CS3410
Guest Lecture

A Simple CPU: remaining branch instructions
CPU Performance
Pipelined CPU

Tudor Marian

Memory Layout

Examples /Iittle endian): 9X00000000 —
0x00000001

#r5 contains 5 (0x00000005) @‘ 0x00000002
0X00000003 _
sb r5, 2(r0) V 0Xx00000004
b r6, 2(r0) OXx00000005
OX00000006
0X00000007
— ["3/|exvooeeces
OX00000009
OXx0000000a
X0000000b

~

Ol

OXFFFFffff 2

Conditional Jumg
cogdgpose

%p 1'! rs subop

00001R00000000000O 1L

t Control Flow: More Branches
CONt.

\

16 bits

6 bits 5 bits 5 bits

signed

offsets
op subop mnemonic description
Ox1 OxO BLTZ rs, offset | if R[rs] < 0 then PC = PC+4+ (offset<<2)
Ox1 X Ox1 BGEZ rs, offset | if R[rs] = 0 then PC = PC+4+ (offset<<2)
Ox6 OxO BLEZrs, offset | if R[rs] £0 then PC = PC+4+ (offset<<2)
Ox7 OxO BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

Prog. |inst

Absolute Jump

Reg.

> File

Could have
used ALU for

branch cmp

description

s <Dhhen PC

op subop mnemonic
x1 OxO BLTZ rs, offset
Ox1 Ox1 BGEZ rs, offset

if R[rs] = 0 then PC = PC+4+ (offset<<2)

LNl N NN, Ny A [L o . N\

Function/procedure calls «
I@@@@1;@@@@@@@1@@1@@@@11@@@@@@@10|

op immediate
6 bits 26 bits
op mnemonic description
Ox3 JAL target r31 = PC+8 (+8 due to branch delay slot)
PC = (PC+4) || (target << 2)
op mhemonic description
O0x2 J target PC = (PC+4) || (target << 2)

Absolute Jump

Could have
used ALU for
link add

op mnemonic description

Ox3 JAL target r31 = h delay slot)
C = (PC+4) || (target << 2) 3

Performance

See: P&H 1.4

Design Goals

What to look for in a computer system?

* Correctness: negotiable?
*Cost

—purchase cost = f(silicon size = gate
count, economics)

—operating cost = f(energy, cooling)
—operating cost >= purchase cost

* Efficiency
@? f(tcansistor usage, voltage, wire
C—— P

size, clock rate, ...)
—h&3t = f(power)
el Core i7 Bloomfield: 130 Watts
* AMD Turion: 35 Watts

-A9 Dual Core @800MHz: 0.4 Watt

* Performa

* Other: availability, size, greenness,
features, ...

How to measure performance?

GHz (b|II|ons of cycles per second)

G H'z— / L , ‘(Hq_ - . ‘%ndfa%nsofmstrucmnsper

MFLOPS (millions of floating point

C operations per second)
benchmarks (SPEC, TPC, ...)

M l f g = [0 \wvxgi / &
TS .
(ﬂ how long to finish my

roughput: how much work
finished per unit time

"

w H ?
N ow Fast:

>

Mem Reg. ALU -]

A

|
T —>1 File / &y |60
’ 7

PC | ~3gates

A

A4
new

control

U2+ D < 57k

ipple carry+ some muxes

Assumptio
e alu:@2bitr
. next P

e carr

,. mem
* register file
* ignore wire
Better:

. next PC: 30
Better Still:

* next PC: cheapest adder faster than 21 gate delays

. trol: mini delay (~3 gates) — w £
g o4 3t | £48) = §O5°*:
pr

O L) (as much as 8 gates) 1
A \’W>Z$
%pﬁe 'Sq"k {-’ 34?-‘—/—.—_— Zl ‘

* alu: 32 bit carry lookahead + some muxes All signals are stable A
) .

bit carry lookahead (™~ 6 gates 80 gates => clock period of at least 160 ns, max frequency ~6MHz
Better:

21 gates => clock period of at least 42 ns, max frequency ~24MHz

10

Adder Performance

32 Bit Adder Design Space Time

Ripple Carry = 300 gates = 64 gate delays
2-Way Carry-Skip = 360 gates = 35 gate delays
3-Way Carry-Skip = 500 gates = 22 gate delays
4-Way Carry-Skip = 600 gates =~ 18 gate delays
{VVay Look-A@ @ @te deIayE
Split Look-Ahead = 800 gates = 10 gate delays

Full Look-Ahead = 1200 gates = 5 gate delays

11

Optimization: Su

Critical Path

* Longest path from a register output to a register input
 Determines minimum cycle, maximum clock frequency

Strategy 1 (we just employed)
* Optimize for delay on the critical path
* Optimize for size / power / simplicity elsewhere

S«'ﬁ«jle CUJ@

12

mmary

Processor Clock Cycle

memory register
file
T
A A
t
PC
A
offset control
\4
new target .
mm
pcC
op mnemonic description

