
	
	

CS/ENGRD	 2110	
Object-‐Oriented	 Programming	 	

and	 Data	 Structures	
Fall	 2012	

Doug	 James	
	
	 Lecture	 23:	 Recurrences	
	
	

Analysis of Merge-Sort

• Recurrence describing computation time:
– T(n) = c + d + e + f + 2 T(n/2) + g n + h ← recurrence

– T(1) = i ← base case

• How do we solve this recurrence?

2

public static Comparable[] mergeSort(Comparable[] A, int low, int high) {

 if (low < high) { //at least 2 elements? cost = c

 int mid = (low + high)/2; cost = d

 Comparable[] A1 = mergeSort(A, low, mid); cost = T(n/2) + e

 Comparable[] A2 = mergeSort(A, mid+1, high); cost = T(n/2) + f

 return merge(A1,A2); cost = g n + h

 }

 cost = i

Analysis of Merge-Sort

• Recurrence:
– T(n) = c + d + e + f + 2 T(n/2) + g n + h
– T(1) = i

• First, simplify by dropping lower-order terms and replacing

constants by their max
– T(n) = 2 T(n/2) + a n
– T(1) = b

• Simplify even more. Consider only the number of comparisons.

– T(n) = 2 T(n/2) + n
– T(1) = 0

• How do we find the solution?

3

Solving Recurrences

• Unfortunately, solving recurrences is like
solving differential equations

– No general technique works for all recurrences

• Luckily, can get by with a few common
patterns

• You learn some more techniques in CS2800

4

Analysis of Merge-Sort
• Recurrence for number of comparisons of MergeSort

– T(n) = 2T(n/2) + n
– T(1) = 0
– T(2) = 2

• To show: T(n) is O(n log(n)) for n 2 {2,4,8,16,32,…}
– Restrict to powers of two to keep algebra simpler

• Proof: use induction on n 2 {2,4,8,16,32,…}

– Show P(n) = {T(n) ≤ c n log(n)} for some fixed constant c.

– Base: P(2)
• T(2) = 2 ≤ c 2 log(2) using c=1

– Strong inductive hypothesis: P(m) = {T(m) ≤ c m log(m)} is true for all
m 2 {2,4,8,16,32,…,k} .

– Induction step: P(2) Æ P(4) Æ … Æ P(k) P(2k)
• T(2k) ≤ 2T(2k/2) + (2k) ≤ 2(c k log(k)) + (2k) ≤ c (2k) log(k) + c (2k)

= c (2k) (log(k) + 1) = c (2k) log(2k) for c ≥ 1

5

Solving Recurrences

• Recurrences are important
when using divide & conquer
to design an algorithm

• Solution techniques:
– Can sometimes change

variables to get a simpler
recurrence

– Make a guess, then prove the
guess correct by induction

– Build a recursion tree and use it
to determine solution

– Can use the Master Method
• A “cookbook” scheme that

handles many common
recurrences

Master Method:
To solve T(n) = a T(n/b) + f(n)

compare f(n) with nlogba

• Solution is T(n) = O(f(n))
 if f(n) grows more rapidly

• Solution is T(n) = O(nlogba)
 if nlogba grows more rapidly

• Solution is T(n) = O(f(n) log n)
 if both grow at same rate

Not an exact statement of the
theorem – f(n) must be “well-
behaved”

6

Recurrence Examples

Some common cases:

• T(n) = T(n – 1) + 1 T(n) is O(n) Linear Search

• T(n) = T(n – 1) + n T(n) is O(n2) QuickSort worst-case

• T(n) = T(n/2) + 1 T(n) is O(log n) Binary Search

• T(n) = T(n/2) + n T(n) is O(n)

• T(n) = 2 T(n/2) + n T(n) is O(n log n) MergeSort

• T(n) = 2 T(n – 1) T(n) is O(2n)

7

8

50 250 500 1500 5000

33 282 665 2469 9966

100 2500 10,000 90,000 1,000,000

1000 125,000 1,000,000 27 million 1 billion

1024
a 16-digit

number

a 31-digit

number
a 91-digit number

a 302-digit

number

3.6 million
a 65-digit

number

a 161-digit

number
a 623-digit number

unimaginably

large

10 billion
an 85-digit

number

a 201-digit

number
a 744-digit number

unimaginably

large

10 50 100 300 1000
n

n

n
!

 2

n

 n
3

 n
2

n
lo

g
n

 5

n

• protons in the known universe ~ 126 digits

• μsec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics

9

1/10,000 sec 1/2500 sec 1/400 sec 1/100 sec 9/100 sec

1/10 sec 3.2 sec 5.2 min 2.8 hr 28.1 days

1/1000 sec 1 sec 35.7 yr
400 trillion

centuries

a 75-digit

number of

centuries

2.8 hr 3.3 trillion years

a 70-digit

number of

centuries

a 185-digit

number of

centuries

a 728-digit

number of

centuries

10 20 50 100 300

n
n

2
n

 n

 n
2

• The big bang was 15 billion years ago (5·1017 secs)

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / μsec ?

The Fibonacci Function

• Mathematical definition:

– fib(0) = 0

– fib(1) = 1

– fib(n) = fib(n − 1) + fib(n − 2), n ≥ 2

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, …

10

int fib(int n) {

 if (n == 0 || n == 1) return n;

 else return fib(n-1) + fib(n-2);

}

Fibonacci (Leonardo

Pisano) 1170−1240?

