CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Spring 2012

Doug James

Lecture 9: Trees

How computer scientists draw trees...

Tree Overview

: recursive data
structure (similar to list)

— Each cell may have zero or @) @ @
more successors () ~ g

— Each cell has exactly one { g
predecessor () (GEOEOMNU)

except the , which has
none General tree Binary tree

— Cells without children are
called

— All cells are reachable

from @ 6
: tree in which / ©
each cell can have at most @) 69
two children: a left child — ®
and a right child Not a tree List-like tree

How nature draws trees...

Example: A family tree

Tree Terminology

Mis the of this tree

Gis the of the

B,H,J,N,andS are

N is the of P; Sis the

Pis the of N

Gand W are

Mand G are of D

P,N,and S are of W

Node J is at 2 (i.e., = length
of path from root = number of edges)
Node W is at 2 (i.e., =length \
of longest path to a leaf)

A collection of several trees is called a ...?

9/20/12

Class for Binary Tree Cells

class TreeCell<T> {
private T datum;
private TreeCell<T> left, right;

public TreeCell(T x) {
datum = x; left = null; right = null;
}

public TreeCell(T x, TreeCell<T> 1lft,
TreeCell<T> rgt) {
datum = x;
left = 1ft;
right = rgt;

}
more methods: getDatum, setDatum, getLeft,
setLeft, getRight, setRight

. new TreeCell<String>("hello")

Applications of Trees

Most languages (natural and computer) have a
recursive, hierarchical structure

This structure is implicit in ordinary textual
representation

Recursive structure can be made explicit by
representing sentences in the language as trees:
(ASTs)

ASTs are easier to optimize, generate code from,
etc. than textual representation

A converts textual representations to AST

Recursion on Trees

* Recursive methods can be written to operate on
trees in an obvious way

* Base case
— empty tree
— leaf node

* Recursive case
— solve problem on left and right subtrees
— put solutions together to get solution for full tree

Class for General Trees

class GTreeCell {

4 2
private Object datum; ((:>
private GTreeCell left;
private GTreeCell sibling; PXOXE
appropriate getter and
setter methods

O 6 O

Parent node points directly
only to its leftmost child
Leftmost child has pointer to
next sibling, which points to
next sibling, etc.

Example

. AST Representation
Expression

grammar:
- E - integer
- E-> (E+E)
(2+3)
In textual
representation
— Parentheses show

hierarchical structure ((2+3) + (5+7)) /CD\

In tree

representation

— Hierarchy is explicit in
the structure of the tree

Searching in a Binary Tree

public static boolean treeSearch(Object x,
TreeCell node) {
if (node == null) return false;
if (node.datum.equals(x)) return true;
return treeSearch(x, node.left) ||
treeSearch (x, node.right);

Analog of linear search in lists: given
tree and an object, find out if object is

stored in tree ee
Easy to write recursively, harder to ? ?
write iteratively Q @

9/20/12

Binary Search Tree (BST)

If the tree data are ordered —in any /@)
subtree, e @

— All left descendents of node come before node
— All right descendents of node come after node

This makes it much faster to search @ 0 G Q

public static boolean treeSearch (Object x, TreeCell node) {
if (node == null) return false;
if (node.datum.equals(x)) return true;
if (node.datum.compareTo(x) > 0)
return treeSearch(x, node.left);
else
return treeSearch(x, node.right);

What Can Go Wrong?

(Laor]

* A BST makes searches very

fast, unless...

— Nodes are inserted in
alphabetical order

— In this case, we're basically
building a linked list (with
some extra wasted space for
the left fields that aren’t
being used)

— Maximally high tree >
search just as slow as for
linked list.

* BST works great if data
arrives in random order

Tree Traversals

* “Walking” over the whole ¢ There are other standard
tree is a tree traversal kinds of traversals
— This is done often enough
that there are standard
names
— The previous example is an

— Process node
— Process left subtree
— Process right subtree
* Process left subtree
* Process node — Process left subtree
+ Process right subtree — Process right subtree
Note: we’re using this for — Process node
printing, but any kind of
processing can be done

9/20/12

Building a BST

* Toinsert a new item
— Pretend to look for the item

— Put the new node in the place where you fall off the
tree

* This can be done using either recursion or
iteration

Example
— Tree uses alphabetical order

— Months appear for insertion in calendar order (i.e.
jan, feb, mar, apr, may, jun, jul, ...)

