CS/ENGRD 2110

Object-Oriented Programming
 and Data Structures

Fall 2012
Doug James

Lecture 23: Recurrences

Analysis of Merge-Sort

```
public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
    if (low < high) { //at least 2 elements?
    cost = c
        int mid = (low + high)/2;
        Comparable[] A1 = mergeSort(A, low, mid); cost = T(n/2) +e
        Comparable[] A2 = mergeSort(A, mid+1, high);
        return merge(A1,A2);
    }
    cost = i
```

- Recurrence describing computation time:

$$
\begin{array}{ll}
-T(n)=c+d+e+f+2 T(n / 2)+g n+h & \leftarrow \text { recurrence } \\
-T(1)=i & \leftarrow \text { base case }
\end{array}
$$

- How do we solve this recurrence?

Analysis of Merge-Sort

- Recurrence:

$$
\begin{aligned}
& -T(n)=c+d+e+f+2 T(n / 2)+g n+h \\
& -T(1)=i
\end{aligned}
$$

- First, simplify by dropping lower-order terms and replacing constants by their max
$-T(n)=2 T(n / 2)+a n$
$-T(1)=b$
- Simplify even more. Consider only the number of comparisons.

$$
\begin{aligned}
& -T(n)=2 T(n / 2)+n \\
& -T(1)=0
\end{aligned}
$$

- How do we find the solution?

Solving Recurrences

- Unfortunately, solving recurrences is like solving differential equations
- No general technique works for all recurrences
- Luckily, can get by with a few common patterns
- You learn some more techniques in CS2800

Analysis of Merge-Sort

- Recurrence for number of comparisons of MergeSort
$-T(n)=2 T(n / 2)+n$
$-T(1)=0$
$-T(2)=2$
- To show: $T(n)$ is $O(n \log (n))$ for $n \in\{2,4,8,16,32, \ldots\}$
- Restrict to powers of two to keep algebra simpler
- Proof: use induction on $n \in\{2,4,8,16,32, \ldots\}$
- Show $P(n)=\{T(n) \leq c n \log (n)\}$ for some fixed constant c.
- Base: P(2)
- $T(2)=2 \leq c 2 \log (2)$ using $c=1$
- Strong inductive hypothesis: $\mathrm{P}(\mathrm{m})=\{\mathrm{T}(\mathrm{m}) \leq \mathrm{c} \mathrm{m} \log (\mathrm{m})\}$ is true for all $m \in\{2,4,8,16,32, \ldots, k\}$.
- Induction step: $P(2) \wedge P(4) \wedge \ldots \wedge P(k) \rightarrow P(2 k)$
- $\mathrm{T}(2 \mathrm{k}) \leq 2 \mathrm{~T}(2 \mathrm{k} / 2)+(2 \mathrm{k}) \leq 2(\mathrm{ck} \log (\mathrm{k}))+(2 \mathrm{k}) \leq \mathrm{c}(2 \mathrm{k}) \log (\mathrm{k})+\mathrm{c}(2 \mathrm{k})$ $=c(2 k)(\log (k)+1)=c(2 k) \log (2 k)$ for $c \geq 1$

Solving Recurrences

- Recurrences are important when using divide \& conquer to design an algorithm
- Solution techniques:
- Can sometimes change variables to get a simpler recurrence
- Make a guess, then prove the guess correct by induction
- Build a recursion tree and use it to determine solution
- Can use the Master Method
- A "cookbook" scheme that handles many common recurrences

Master Method:
To solve $T(n)=a T(n / b)+f(n)$ compare $f(n)$ with $n^{\log _{b} a}$

- Solution is $T(n)=O(f(n))$
if $f(n)$ grows more rapidly
- Solution is $T(n)=O\left(n^{\log _{b} a}\right)$
if llog_{b} a grows more rapidly
- Solution is $T(n)=O(f(n) \log n)$
if both grow at same rate
Not an exact statement of the theorem - $f(n)$ must be "wellbehaved"

Recurrence Examples

Some common cases:

- $T(n)=T(n-1)+1$
- $T(n)=T(n-1)+n$
- $T(n)=T(n / 2)+1$
- $T(n)=T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$
- $T(n)=2 T(n-1)$
$T(n)$ is $O(n)$
$T(n)$ is $O\left(n^{2}\right)$
$T(n)$ is $O(\log n) \quad$ Binary Search
$T(n)$ is $O(n)$
$T(n)$ is $O(n \log n)$ MergeSort
$T(n)$ is $O\left(2^{n}\right)$

