CS/ENGRD 2110 Object-Oriented Programming and Data Structures Fall 2012

Doug James

Lecture 23: Recurrences

Analysis of Merge-Sort

```
public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
    if (low < high) { //at least 2 elements?
        cost = c
        int mid = (low + high)/2;
        Comparable[] A1 = mergeSort(A, low, mid);
        cost = T(n/2) + e
        Comparable[] A2 = mergeSort(A, mid+1, high);
        cost = T(n/2) + f
        return merge(A1,A2);
    }
    cost = i</pre>
```

- Recurrence describing computation time:
 T(n) = c + d + e + f + 2 T(n/2) + g n + h ← recurrence
 T(1) = i ← base case
- How do we solve this recurrence?

Analysis of Merge-Sort

- Recurrence:
 - T(n) = c + d + e + f + 2 T(n/2) + g n + h
 - T(1) = i
- First, simplify by dropping lower-order terms and replacing constants by their max

$$- T(n) = 2 T(n/2) + a n$$

- Simplify even more. Consider only the number of comparisons.
 T(n) = 2 T(n/2) + n
 T(1) = 0
- How do we find the solution?

Solving Recurrences

 Unfortunately, solving recurrences is like solving differential equations

No general technique works for all recurrences

 Luckily, can get by with a few common patterns

• You learn some more techniques in CS2800

Analysis of Merge-Sort

- Recurrence for number of comparisons of MergeSort
 - T(n) = 2T(n/2) + n
 - T(1) = 0
 - T(2) = 2
- To show: T(n) is O(n log(n)) for $n \in \{2,4,8,16,32,...\}$
 - Restrict to powers of two to keep algebra simpler
- Proof: use induction on $n \in \{2,4,8,16,32,...\}$
 - Show $P(n) = {T(n) \le c \ n \ log(n)}$ for some fixed constant c.
 - Base: P(2)
 - $T(2) = 2 \le c \ 2 \log(2)$ using c=1
 - Strong inductive hypothesis: P(m) = {T(m) \leq c m log(m)} is true for all m \in {2,4,8,16,32,...,k}.
 - − Induction step: $P(2) \land P(4) \land ... \land P(k) \rightarrow P(2k)$
 - $T(2k) \le 2T(2k/2) + (2k) \le 2(c k \log(k)) + (2k) \le c (2k) \log(k) + c (2k) = c (2k) (\log(k) + 1) = c (2k) \log(2k)$ for $c \ge 1$

Solving Recurrences

- Recurrences are important when using divide & conquer to design an algorithm
- Solution techniques:
 - Can sometimes change variables to get a simpler recurrence
 - Make a guess, then prove the guess correct by induction
 - Build a recursion tree and use it to determine solution
 - Can use the Master Method
 - A "cookbook" scheme that handles many common recurrences

Master Method:

- To solve T(n) = a T(n/b) + f(n)compare f(n) with $n^{\log_b a}$
- Solution is T(n) = O(f(n)) if f(n) grows more rapidly
- Solution is T(n) = O(n^{log_ba}) if nlog_ba grows more rapidly
- Solution is T(n) = O(f(n) log n) if both grow at same rate

Not an exact statement of the theorem – f(n) must be "well-behaved"

Recurrence Examples

Some common cases:

- T(n) = T(n-1) + 1
- T(n) = T(n−1) + n
- T(n) = T(n/2) + 1
- T(n) = T(n/2) + n
- T(n) = 2 T(n/2) + n
- T(n) = 2 T(n−1)

- T(n) is O(n)
- T(n) is $O(n^2)$
- T(n) is O(log n)
- T(n) is O(n)
- T(n) is O(n log n) MergeSort
- T(n) is O(2ⁿ)

- Linear Search
- QuickSort worst-case
- **Binary Search**

	10	50	100	300	1000
5n	50	250	500	1500	5000
nlogn	33	282	665	2469	9966
n²	100	2500	10,000	90,000	1,000,000
n ³	1000	125,000	1,000,000	27 million	1 billion
2 ⁿ	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number
'n	3.6 million	a 65-digit number	a 161-digit number	a 623-digit number	unimaginably large
un	10 billion	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large

- protons in the known universe ~ 126 digits
- μsec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / μ sec ?

	10	20	50	100	300
n^2	1/10,000 sec	1/2500 sec	1/400 sec	1/100 sec	9/100 sec
C	1/10 sec	3.2 sec	5.2 min	2.8 hr	28.1 days
2 ⁿ	1/1000 sec	1 sec	35.7 yr	400 trillion centuries	a 75-digit number of centuries
n	2.8 hr	3.3 trillion years	a 70-digit number of centuries	a 185-digit number of centuries	a 728-digit number of centuries

• The big bang was 15 billion years ago (5.10¹⁷ secs)

- Source: D. Harel, Algorithmics

The Fibonacci Function

- Mathematical definition:
 - fib(0) = 0

$$- fib(1) = 1$$

$$- fib(n) = fib(n - 1) + fib(n - 2), n \ge 2$$

int fib(int n) {
 if (n == 0 || n == 1) return n;
 else return fib(n-1) + fib(n-2);
}

Fibonacci (Leonardo Pisano) 1170–1240? Statue in Pisa, Italy Giovanni Paganucci 1863

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

Recursive Execution

The Fibonacci Recurrence

• Recurrence for computation time:

$$- T(0) = a$$

 $- T(1) = a$
 $- T(n) = T(n - 1) + T(n - 2) + a$

• What is computation time?