Printing Contents of BST

Because of the
ordering rules for
a BST, it’s easy to
print the items in <how (s00t) ;
alphabetical order | system.cut.prineino;
— Recursively print ’
everything in the |private static void show(TreeNode node) {
|eft Subtree if (node == null) return;
. show (node.lchild) ;
— Print the node System.out.print (node.datum + "
— Recursively print show(node. xehild) ;
everything in the
right subtree

public void show () {

or feb jan jul jun mar may

18

Reading and Writi

* Write ttofilein : .
IF t==null THEN
print null
ELSE
Print root
Recurse left subtree
Recurse right subtree

* Read from file in

next_token = read

IF next_token == null THEN
return null

ELSE
root = next_token
left = Recurse left subtree
right = Recurse right subtree
return new TreeCell(root, left,right)

null null

Some Useful Methods

/determine if a node is a leaf
public static boolean (TreeCell node) {
return (node != null) && (node.left
&& (node.right

/compute height of tree using postorder traversal
public static int (TreeCell node) {
if (node == null) return -1; //empty tree
if (isLeaf(node)) return 0;
return 1 + Math.max (height(node.left),
height(node.right)) ;

/compute number of nodes using postorder traversal
public static int (TreeCell node) {
if (node == null) return 0;

return 1 + nNodes (node.left) + nNodes (node.right);
}

Tree with Parent Pointers

In some applications, it is
useful to have trees in which
nodes can reference their
parents

* Analog of doubly-linked lists

Suffix Trees

* Given a string s, a suffix tree for s is a tree such that

— each edge has a unique label, which is a non-null substring
of s

— any two edges out of the same node have labels beginning
with different characters

— the labels along any path from the root to a leaf
concatenate together to give a suffix of s

— all suffixes are represented by some path

— the leaf of the path is labeled with the index of the first
character of the suffix in s

 Suffix trees can be constructed in linear time

Useful Facts about Binary Trees

29 = maximum number
of nodes at depth d

If height of tree is h

— Minimum number of
nodes in tree =
h+1

— Maximum number of
nodes in tree =
204214 420 = oM

Complete binary tree

— All levels of tree down to
a certain depth are

completely filled Height 2

minimum number of nodes

Things to Think About

* What if we want to
delete data from a BST? (jan]

[feb] [(mar]
* A BST works great as
long as it’s balanced

— How can we keep it (ul]
balanced?

(Capr] (jun] [may

Suffix Trees

9/20/12

Suffix Trees

« Useful in string matching algorithms (e.g.,
longest common substring of 2 strings)

* Most algorithms linear time
* Used in genomics (human genome is ~4GB)

Huffman Compression of “Ulysses”

BSP Trees

* BSP = Binary Space Partition

— Used to render 3D images composed of polygons (see
demo)

— Each node n has one polygon p as data
— Left subtree of n contains all polygons on one side of

— Right subtree of n contains all polygons on the other
side of

* Paint image from back to front. Order of traversal
determines occlusion!

* Used in Doom & Quake for triangle occlusion culling

Huffman Trees

Fixed length encoding
197*2 + 63*2 + 40*2 + 26*2 = 652 bits

Huffman encoding
197*1 + 63*2 + 40*3 + 26*3 = 521 bits

Decision Trees

* Classification: * Example:

— Should credit card
transaction be denied?

— Attributes (e.g. is CC
used more than 200
miles from home?)

— Values (e.g. yes/no)
— Follow branch of tree
based on value of

attribute.

— Leaves provide
decision.

Tree Summary

* Atreeis a recursive data structure
— Each cell has 0 or more successors (children)
— Each cell except the root has at exactly one predecessor
(parent)
— All cells are reachable from the root
— A cell with no children is called a leaf
* Special case: binary tree
— Binary tree cells have a left and a right child
— Either or both children can be null
* Trees are useful for exposing the recursive structure of
natural language and computer programs

9/20/12

