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Announcements
PA1 available: mini-MIPS processor

PA1 due next Friday
Work in pairs
Use your resources

* FAQ, class notes, book, Sections, office hours, newsgroup,
CSUGLab

HW1 graded

e Max: 10; Median: 9; Mean: 8.3; Stddev: 1.8
* Great job!
* Regrade policy
— Submit written request to lead TA, lead TA will pick a different grader

— Submit another written request, lead TA will regrade directly
— Submit yet another written request for professor to regrade.



Announcements

Prelims:
* Thursday, March 10% in class
* Thursday, April 28t Evening

Late Policy

1) Each person has a total of four “slip days”

2) For projects, slip days are deducted from all partners

3) 10% deducted per day late after slip days are exhausted



Goals for Today

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

 Forwarding unit
e Hazard detection unit

Next time

* Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?



Broken Example

addir3,r1, r2

sub r5, 3} r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)
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What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
How to detect? Logic in ID stage:

stall = (ID.rA '=0 && (ID.rA == EX.rD ||
ID.rA ==M.rD ||
ID.rA == WB.rD))

|| (same for rB)



Detecting Data Hazards

addr3,rl, r2
subr5, r3, r5

orre,r3,r4
addr6, r3, r8

PC
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IF/ID ID/EX EX/MEM MEM/WB



Resolving Data Hazards
What to do if data hazard detected?
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Stalling

= 10

add@ rl, r2

3220

subr5, r3, r5
orre,r3, r4

add r6, r3, r8

Clock cycle

1

2

3

4

[F

)V

%

M

[F

)D

|/

(F

[

| O

IF




Forwarding Datapath
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Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction
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Forwarding

Clock cycle
1 2 3 4 5 6 7 8

add 13, 11,12 ) /- m/z) ﬁh& % H‘gﬂ

subr5,r3, r5 /F I.D -\'é)(
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Forwarding

ad rl, r2
sub r5)\r3, r4

Iw4 )

y orr5, r3, r5
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Forwarding

 — |
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0 (D I@ > N
inst BI—B g
mem /
& i Formg 2 ’
Forward correct value from? to?
1. ALU output: too late in cycle? ID (just after register file)
2. EX/MEM.D pipeline register — maybe pointless?
(output from ALU) EX, just after ID/EX.A and
3. WB data value (output from ID/EX.B are read
ALU or memory) MEM, just after EX/MEM.B
4. MEM output: too late in cycle, is read: on critical path

on critical path
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inst
mem

addr4, rl, r2

nop

subré, r4, rl

data
mem

nopP
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ﬂg to EX Bypass

WB to EX Bypass
* EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

(E{. Ra = WO, RA or bRz Wa.py
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gt
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Forwarding Pain 2

inst
mem

adof

addr4,rl, r2 //C //) Ey M A/p

subr6, r4, rl /P | I'D E)’ /VI
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MEM to EX Bypass

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:
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Forwarding Datapath

inst
mem




inst B
mem
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More Data Hazards
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Register File Bypass

Register File Bypass
* Reading a value that is currently being written

Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)
Resolve:
Add a bypass around register file (WB to ID)

Better: (Hack) just negate register file clock
— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle
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Find all hazards, and say how they are resolved:
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Memory Load Data Hazard

data

inst B ]
mem
=

mem

lw rd, 20(r8) /FD,ﬁﬁE), [

sub r6, r4, rl A Z? lﬁl '




Resolving Memory Load Hazard

Load Data Hazard
* Value not available until WB stage
e So: next instruction can’t proceed if hazard detected

Resolution:
e MIPS 2000/3000: one delay slot

— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in
the load delay slot
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Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

e Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
e Otherwise, fall back to stalling or require a delay slot

Tradeoffs?
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More Hazards
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More Hazards
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Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Stall (+ Zap)
e prevent PC update

* clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage
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Delay Slot
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Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot

Speculative Execution

e Guess direction of the branch

— Allow instructions to move through pipeline
— Zap them later if wrong guess

e Useful for long pipelines
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Loops




Branch Prediction




Pipelining: What Could Possibly Go
Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards

* branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards

* resource contention
e so far: impossible because of ISA and pipeline design

35