Statue in Pisa, Italy

Giovanni Paganucci

1863

Recursive Execution

11

int fib(int n) {

 if (n == 0 || n == 1) return n;

 else return fib(n-1) + fib(n-2);

}

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

The Fibonacci Recurrence

• Recurrence for computation time:
– T(0) = a

– T(1) = a

– T(n) = T(n – 1) + T(n – 2) + a

• What is computation time?

12

int fib(int n) {

 if (n == 0 || n == 1) return n;

 else return fib(n-1) + fib(n-2);

}

Analysis of Recursive Fib
• Recurrence for computation time of fib

– T(0) = a
– T(1) = a
– T(n) = T(n – 1) + T(n – 2) + a

• To show: T(n) is O(2n)

• Proof: use induction on n

– Show P(n) = {T(n) ≤ c 2n} for some fixed constant c.
– Basis: P(0)

• T(0) = a ≤ c 20 using c=a

– Basis: P(1)
• T(1) = a ≤ c 21 using c=a

– Strong inductive hypothesis: P(m) = {T(m) ≤ c 2m} is true for all m ≤ k.
– Induction step: P(0) Æ … Æ P(k) P(k+1)

• T(k+1) ≤ T(k) + T(k-1) + a ≤ c 2n + c 2n-1 + a = c ¾ 2n+1 + a ≤ c 2n+1
for any c ≥ ¼ a and any n ≥ 2.

13

14

ϕ = (a+b)/b = b/a

ϕ2 = ϕ + 1

ϕ =

 = 1.618...

1 + sqrt(5)

2

The Golden Ratio

a

b

ratio of sum of sides (a+b)

to longer side (b)

 =

ratio of longer side (b) to

shorter side (a)

Actually, can prove a tighter bound than O(2n).

Fibonacci Recurrence is O(ϕn)

• Simplification: Ignore constant effort in recursive case.
– T(0) = a
– T(1) = a
– T(n) = T(n – 1) + T(n – 2)

• Want to show T(n) ≤ cϕn for all n ≥ 0.
– have ϕ2 = ϕ + 1
– multiplying by cϕn cϕn+2 = cϕn+1 + cϕn

• Base:
– T(0) = c = cϕ0 for c = a

– T(1) = c ≤ cϕ1 for c = a

• Induction step:
– T(n+2) = T(n+1) + T(n) ≤ cϕn+1 + cϕn = cϕn+2

15

Can We Do Better?

Time Complexity:
– Number of times loop is executed? n – 1
– Number of basic steps per loop? Constant

 Complexity of iterative algorithm = O(n)

Much, much, much, much, better than O(ϕn)!

16

if (n <= 1) return n;

int parent = 0;

int current = 1;

for (int i = 2; i ≤ n; i++) {

 int next = current + parent;

 parent = current;

 current = next;

}

return (current);

...But We Can Do Even Better!

• Denote with fn the n-th Fibonacci number
– f0 = 0
– f1 = 1
– fn+2 = fn+1 + fn

• Note that , thus

• Can compute nth power of matrix by repeated

squaring in O(log n) time.
– Gives complexity O(log n)
– A little cleverness got us from exponential to logarithmic.

17

fn
fn+1

fn

fn+1

fn+1

fn+2

0 1

1 1
=

0 1

1 1

f0

f1

=

n

But We Are Not Done Yet...

• Would you believe constant time?

 where φ = φ’ =

18

φn − φ’n

 √5
fn =

1 +

 2

√5 1 −

 2

√5

Matrix Mult in Less Than O(n3)

• Idea (Strassen's Algorithm): naive 2 x 2 matrix
multiplication takes 8 scalar multiplications, but
we can do it in 7:

• where
– s1 = (b - d)(g + h) s5 = a(f - h)
– s2 = (a + d)(e + h) s6 = d(g - e)
– s3 = (a - c)(e + f) s7 = e(c + d)
– s4 = h(a + b)

19

s1 + s2 - s4 + s6 s4 + s5
 s6 + s7 s2 - s3 + s5 - s7

a b

c d

e f

g h
=

Now Apply This Recursively –
Divide and Conquer!

• Break 2n+1 x 2n+1 matrices up into 4 2n x 2n
submatrices

• Multiply them the same way

• where
S1 = (B - D)(G + H) S5 = A(F - H)

S2 = (A + D)(E + H) S6 = D(G - E)

S3 = (A - C)(E + F) S7 = E(C + D)

S4 = H(A + B)

20

S1 + S2 - S4 + S6 S4 + S5
 S6 + S7 S2 - S3 + S5 - S7

E F

G H

A B

C D
=

Now Apply This Recursively –
Divide and Conquer!

• Recurrence for the runtime of Strassen’s Alg

– M(n) = 7 M(n/2) + cn2

– Solution is M(n) = O(nlog 7) = O(n2.81)

• Number of additions

– Separate proof

– Number of additions is O(n2)

21

Is That the Best You Can Do?

• How about 3 x 3 for a base case?
–best known is 23 multiplications
–not good enough to beat Strassen

• In 1978, Victor Pan discovered how to multiply 70 x 70
matrices with 143640 multiplications, giving O(n2.795...)

• Best bound to date (obtained by entirely different
methods) is O(n2.376...) (Coppersmith & Winograd 1987)

• Best know lower bound is still Ω(n2)

22

Moral: Complexity Matters!

• But you are acquiring the best tools to

deal with it!

23

