CS 3410: Computer System Organization and Programming

Hakim Weatherspoon
Spring 2011
Computer Science
Cornell University

Information

 Instructor: Hakim Weatherspoon (hweather@cs.cornell.edu)

• Tu/Th 1:25-2:40

Phillips 101

Course Objective

- Bridge the gap between hardware and software
 - How a processor works
 - How a computer is organized
- Establish a foundation for building higherlevel applications
 - How to understand program performance
 - How to understand where the world is going

Who am I?

- Prof. Hakim Weatherspoon
 - (Hakim means Doctor, wise, or prof. in Arabic)
 - Background in Education
 - Undergraduate University of Washington
 - Played Varsity Football
 - Some teammates collectively make \$100's of millions
 - -I teach!!!
 - Graduate University of California, Berkeley
 - Some class mates collectively make \$100's of millions
 - I teach!!!
 - Background in Operating Systems
 - Peer-to-Peer Storage
 - Antiquity project Secure wide-area distributed system
 - OceanStore project Store your data for 1000 years
 - Network overlays
 - Bamboo and Tapestry Find your data around globe
 - Tiny OS
 - Early adopter in 1999, but ultimately chose P2P direction © Hakim Weatherspoon, Computer Science, Cornell University

Who am I?

- Cloud computing/storage
 - Optimizing a global network of data centers
 - Cornell Ntional λ-Rail Rings testbed
 - Software Defined Network Adapter
 - Energy: KyotoFS/SMFS

system

Course Staff

cs3410-staff-l@cs.cornell.edu

TAs

```
Han Wang (hwang@cs.cornell.edu)
Bo Peng (bpeng@cs.cornell.edu)
Jun Erh (je96@cornell.edu)
```

- Undergraduate consultants
 - Ansu Abraham (aaa98@cornell.edu)
 - Ethan Kao (ek382@cornell.edu)
 - Peter Tseng (pht24@cornell.edu)
 - Jiaqi Zhai (jz392@cornell.edu)

Administrative Assistant:

Angela Downing (angela@cs.cornell.edu)

Book

- Computer Organization and Design
 - The Hardware/SoftwareInterface

- David Patterson, John Hennessy
 - Get the 4th Edition

Grading

	4 Programming Assignments	(35-45%)
	 Work in groups of two 	
•	4-5 Homeworks Assignments	(20-25%)

Work alone

(30-40%) (5%) 2 prelims

Discretionary

Grading

- Regrade policy
 - Submit written request to lead TA,
 and lead TA will pick a different grader
 - Submit another written request, lead TA will regrade directly
 - Submit yet another written request for professor to regrade.

Administrivia

- http://www.cs.cornell.edu/courses/cs3410/2011sp
 - Office Hours / Consulting Hours
 - Lecture slides & schedule
 - Logisim
 - CSUG lab access (esp. second half of course)
- Sections

```
T 2:55 – 4:10pm Hollister 372

W 3:35 – 4:50pm Upson 215

R 11:40 – 12:55pm Hollister 372

R 2:55 – 4:10pm Hollister 368

F 2:55 – 4:10pm Phillips 213

TBD
```

- Will cover new material
- Next week: intro to logisim

Communication

- Email
 - cs3410-staff-l@cs.cornell.edu
 - The email alias goes to me and the TAs, not to whole class
- Assignments
 - CMS: http://cms.csuglab.cornell.edu
- Newsgroup
 - cornell.class.cs3410
 - For students

Sections & Projects

- Sections start next week
 - But can go this week to find a project partner

- Projects will be done in two-person teams
 - We will pair you up if you don't have a preferred partner
 - Start early, time management is key
 - Manage the team effort

Academic Integrity

- All submitted work must be your own
 - OK to study together, but do not share soln's
 - Cite your sources
- Project groups submit joint work
 - Same rules apply to projects at the group level
 - Cannot use of someone else's soln
- Closed-book exams, no calculators
- Stressed? Tempted? Lost?
 - Come see me before due date!

Plagiarism in any form will not be tolerated

Computer System Organization

Compilers & Assemblers

C

compiler

MIPS assembly language

```
addi r5, r0, 10 muli r5, r5, 2 addi r5, r5, 15
```

assembler

MIPS machine language

Compilers

(

compiler

MIPS assembly language

```
int sum3(int v[]) {
 return v[0] +
         v[2];
main() {
 int v[] = ...;
 int a = sum3(v);
 v[3] = a;
```

```
sum3:
    lw r9, 0(r5)
    lw r10, 4(r5)
    lw r11, 8(r5)
    add r3, r9, r10
    add r3, r3, r11
    jr
         r31
main:
    addi r5, r0, 1000
    jal
         sum3
    sw r3, 12(r5)
```

Assemblers

MIPS assembly language

```
assembler
```

MIPS machine language

```
sum3:
        r9, 0(r5)
   lw
                             100011001010100100000000000000000
   lw
        r10, 4(r5)
                             100011001010101000000000000000100
        r11, 8(r5)
   lw
                             100011001010101100000000000001000
        r3, r9, r10
   add
                             00000001001010100001100000100000
   add
        r3, r3, r11
                             00000000011010110001100000100000
   jr
        r31
                             0000001111100000000000000000001000
main:
   addi r5, r0, 1000
                             00100000000001010000001111101000
   jal
        sum3
                             000011000001000000000000000000000
        r3, 12(r5)
   SW
                             101011001010001100000000000001100
```

Computer System Organization

Computer System = ?