	10	50	100	300	1000
เก	50	250	500	1500	5000
읃	33	282	665	2469	9966
$\stackrel{\sim}{\sim}$	100	2500	10,000	90,000	1,000,000
$\stackrel{\sim}{¢}$	1000	125,000	1,000,000	27 million	1 billion
へ̄	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number
玉	3.6 million	a 65-digit number	a 161-digit number	a 623-digit number	unimaginably large
ᄃ	10 billion	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large

- protons in the known universe ~ 126 digits
- $\mu \mathrm{sec}$ since the big bang ~ 24 digits
- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / $\mu \mathrm{sec}$?

	10	20	50	100	300
\sim	1/10,000 sec	1/2500 sec	1/400 sec	1/100 sec	9/100 sec
ᄃ	1/10 sec	3.2 sec	5.2 min	2.8 hr	28.1 days
へ	1/1000 sec	1 sec	35.7 yr	400 trillion centuries	a 75-digit number of centuries
ᄃᄃ	2.8 hr	3.3 trillion years	a 70 -digit number of centuries	a 185-digit number of centuries	a 728-digit number of centuries

- The big bang was 15 billion years ago ($5 \cdot 10^{17}$ secs)
- Source: D. Harel, Algorithmics

The Fibonacci Function

- Mathematical definition:

$$
\begin{aligned}
& -\mathrm{fib}(0)=0 \\
& -\mathrm{fib}(1)=1 \\
& -\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2), \mathrm{n} \geq 2
\end{aligned}
$$

```
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```


Fibonacci (Leonardo Pisano) 1170-1240? Statue in Pisa, Italy Giovanni Paganucci 1863

- Fibonacci sequence: $0,1,1,2,3,5,8,13, \ldots$

Recursive Execution

```
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```

Execution of fib(4):
fib(4)

The Fibonacci Recurrence

```
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```

- Recurrence for computation time:

$$
\begin{aligned}
& -T(0)=a \\
& -T(1)=a \\
& -T(n)=T(n-1)+T(n-2)+a
\end{aligned}
$$

- What is computation time?

Analysis of Recursive Fib

- Recurrence for computation time of fib
$-\mathrm{T}(0)=\mathrm{a}$
$-T(1)=a$
$-T(n)=T(n-1)+T(n-2)+a$
- To show: $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- Proof: use induction on n
- Show $P(n)=\left\{T(n) \leq c 2^{n}\right\}$ for some fixed constant c.
- Basis: P(0)
- $T(0)=a \leq c 2^{0} u s i n g c=a$
- Basis: P(1)
- $T(1)=a \leq c 2^{1}$ using $c=a$
- Strong inductive hypothesis: $P(m)=\left\{T(m) \leq c 2^{m}\right\}$ is true for all $m \leq k$.
- Induction step: $P(0) \wedge \ldots \wedge P(k) \rightarrow P(k+1)$
- $T(k+1) \leq T(k)+T(k-1)+a \leq c 2^{n}+c 2^{n-1}+a=c 3 / 42^{n+1}+a \leq c 2^{n+1}$ for any $c \geq 1 / 4$ a and any $n \geq 2$.

The Golden Ratio

Actually, can prove a tighter bound than $\mathrm{O}\left(2^{\mathrm{n}}\right)$.

$$
\begin{aligned}
\varphi & =(a+b) / b=b / a \\
\varphi^{2} & =\varphi+1 \\
\varphi & =\frac{1+\operatorname{sqrt}(5)}{2} \\
& =1.618 \ldots
\end{aligned}
$$

ratio of sum of sides $(a+b)$
 to longer side (b)

$$
=
$$

ratio of longer side (b) to shorter side (a)

Fibonacci Recurrence is $\mathrm{O}\left(\varphi^{\mathrm{n}}\right)$

- Simplification: Ignore constant effort in recursive case.
$-\mathrm{T}(0)=\mathrm{a}$
$-T(1)=a$
$-T(n)=T(n-1)+T(n-2)$
- Want to show $T(n) \leq c \varphi^{n}$ for all $n \geq 0$.
- have $\varphi^{2}=\varphi+1$
- multiplying by $\mathrm{c} \varphi^{\mathrm{n}} \rightarrow \mathrm{c} \varphi^{\mathrm{n+2}}=\mathrm{c} \varphi^{\mathrm{n+1}}+\mathrm{c} \varphi^{\mathrm{n}}$
- Base:
- $T(0)=c=c \varphi^{0}$ for $\mathrm{c}=\mathrm{a}$
- $T(1)=c \leq c \varphi^{1}$ for $\mathrm{c}=\mathrm{a}$
- Induction step:
$-T(n+2)=T(n+1)+T(n) \leq c \varphi^{n+1}+c \varphi^{n}=c \varphi^{n+2}$

Can We Do Better?