0x20 LB rd, offset(rs)
0x23 LW rd, offset(rs)

0x28 SB rd, offset(rs)
Ny h QW rd nffcetlrc)

R[rd] = sign_ext(Mem][offset+R[rs]])

Rird): Memleggset+Rrs]
Mem|[offset+R[rs]] = R[rd]
Memlnffeet+RIrcll = RIlrAdl

13

Processor Clock Cycle

>
memory ist \l .
relgCIisger ilg l j
r 1
A Tt ‘:D_) dd !
aaar
PC J_ > 1‘ > din dout B
offset control mp
\4 memory
ow target . JTI‘
Imm
> extend
v
op func mnemonic description
Ox0 | Ox08 JRrs PC = R][rs]
op mhemonic description
O0x2 J target PC = (PC+4) || (target << 2)

4

Multi-Cycle Instructions

Strategy 2
* Multiple cycles to complete a single instruction
E.g: Assume:

|
- load/store: 100 ns — @ "("JM‘ 12 ,4#9‘
. arithmetic{0 ns — @ A = ’2,0/{745

bé s
Multi-Cycle CPU 9%~

aster than Single-Cych cpyU?
(100 ns cycle) with

— 3 cycles per load/store
— 2 cycles per arithmetic
— 1 cycle per branch

CPI

Instruction mix for some program P, assume:
e 25% load/store (3 cycles / instruction)
* 60% arithmetic (2 cycles / instruction)
 15% branches (1 cycIe / instruction)

Multi-Cycle perfoghgn e for Fﬂ:o’éramk/P AN

3*25+2* 60+1*.15=2.1

average cycles per instruction =2.1

800 MHz Plll “faster” than 1 GHz P4 \\ |Y '__1 l‘)<'

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster

€ o
Instruction mix (for P)
S

e 25% load/store, CPI = @33 0~:v

°arithmEP, CPI = f, 2 A b | Ny
* 15% branches, @ VAR 0 '
——— 18 | .13

Cfr 2.1 | \.50 l.ﬂ

(SH®
L0

Amdahl’s Law

Amdahl’s Law e ”
Execution time after improvement = .
— <
execution time affected by imchM \
+ execution time unaffected
amount of improve@
Or:

Speedup is limited by popularity of improved feature

Corollary:
Make the common case fast

Caveat:
Law of diminishing returns

18

Pipelining

See: P&H Chapter 4.5

19

The Kids

Alice

Bob

They don’t always get along...

20

The Bicycle

21

The Materials

Saw Drill

Glue

22

The Instructions

N pieces, each built following same sequence:

Saw

23

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks

No possibility for conflicts

24

%
)
Latency: Lfkh‘/) /”6'@4’@

Throughput:
Concurrency:

Can we do better?

Design 2: Pipelined Design

Partition room into stages of a pipeline

2131513

Dave Carol Bob Alice

One person owns a stage at a time

4 stages
4 people working simultaneously

Everyone moves right in lockstep

26

@

rﬂfl

@

:
ES IR
3% A
5

> Latency:

“‘“ﬁ

Throughput: \"[RL/kn/

Concurrency: 7.{—

\ 4
I
Latency; OO

Throughput: E[| Hark /ﬂfwm e
Concurrency: K‘I O()]

Latency: 4 X PO b = 61'\.9./) /7Lq/;j
Throughput: | Yok / 20

Concurrency: Lf

[smn®y »mn Y

o J 3

Y= | &F
9 =

_

\

\ 4
I I

Latency: Fé Q/\T‘J) '71“’(L—

Th T ian
oncurrency.

Oh 1h

NE
Y

v Latency:

' Throughput:
Concurrency:

Pipeline Hazards

/Q:What if glue step of task 3 depends on output of ta@

—

Oh 1|h

RE
- Y

v Latency: ’\Mﬁ |

' Throughput:
Concurrency:

32

Principle:
Throughput increased by parallel execution

Pipelining:

Resolve pipeline hazards

33

memory

new
pcC

A Processor

register
file

y Tt

offset A

target 4

NV

[

AN

imm
—>| extend

alu

eé;7

‘ memory |

34

memory

>3

new
pcC

trucgg
Fetch

n

A Processor

register
file

control

imm
—> extend

In

T

ruction
Dec

()

addr

()
in dout
memory

compye T

| anc
targets
Exec Memory

rite

Bac

35

NS~ &M

Basic Pipeline

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)

— translatemto control signals and read registers ((ﬁq'j

3. Execute (EX)

— perform ALU operation, cQmpute 'mggébraggh Egréeg

4. Memory (MEM)
— access memory if needed

5. Writeback (WB)

— update register file

Sm/c‘j&

36

Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add Qipeline registers (flip-flops))to isolate signals
between different stages

Slides thanks to Kevin Walsh, Sally McKee, and Kavita Bala 3

