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Analysis of Merge-Sort 

• Recurrence describing computation time:  
– T(n) = c + d + e + f + 2 T(n/2) + g n + h ← recurrence 

– T(1) = i     ← base case 
 

• How do we solve this recurrence? 
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public static Comparable[] mergeSort(Comparable[] A, int low, int high) { 

   if (low < high) { //at least 2 elements? cost = c 

      int mid = (low + high)/2;                  cost = d 

      Comparable[] A1 = mergeSort(A, low, mid);    cost = T(n/2) + e 

      Comparable[] A2 = mergeSort(A, mid+1, high); cost = T(n/2) + f 

      return merge(A1,A2); cost = g n + h 

   }  

   .... cost = i 



Analysis of Merge-Sort 

• Recurrence:     
– T(n) = c + d + e + f + 2 T(n/2) + g n + h 
– T(1) = i 

 
• First, simplify by dropping lower-order terms and replacing 

constants by their max 
– T(n) = 2 T(n/2) + a n 
– T(1) = b 

 
• Simplify even more. Consider only the number of comparisons. 

– T(n) = 2 T(n/2) + n 
– T(1) = 0 

 
• How do we find the solution? 
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Solving Recurrences 

• Unfortunately, solving recurrences is like 
solving differential equations 

– No general technique works for all recurrences 

 

• Luckily, can get by with a few common 
patterns 

 

• You learn some more techniques in CS2800 
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Analysis of Merge-Sort 
• Recurrence for number of comparisons of MergeSort  

– T(n) = 2T(n/2) + n 
– T(1) = 0 
– T(2) = 2 

• To show: T(n) is O(n log(n)) for n 2 {2,4,8,16,32,…}  
– Restrict to powers of two to keep algebra simpler 

 
• Proof: use induction on n 2 {2,4,8,16,32,…}  

– Show P(n) = {T(n) ≤ c n log(n)} for some fixed constant c.  

– Base: P(2) 
• T(2) = 2 ≤ c 2 log(2) using c=1 

– Strong inductive hypothesis: P(m) = {T(m) ≤ c m log(m)} is true for all 
m 2 {2,4,8,16,32,…,k} . 

– Induction step: P(2) Æ P(4) Æ … Æ P(k)  P(2k) 
• T(2k)  ≤ 2T(2k/2) + (2k) ≤ 2(c k log(k)) + (2k) ≤ c (2k) log(k) + c (2k)  

= c (2k) (log(k) + 1)  = c (2k) log(2k) for c ≥ 1 
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Solving Recurrences 

• Recurrences are important 
when using divide & conquer 
to design an algorithm 
 

• Solution techniques: 
– Can sometimes change 

variables to get a simpler 
recurrence  

– Make a guess, then prove the 
guess correct by induction 

– Build a recursion tree and use it 
to determine solution 

– Can use the Master Method 
• A “cookbook” scheme that 

handles many common 
recurrences 

Master Method:  
To solve T(n) = a T(n/b) + f(n)  

compare f(n) with nlogba 

• Solution is T(n) = O(f(n))  
 if f(n) grows more rapidly 

• Solution is T(n) = O(nlogba) 
 if nlogba grows more rapidly 

• Solution is T(n) = O(f(n) log n)  
 if both grow at same rate 
 

Not an exact statement of the 
theorem – f(n) must be “well-
behaved” 
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Recurrence Examples 

Some common cases: 

• T(n) = T(n – 1) + 1  T(n) is O(n)  Linear Search 

• T(n) = T(n – 1) + n  T(n) is O(n2)   QuickSort worst-case 

• T(n) = T(n/2) + 1  T(n) is O(log n)  Binary Search 

• T(n) = T(n/2) + n  T(n) is O(n) 

• T(n) = 2 T(n/2) + n  T(n) is O(n log n)  MergeSort 

• T(n) = 2 T(n – 1)  T(n) is O(2n) 
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• protons in the known universe ~ 126 digits 

• μsec since the big bang ~ 24 digits 

- Source: D. Harel, Algorithmics 
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• The big bang was 15 billion years ago (5·1017 secs) 

- Source: D. Harel, Algorithmics 

How long would it take @ 1 instruction / μsec ? 



The Fibonacci Function 

• Mathematical definition: 

– fib(0) = 0 

– fib(1) = 1 

– fib(n) = fib(n − 1) + fib(n − 2),  n ≥ 2 

 

 

 

• Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, … 
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int fib(int n) { 

   if (n == 0 || n == 1) return n; 

   else return fib(n-1) + fib(n-2); 

}  

Fibonacci (Leonardo 

Pisano) 1170−1240? 

