Pipeline Hazards

Hakim Weatherspoon
CS 3410, Spring 2011

Computer Science
Cornell University

See P&H Appendix 4.7

Announcements
PA1 available: mini-MIPS processor

PA1 due next Friday
Work in pairs
Use your resources

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

HW1 graded

e Max: 10; Median: 9; Mean: 8.3; Stddev: 1.8
* Great job!
* Regrade policy
— Submit written request to lead TA, lead TA will pick a different grader

— Submit another written request, lead TA will regrade directly
— Submit yet another written request for professor to regrade.

Announcements

Prelims:
* Thursday, March 10% in class
* Thursday, April 28t Evening

Late Policy

1) Each person has a total of four “slip days”

2) For projects, slip days are deducted from all partners

3) 10% deducted per day late after slip days are exhausted

Goals for Today

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

 Forwarding unit
e Hazard detection unit

Next time

* Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?

Broken Example

addr3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

v

Clock cycle
1 2 3 4 5 6 7 8 9 R
F i (>>P MEMTWB
F Fio [D> pmem{ws
F D (D‘M'WB
F it (D'MWB
IF IFIDTD MEMH-WB

What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
How to detect? Logic in ID stage:

stall = (ID.rA '=0 && (ID.rA == EX.rD ||
ID.rA==M.rD ||
ID.rA == WB.rD))

|| (same for rB)

Detecting Data Hazards

addr3,rl, r2
subr5, r3, r5

orre,r3,r4
addr6, r3, r8

|
N

Rd
D

A

IF/ID

ID/EX EX/MEM MEM/WB

Resolving Data Hazards

What to do if data hazard detected?

Stalling

Clock cycle
1 2 3 4

addr3,rl, r2

subr5, r3, r5

orre,r3, r4

add r6, r3, r8

Forwarding Datapath
—

A A >
=2 D > D l
')'I'D B_>B—>
rA rB — data
71 . B~ mem
= ||
= 2
-u_| —
= =
nop -8 -8
L] —

10

Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

11

Forwarding

addr3,rl, r2

subr5, r3, r5

orre,r3, r4

add r6, r3, r8

1

Clock cycle
P

3

4

5

12

Forwarding

Clock cycle
1 2 3 4 5

addr3,rl, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

13

Forwarding

 —
A—1A ’\
| [b~
inst BI—>1(B g /
mem data
E mem %
Forward correct value from? to?
1. ALU output: too late in cycle? ID (just after register file)
2. EX/MEM.D pipeline register — maybe pointless?
(output from ALU) EX, just after ID/EX.A and
3. WB data value (output from ID/EX.B are read
ALU or memory) MEM, just after EX/MEM.B
4. MEM output: too late in cycle, is read: on critical path

on critical path
14

Forwarding Path 1

A

B

>

TN\

>

>

)

i

}/

l

data
mem

P D
inst
mem
addr4, rl, r2

nop

subr6, r4, rl

15

WB to EX Bypass

WB to EX Bypass
 EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

16

Forwarding Path 2

A

B

data
mem

? D
inst
mem
addr4, rl, r2

subr6, r4, rl

17

MEM to EX Bypass

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:

18

Forwarding Datapath

inst
mem

Hmcwell rd [

data

>
mem

Hmc I well rd

19

Tricky Example

inst

mem

addrl, rl, r2

SUBrl, rl, r3

ORrl, r4,rl

data
mem

\ 4

More Data Hazards

inst

mem

addr4, rl, r2

nop

nop

subr6, r4, rl

data
mem

\ 4

Register File Bypass

Register File Bypass
* Reading a value that is currently being written

Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)
Resolve:
Add a bypass around register file (WB to ID)

Better: (Hack) just negate register file clock
— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle

Py

Quiz

Find all hazards, and say how they are resolved:

add r3, rl, r2

sub r3, r2, rl
nand r4, r3, ril
or ro, r3, r4
xor rl, r4d, r3

sb r4, 1(ro)

Memory Load Data Hazard

data
mem

1D
inst
mem
lw r4, 20(r8)

subr6, r4, rl

\4

24

Resolving Memory Load Hazard

Load Data Hazard
* Value not available until WB stage
e So: next instruction can’t proceed if hazard detected

Resolution:
e MIPS 2000/3000: one delay slot

— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in
the load delay slot

25

add
nand

add
lw

SW

r3,
r5,

r2,
ro,
ro,

Quiz 2
rl, r2
r3, r4d
ré, r3
24(r3)
12(r2)

26

Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

e Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
e Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

27

More Hazards

inst
mem)

PC
A
e—
<—
<—
<—

beqrl, r2, L

addr3, r0, r3
subr5, r4, r6

L:orr3,r2,r4d

data
mem

28

More Hazards

inst
mem)

PC
A
e—
<—
<—
<—

beqrl, r2, L

addr3, r0, r3
subr5, r4, r6

L:orr3,r2,r4d

data
mem

29

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Stall (+ Zap)
e prevent PC update

* clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

30

Delay Slot

inst
mem

~ID

A

B

beqrl, r2, L

orir2,r0,1

L:orr3,rl, rd

i
A
e
{
< branc
<—

data
mem

\4

31

Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot

Speculative Execution

e Guess direction of the branch

— Allow instructions to move through pipeline
— Zap them later if wrong guess

e Useful for long pipelines

32

Loops

Branch Prediction

Pipelining: What Could Possibly Go
Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards

* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards

* resource contention
e so far: impossible because of ISA and pipeline design

35