Analysis of Recursive Fib

- Recurrence for computation time of fib
 - T(0) = a
 - T(1) = a
 - T(n) = T(n-1) + T(n-2) + a
- To show: T(n) is O(2ⁿ)
- Proof: use induction on n
 - Show $P(n) = {T(n) \le c 2^n}$ for some fixed constant c.
 - Basis: P(0)
 - $T(0) = a \le c 2^0$ using c=a
 - Basis: P(1)
 - $T(1) = a \le c 2^1$ using c=a
 - Strong inductive hypothesis: $P(m) = {T(m) \le c 2^m}$ is true for all $m \le k$.
 - − Induction step: $P(0) \land ... \land P(k) \rightarrow P(k+1)$
 - $T(k+1) \le T(k) + T(k-1) + a \le c 2^n + c 2^{n-1} + a = c \frac{3}{4} 2^{n+1} + a \le c 2^{n+1}$ for any $c \ge \frac{1}{4}$ a and any $n \ge 2$.

The Golden Ratio

Actually, can prove a tighter bound than O(2ⁿ).

$$\varphi = (a+b)/b = b/a$$
$$\varphi^2 = \varphi + 1$$
$$\varphi = \frac{1 + \text{sqrt}(5)}{2}$$
$$= 1.618...$$

ratio of sum of sides (a+b) to longer side (b)

=

ratio of longer side (b) to shorter side (a)

Fibonacci Recurrence is O(φⁿ)

- Simplification: Ignore constant effort in recursive case.
 - T(0) = a
 - T(1) = a
 - T(n) = T(n-1) + T(n-2)
- Want to show $T(n) \leq c\phi^n$ for all $n \geq 0$.
 - have $\varphi^2 = \varphi + 1$
 - multiplying by $c\phi^n \rightarrow c\phi^{n+2} = c\phi^{n+1} + c\phi^n$
- Base:

$$- T(0) = c = c\phi^0$$
 for c = a

- $T(1) = c \le c\phi^1$ for c = a
- Induction step:
 - $T(n+2) = T(n+1) + T(n) \le c\phi^{n+1} + c\phi^n = c\phi^{n+2}$

Can We Do Better?

```
if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i ≤ n; i++) {
    int next = current + parent;
    parent = current;
    current = next;
}
return (current);
```

Time Complexity:

- Number of times loop is executed? n 1
- Number of basic steps per loop? Constant
- \rightarrow Complexity of iterative algorithm = O(n)

Much, much, much, much, better than $O(\phi^n)$!

...But We Can Do Even Better!

- Denote with f_n the n-th Fibonacci number
 - $f_0 = 0$ $- f_1 = 1$ $- f_{n+2} = f_{n+1} + f_n$
- Note that $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ f_{n+2} \end{pmatrix}$, thus $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} f_0 \\ f_1 \end{pmatrix} = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$
- Can compute nth power of matrix by repeated squaring in O(log n) time.
 - Gives complexity O(log n)
 - A little cleverness got us from exponential to logarithmic.

But We Are Not Done Yet...

• Would you believe constant time?

$$f_n = \frac{\phi^n - \phi^{n}}{\sqrt{5}}$$

where
$$\phi = \frac{1 + \sqrt{5}}{2}$$
 $\phi' = \frac{1 - \sqrt{5}}{2}$

Matrix Mult in Less Than O(n³)

 Idea (Strassen's Algorithm): naive 2 x 2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 + s_5 \\ s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

• where

$$\begin{array}{ll} -s_1 = (b - d)(g + h) & s_5 = a(f - h) \\ -s_2 = (a + d)(e + h) & s_6 = d(g - e) \\ -s_3 = (a - c)(e + f) & s_7 = e(c + d) \\ -s_4 = h(a + b) & \end{array}$$

Now Apply This Recursively – Divide and Conquer!

- Break 2ⁿ⁺¹ x 2ⁿ⁺¹ matrices up into 4 2ⁿ x 2ⁿ submatrices
- Multiply them the same way $\begin{pmatrix}
 A & B \\
 C & D
 \end{pmatrix}
 \begin{pmatrix}
 E & F \\
 G & H
 \end{pmatrix} =
 \begin{pmatrix}
 S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\
 S_6 + S_7 & S_2 - S_3 + S_5 - S_7
 \end{pmatrix}$
- where
 - $S_{1} = (B D)(G + H) \qquad S_{5} = A(F H)$ $S_{2} = (A + D)(E + H) \qquad S_{6} = D(G - E)$ $S_{3} = (A - C)(E + F) \qquad S_{7} = E(C + D)$ $S_{4} = H(A + B)$

Now Apply This Recursively – Divide and Conquer!

Recurrence for the runtime of Strassen's Alg
 M(n) = 7 M(n/2) + cn²

- Solution is $M(n) = O(n^{\log 7}) = O(n^{2.81})$

- Number of additions
 - Separate proof
 - Number of additions is O(n²)

Is That the Best You Can Do?

- How about 3 x 3 for a base case?
 best known is 23 multiplications
 not good enough to beat Strassen
- In 1978, Victor Pan discovered how to multiply 70 x 70 matrices with 143640 multiplications, giving O(n^{2.795...})
- Best bound to date (obtained by entirely different methods) is O(n^{2.376...}) (Coppersmith & Winograd 1987)
- Best know lower bound is still $\Omega(n^2)$

Moral: Complexity Matters!

• But you are acquiring the best tools to deal with it!