISC

Assemblers
 assembly instructions
* psuedo-instructions
 data and layout directives
* executable programs

15

Examples

T: ADDI r4, ro,
BEQ r3, ro,
ADDI r4, r4,
LW r3, 0(r3)
J T
NOP

-1
B
1

L:

LW r5, 0(r31)

ADDI r5,
SW r5,

r5, 1
0(r3l1)

16

cs3410 Recap/Quiz

19;
X + 15;

C

i
compiler L X
—J R LS

MIPS :
3ssembil addi r5, roe, 10
Y Imuli r5, r5, 2

addi r5, r5, 15

+

n

*

X
2

assembler

machine 00100090000001010000000000001010
code 0000002000V 1010010100001000000
L 100100090101901012000000000001111

CPU

- b

Circuits

< b

Gates

- >

Transistors

- = 17

Silicon

Example 1

T:ADDI r4,ro0, -1 001000

BEQ r3, ro, B 000100

ADDI rd,r4, 1 001000

LW r3, 0(r3) 100011

J T 000010

NOP 1 00000000000000000000000000000000

18

References

Q: How to resolve labels into offsets and
addresses?

A: Two-pass assembly

e 15t pass: lay out instructions and data, and build
a symbol table (mapping labels to addresses) as you go

e 2"d pass: encode instructions and data in binary, using
symbol table to resolve references

19

Example 2

JAL L 00100000000100000000000000000100
nop 00000000000000000000000000000000
nop 00000000000000000000000000000000

: LW r5, 0(r31) | 10001111111001010000000000000000

ADDI r5,r5,1 00100000101001010000000000000001

SW r>, © (r31) 00000000000000000000000000000000

20

Example 2 (better)
.text 0x00400000 # code segment

ORI r4, r9, co
LW r5, 0(r4)
ADDI r5, r5, 1
SW r5, 0(r4)

inter

I
“ii

.data 0x10000000 # data segment
counter:
.word ©

21

Lessons

Lessons:
 Mixed data and instructions (von Neumann)
* ... but best kept in separate segments
* Specify layout and data using assembler directives
* Use pseudo-instructions

22

Pseudo-Instructions

Pseudo-Instructions

NOP # do nothing

MOVE reg, reg # copy between regs

LI reg, imm # load immediate (up to 32 bits)
LA reg, label # load address (32 bits)

B label # unconditional branch

BLT reg, reg, label # branch less than

23

Assembler

Assembler:
assembly instructions
+ psuedo-instructions
+ data and layout directives
= executable program

Slightly higher level than plain assembly
e.g: takes care of delay slots
(will reorder instructions or insert nops)

24

Motivation

Q: Will | program in assembly?
A:1ldo...

For kernel hacking, device drivers, GPU, etc.

For performance (but compilers are getting better)
For highly time critical sections

For hardware without high level languages

For new & advanced instructions: rdtsc, debug
registers, performance counters, synchronization, ...

25

calc.c
_

math.c

Stages

(math.sg

10.S

4 4
calc.s H
_

calc.o

math o

10.0

I|bc o)

I|bm o)

i/ calc. exe}

26

Anatomy of an executing program
oxfffffffc top

0X80000000
Ox7FFFFfC

0x10000000

0x00400000
0X00000000 bottom 27

Example program

calc.c

vector v = malloc(8);
v->Xx = prompt(“enter x);
v->y = prompt(“enter y”);
int ¢ = pi + tnorm(v);
print(“result”, c);

math.c

int tnorm(vector v) {
return abs(v->x)+abs(v->y);

}

1ib3410.0

global variable: pi
entry point: prompt
entry point: print

entry point: malloc

math.s

math.c

int abs(x) { _

return x < @ ? -xX : X; tnornm. .

} # argin rd, return address in r31
int tnorm(vector v) { # leaves result inrd

return abs(v->x)+abs(v->y);

}

abs:

argin r3, return address inr31
leaves result in r3

29

calc.c

vector v = malloc(8);
v->x = prompt(“enter x);
v->y = prompt(“enter y”);
int ¢ = pi + tnorm(v);
print(“result”, c);

.data
strl: .asciiz “enter x”
str2: .asciiz “enter y”
str3: .asciiz “result”
text
.extern prompt
.extern print
.extern malloc
.extern tnorm
.global dostuff

calc.s

ostuff:

no args, no return value, return addr in r31
MOVE r30, r31

LI r3, 8 # call malloc: arginr3, retinr3
JAL malloc

MOVE r6, r3 # r6 holds v

LAr3,strl #call prompt:arginr3, retinr3
JAL promupt

SW r3, 0(r6)

LA r3,str2 #call prompt:arginr3, retinr3
1AL prompt

SW r3, 4(r6)

MOVE r4, r6 # call thorm: arginr4, retinr4d
JAL thorm

LA 5, pi

LW r5, O(r5)

ADD 5, r4, r5

LA r3,str? #call print: argsinr3 and r4
MOQOVE ¢4, r5

JAL print 30

IR r=0i

Next time

Calling Conventions!

PA1 due Friday

Preliml Next Thursday, in class

31