Instruction Set Architecture

ISA

 abstract interface between hardware and the lowest level software

 user portion of the instruction set plus the operating system interfaces used by application programmers

Transistors and Gates

In	Out
0	1
1	0

Truth table

Logic and State

A Calculator

Basic Computer System

- A processor executes instructions
 - Processor has some internal state in storage elements (registers)
- A memory holds instructions and data
 - von Neumann architecture: combined inst and data
- A bus connects the two

Simple Processor

Inside the Processor

AMD Barcelona: 4 processor cores

Figure from Patterson & Hennesssy, Computer Organization and Design, 4th Edition

Overview

MIPS R3000 ISA

- Instruction Categories
 - Load/Store
 - Computational
 - Jump and Branch
 - Floating Point
 - coprocessor
 - Memory Management

Registers
R0 - R31
PC
HI
10

OP	rs	rt	rd	sa	funct		
OP	rs	rt	immediate				
OP jump target							

Calling Conventions

Data Layout

saved regs

arguments

return address

local variables

saved regs

arguments

return address

local variables

```
blue() {
   pink(0,1,2,3,4,5);
}
pink() {
   orange(10,11,12,13,14);
}
```


Buffer Overflows

saved regs

arguments

return address

local variables

saved regs

arguments

return address

local variables

```
blue() {
  pink(0,1,2,3,4,5);
pink() {
  orange(10,11,12,13,14);
orange() {
      char buf[100];
      gets(buf); // read string, no check
```

Parallel Processing

Spin Locks

Shared memory, multiple cores

• Etc.

Applications

- Everything these days!
 - Phones, cars, televisions, games, computers,...

Why should you care?

- Bridge the gap between hardware and software
 - How a processor works
 - How a computer is organized
- Establish a foundation for building higherlevel applications
 - How to understand program performance
 - How to understand where the world is going

Example: Can answer the question...

- A: for i = 0 to 99
 - for j = 0 to 999
 - A[i][j] = complexComputation ()
- B: for j = 0 to 999
 - for i = 0 to 99
 - A[i][j] = complexComputation ()

Why is B 15 times slower than A?

Example 2: Moore's Law

The number of transistors integrated on a single die will double every 24 months...

Gordon Moore, Intel co-founder, 1965

Amazingly Visionary

```
1971 – 2300 transistors – 1MHz – 4004
```

1990 - 1M transistors - 50MHz - i486

2001 – 42M transistors – 2GHz – Xeon

2004 – 55M transistors – 3GHz – P4

2007 – 290M transistors – 3GHz – Core 2 Duo

2009 – 731 M transistors – 2GHz – Nehalem © Hakim Weatherspoon, Computer Science, Cornell University

Example 3: New Devices

Xilinx FPGA

Berkeley mote

Covered in this course

Nuts and Bolts: Switches, Transistors, Gates

A switch

 A switch is a simple device that can act as a conductor or isolator

 Can be used for amazing things...

Switches

Either (OR)

Both (AND)

 But requires mechanical force

Transistors

- Solid-state switch
 - The most amazing invention of the 1900s

PNP and NPN

Hakim Weatherspoon, Computer Science, Cornell University

NPN Transistors

Semi-conductor

Connect E to C when base = 1

P and N Transistors

PNP Transistor

NPN Transistor

Connect E to C when base = 0

Connect E to C when base = 1

Then and Now

- The first transistor
 - on a workbench atAT&T Bell Labs in 1947
- An Intel Nehalem
 - 731 million transistors

Inverter

- Function: NOT
- Called an inverter
- Symbol:

In	Out
0	1
1	0

Truth table

- Useful for taking the inverse of an input
- CMOS: complementary-symmetry metal-oxidesemiconductor

Vdd Vdd

NAND Gate

- Function: NAND
- Symbol:

NOR Gate

- Function: NOR
- Symbol:

A	В	out
0	0	1
1	0	0
0	1	0
1	1	0

Building Functions

• NOT: ______

• AND: _____

• OR:

- NAND and NOR are universal
 - Can implement any function with NAND or just NOR gates
 - useful for manufacturing

Reflect

Why take this course?

- Basic knowledge needed for all other areas of CS: operating systems, compilers, ...
- Levels are not independent
 hardware design ↔ software design ↔ performance
- Crossing boundaries is hard but important device drivers
- Good design techniques
 abstraction, layering, pipelining, parallel vs. serial, ...
- Understand where the world is going