```
if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i \leq n; i++) {
    int next = current + parent;
    parent = current;
    current = next;
}
return (current);
```

Time Complexity:

- Number of times loop is executed? $n-1$
- Number of basic steps per loop? Constant
\rightarrow Complexity of iterative algorithm $=\mathrm{O}(\mathrm{n})$
Much, much, much, much, better than $\mathrm{O}\left(\varphi^{\mathrm{n}}\right)$!

...But We Can Do Even Better!

- Denote with f_{n} the n -th Fibonacci number
$-f_{0}=0$
$-f_{1}=1$
$-f_{n+2}=f_{n+1}+f_{n}$
- Note that $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\left[\begin{array}{c}f_{n} \\ f_{n+1}\end{array}\right]=\left[\begin{array}{l}f_{n+1} \\ f_{n+2}\end{array}\right)$, thus $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{n}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]=\left[\begin{array}{l}f_{n} \\ f_{n+1}\end{array}\right]$
- Can compute nth power of matrix by repeated squaring in $O(\log n)$ time.
- Gives complexity O(log n)
- A little cleverness got us from exponential to logarithmic.

But We Are Not Done Yet...

- Would you believe constant time?

$$
f_{n}=\frac{\varphi^{n}-\varphi^{\prime n}}{\sqrt{5}}
$$

where $\varphi=\frac{1+\sqrt{5}}{2} \quad \varphi^{\prime}=\frac{1-\sqrt{5}}{2}$

Matrix Mult in Less Than $\mathrm{O}\left(\mathrm{n}^{3}\right)$

- Idea (Strassen's Algorithm): naive 2×2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{cc}
s_{1}+s_{2}-s_{4}+s_{6} & s_{4}+s_{5} \\
s_{6}+s_{7} & s_{2}-s_{3}+s_{5}-s_{7}
\end{array}\right)
$$

- where

$$
\begin{array}{ll}
-s_{1}=(b-d)(g+h) & s_{5}=a(f-h) \\
-s_{2}=(a+d)(e+h) & s_{6}=d(g-e) \\
-s_{3}=(a-c)(e+f) & s_{7}=e(c+d) \\
-s_{4}=h(a+b) &
\end{array}
$$

Now Apply This Recursively Divide and Conquer!

- Break $2^{n+1} \times 2^{n+1}$ matrices up into $42^{n} \times 2^{n}$ submatrices
- Multiply them the same way

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{cc}
S_{1}+S_{2}-S_{4}+S_{6} & S_{4}+S_{5} \\
S_{6}+S_{7} & S_{2}-S_{3}+S_{5}-S_{7}
\end{array}\right)
$$

- where

$$
\begin{array}{ll}
S_{1}=(B-D)(G+H) & S_{5}=A(F-H) \\
S_{2}=(A+D)(E+H) & S_{6}=D(G-E) \\
S_{3}=(A-C)(E+F) & S_{7}=E(C+D) \\
S_{4}=H(A+B) &
\end{array}
$$

Now Apply This Recursively Divide and Conquer!

- Recurrence for the runtime of Strassen's Alg
$-M(n)=7 M(n / 2)+c n^{2}$
- Solution is $M(n)=O\left(n^{\log 7}\right)=O\left(n^{2.81}\right)$
- Number of additions
- Separate proof
- Number of additions is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Is That the Best You Can Do?

- How about 3×3 for a base case?
-best known is 23 multiplications
-not good enough to beat Strassen
- In 1978, Victor Pan discovered how to multiply 70×70 matrices with 143640 multiplications, giving $O\left(n^{2.795 \ldots . .}\right)$
- Best bound to date (obtained by entirely different methods) is $\mathrm{O}\left(\mathrm{n}^{2.376 \ldots}\right)$ (Coppersmith \& Winograd 1987)
- Best know lower bound is still $\Omega\left(n^{2}\right)$

Moral: Complexity Matters!

- But you are acquiring the best tools to deal with it!