Statue in Pisa, Italy 

Giovanni Paganucci 

1863 



Recursive Execution 
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int fib(int n) { 

   if (n == 0 || n == 1) return n; 

   else return fib(n-1) + fib(n-2); 

}  

fib(4) 

fib(3) fib(2) 

fib(1) fib(0) 

fib(2) fib(1) fib(1) fib(0) 

Execution of fib(4): 



The Fibonacci Recurrence 

• Recurrence for computation time: 
– T(0) = a 

– T(1) = a 

– T(n) = T(n – 1) + T(n – 2) + a 

 

• What is computation time? 
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int fib(int n) { 

   if (n == 0 || n == 1) return n; 

   else return fib(n-1) + fib(n-2); 

}  



Analysis of Recursive Fib 
• Recurrence for computation time of fib  

– T(0) = a 
– T(1) = a 
– T(n) = T(n – 1) + T(n – 2) + a 

• To show: T(n) is O(2n) 
 
• Proof: use induction on n 

– Show P(n) = {T(n) ≤ c 2n} for some fixed constant c. 
– Basis: P(0) 

• T(0) = a ≤ c 20 using c=a 

– Basis: P(1) 
• T(1) = a ≤ c 21 using c=a 

– Strong inductive hypothesis: P(m) = {T(m) ≤ c 2m} is true for all m ≤ k. 
– Induction step: P(0) Æ … Æ P(k) P(k+1) 

• T(k+1)  ≤ T(k) + T(k-1) + a ≤ c 2n + c 2n-1 + a = c ¾ 2n+1 + a ≤ c 2n+1  
for any c ≥ ¼ a and any n ≥ 2. 
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ϕ = (a+b)/b = b/a 

 

ϕ2 = ϕ + 1 

 

ϕ = 
 

   = 1.618... 

1 + sqrt(5)  

2 

The Golden Ratio 

a 

b 

ratio of sum of sides (a+b) 

to longer side (b) 

                    = 

ratio of longer side (b) to 

shorter side (a) 

Actually, can prove a tighter bound than O(2n). 



Fibonacci Recurrence is O(ϕn) 

• Simplification: Ignore constant effort in recursive case. 
– T(0) = a 
– T(1) = a 
– T(n) = T(n – 1) + T(n – 2)  

 

• Want to show T(n)  ≤  cϕn for all n ≥ 0. 
– have ϕ2 = ϕ + 1 
– multiplying by cϕn    cϕn+2 = cϕn+1 + cϕn 

 

• Base: 
– T(0) = c = cϕ0 for c = a 

– T(1) = c ≤ cϕ1 for c = a 

• Induction step: 
– T(n+2) = T(n+1) + T(n) ≤  cϕn+1 + cϕn =  cϕn+2 
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Can We Do Better? 

Time Complexity: 
– Number of times loop is executed?  n – 1 
– Number of basic steps per loop?  Constant 

 Complexity of iterative algorithm = O(n) 
 

Much, much, much, much, better than O(ϕn)! 
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if (n <= 1) return n; 

int parent = 0; 

int current = 1; 

for (int i = 2; i ≤ n; i++) { 

   int next = current + parent; 

   parent = current; 

   current = next; 

} 

return (current); 



...But We Can Do Even Better! 

• Denote with fn the n-th Fibonacci number 
– f0 = 0 
– f1 = 1 
– fn+2 = fn+1 + fn 

 
• Note that                 , thus 

 
• Can compute nth power of matrix by repeated 

squaring in O(log n) time. 
– Gives complexity O(log n) 
– A little cleverness got us from exponential to logarithmic. 
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But We Are Not Done Yet... 

• Would you believe constant time? 

 

 

 

 

 

 where  φ  =                              φ’  =   
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Matrix Mult in Less Than O(n3) 

• Idea (Strassen's Algorithm): naive 2 x 2 matrix 
multiplication takes 8 scalar multiplications, but 
we can do it in 7: 
 
 
 
 
 

• where  
– s1 = (b - d)(g + h)  s5 = a(f - h) 
– s2 = (a + d)(e + h) s6 = d(g - e) 
– s3 = (a - c)(e + f)  s7 = e(c + d) 
– s4 = h(a + b) 
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s1 + s2 - s4 + s6         s4 + s5 
               s6 + s7          s2 - s3 + s5 - s7 

a    b 

c    d 

e    f 

g    h 
= 



Now Apply This Recursively – 
Divide and Conquer! 

• Break 2n+1 x 2n+1 matrices up into 4 2n x 2n 
submatrices 

• Multiply them the same way 

 

 

• where 
S1 = (B - D)(G + H)  S5 = A(F - H) 

S2 = (A + D)(E + H)  S6 = D(G - E) 

S3 = (A - C)(E + F)  S7 = E(C + D) 

S4 = H(A + B) 
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S1 + S2 - S4 + S6         S4 + S5 
               S6 + S7          S2 - S3 + S5 - S7 

E    F 

G    H 

A    B 

C    D 
= 



Now Apply This Recursively – 
Divide and Conquer! 

• Recurrence for the runtime of Strassen’s Alg 

– M(n) = 7 M(n/2) + cn2 

– Solution is M(n) = O(nlog 7) = O(n2.81) 

• Number of additions  

– Separate proof  

– Number of additions is O(n2)  
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Is That the Best You Can Do? 

• How about 3 x 3 for a base case? 
–best known is 23 multiplications 
–not good enough to beat Strassen 

 

• In 1978, Victor Pan discovered how to multiply 70 x 70 
matrices with 143640 multiplications, giving O(n2.795...) 

 

• Best bound to date (obtained by entirely different 
methods) is O(n2.376...)  (Coppersmith & Winograd 1987) 

 

• Best know lower bound is still Ω(n2) 
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Moral: Complexity Matters! 

• But you are acquiring the best tools to 

deal with it! 
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