CS3410

Guest Lecture

A Simple CPU: remaining branch instructions CPU Performance Pipelined CPU

Tudor Marian

Examples (big/little endian): # r5 contains 5 (0x00000005)

sb r5, 2(r0) ✓ lb r6, 2(r0)

(b)r7, 8(r0) (b)r7, 8(r0) (b) r8, 11(r0)

Control Flow: More Branches

almost I-Type

Conditional Jumps (cont.)

op 2 rs subop

offset

6 bits

5 bits 5 bits

16 bits

signed offsets

_	ор	subop	mnemonic	description
_	0x1	0x0	BLTZ rs, offset	if R[rs] < 0 then PC = PC+4+ (offset<<2)
7	0x1	0x1	BGEZ rs, offset	if $R[rs] \ge 0$ then $PC = PC+4+$ (offset<<2)
	0x6	0x0	BLEZ rs, offset	if $R[rs] \le 0$ then $PC = PC+4+$ (offset<<2)
	0x7	0x0	BGTZ rs, offset	if R[rs] > 0 then PC = PC+4+ (offset<<2)

op_	subop	mnemonic	description
Qx1	0x0	BLTZ rs, offset	iR[rs] < 0 then PC ≠ PC+4+ (offset< 2)
0x1	0x1	BGEZ rs, offset	if R[rs] \geq 0 then PC = PC+4+ (offset<<2)
0	0.40	DI L.2 "" " " " " " " " " " " " " " " " " "	:t D[12] < O +p == DC - DC + 4 + /2ft==+ < 2/

Control Flow: Jump and Link

Function/procedure calls

00001100000001001000011000000010

op immediate J-Type
6 bits 26 bits

ор	mnemonic	description
0x3	JAL target	r31 = PC+8 (+8 due to branch delay slot) PC = (PC+4) (target << 2)

ор	mnemonic	description	1
0x2	J target	PC = (PC+4)	(target << 2)

ор	mnemonic	description	n
0x3	JAL target	r31 = PC+8 (+8 PC = (PC+4)	due to branch delay slot) (target << 2)

Performance

See: P&H 1.4

What to look for in a computer system?

- Correctness: negotiable?
- Cost
- -purchase cost = f(silicon size = gate count, economics)
- -operating cost = f(energy, cooling)
- -operating cost >= purchase cost
- Efficiency
 - -power = f(transistor usage, voltage, wire size, clock rate, ...)
- -heat = f(power)
 - Intel Core i7 Bloomfield: 130 Watts
 - AMD Turion: 35 Watts
 - Intel Core 2 Solo: 5 5 Watts
 - Cortex-A9 Dual Core @800MHz: 0.4 Watts
- Performance
- Other: availability, size, greenness, features, ...

How to measure performance?

GHz (billions of cycles per second)

MPS millions of instructions per second)

MFLOPS (millions of floating point operations per second)

benchmarks (SPEC, TPC, ...)

MTINA

MTINA

Metrics

latency: how long to finish my

program

throughput: how much work

finished per unit time

Better:

• alu: 32 bit carry lookahead + some muxes ~ 9 gate

next PC: 30 bit carry lookahead (~ 6 gates)

Better Still:

• next PC: cheapest adder faster than 21 gate delays

All signals are stable

- 80 gates => clock period of at least 160 ns, max frequency $^{\sim}6MHz$ Better:
- 21 gates => clock period of at least 42 ns, max frequency ~24MHz

32 Bit Adder Design	Space	Time
Ripple Carry	≈ 300 gates	≈ 64 gate delays
2-Way Carry-Skip	≈ 360 gates	≈ 35 gate delays
3-Way Carry-Skip	≈ 500 gates	≈ 22 gate delays
4-Way Carry-Skip	≈ 600 gates	≈ 18 gate delays
2-Way Look-Ahead	≈ 550 gates	16 gate delays
Split Look-Ahead	≈ 800 gates	≈ 10 gate delays
Full Look-Ahead	≈ 1200 gates	≈ 5 gate delays

Critical Path

- Longest path from a register output to a register input
- Determines minimum cycle, maximum clock frequency

Single cycle

Strategy 1 (we just employed)

- Optimize for delay on the critical path
- Optimize for size / power / simplicity elsewhere

ор	mnemonic	description	
0x20	LB rd, offset(rs)	R[rd] = sign_ext(Mem[offset+R[rs]])	
0x23	LW rd, offset(rs)	R[rd] = Mem[offset+R[rs]]	
0x28	SB rd, offset(rs)	Mem[offset+R[rs]] = R[rd]	
0x2h	SW rd offset(rs)	Mem[offset+R[rs]] = R[rd]	13

ор	func	mnemonic	description
0x0	0x08	JR rs	PC = R[rs]

ор	mnemonic	description	n	
0x2	J target	PC = (PC+4)	(target << 2)	4

15

Strategy 2

Multiple cycles to complete a single instruction

E.g: Assume: load/store: 100 ns • arithmetic: 50 branches: (33) Multi-Cycle CPU Faster than Single-Cycle CPU? 10 MHz (100 ns cycle) with 3 cycles per load/store 1 cycle per instruction 2 cycles per arithmetic 1 cycle per branch

Instruction mix for some program P, assume:

- 25% load/store (3 cycles / instruction)
- 60% arithmetic (2 cycles / instruction)
- 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:

$$3 * .25 + 2 * .60 + 1 * .15 = 2.1$$

average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz
Single-Cycle @ 10 MHz
Single-Cycle @ 15 MHz

800 MHz PIII "faster" than 1 GHz P4

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by making arithmetic instructions faster,

Or:

Speedup is limited by popularity of improved feature

Corollary:

Make the common case fast

Caveat:

Law of diminishing returns

Pipelining

See: P&H Chapter 4.5

Alice

Bob

They don't always get along...

N pieces, each built following same sequence:

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks
No possibility for conflicts

Can we do better?

Partition room into stages of a pipeline

One person owns a stage at a time 4 stages

4 people working simultaneously Everyone moves right in lockstep

Principle:

Throughput increased by parallel execution

Pipelining:

- Identify pipeline stages
 - Isolate stages from each other
- Resolve pipeline hazards

Five stage "RISC" load-store architecture

- 1. Instruction fetch (IF)
 - get instruction from memory, increment PC
- 2. Instruction Decode (ID)
 - translate opcode into control signals and read registers
- 3. Execute (EX)
 - perform ALU operation, <u>compute jump/branch targets</u>
- 4. Memory (MEM)
 - access memory if needed
- 5. Writeback (WB)
 - update register file

Break instructions across multiple clock cycles (five, in this case)

Design a separate stage for the execution performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals between different stages