CS/ENGRD 2110
Object-Oriented Programming

and Data Structures
Fall 2012

Doug James

Lecture 2: Java Review

Academic Excellence Workshop

CS 2110 AEW

SIGN UP FOR 1 CREDIT S/U COURSE!!!

Students enrolled in AEWs, on average, earn a HIGHER GRADE
in the course than those not enrolled in the AEW

Get EXTRA PRACTICE solving problems so that course
assignments are easier to complete

FREE FOOD every class!!!

CLASS TIME: Fridays 2:30PM-4:25PM HLS 401 &=

To add the course: just add ENGRG 1011 on Student Center

for more details or if you have
guestions

Interested in Information Science?
IS/ISST major? Minor? Not sure?

Join ISSA, the Information Science Student Association!
Come to our first meeting of 2012-13

THURSDAY (9/6) at 4:30pm in Upson Lounge
There will be pizza and soda!

Questions? Want to join our listserv?
Contact zip2@cornell.edu

Outline

* A brief (biased) history of programming
languages

* Review of some Java/OOP concepts

e Java tips, trick, and pitfalls

Machine Language

* Used with the earliest electronic Example code
computers (1940s)

—Machines use vacuum tubes
instead of transistors

* Programs are entered by setting ~ An idea for improvement
switches or reading punch cards Use words instead of numbers

* All instructions are numbers Result: Assembly Language

Assembly Language

* Idea: Use a program (an Example code
assembler) to convert assembly
language into machine code

* Early assemblers were some of
the most complicated code of
the time (1950s)

Figure 4. 1M 1402 Card Read-Punch

Idea for improvement

Let’s make it easier for humans
by designing a high-level
computer language

Result: high-level languages

High-Level Language

* Idea: Use a program (a
or an) to convert
high-level code into machine
code

* Pro

— Easier for humans to write,
read, and maintain code

* Con

— The resulting program will never
be as efficient as good
assembly-code

* Waste of memory
* Waste of time

The whole concept was initially
controversial

FORTRAN (mathematical FORmula
TRANslating system) was designed
with efficiency very much in mind

FORTRAN

* Initial version developed in 1957 Example code

FORTRAN introduced many

high-level language constructs
still in use today

Variables & assignment
Loops

Conditionals
Subroutines

Comments

FIGURE 4.11 IBM 026 Keypunch (Courtesy IBM).

ALGOL

Sample code

= rithmic Language ALGOL 60 included recursion
* Developed by an international Pro: easier to design clear,
committee succinct algorithms
* First version in 1958 (not widely Con: too hard to implement;
used) too inefficient

e Second version in 1960 (widely
used)

COBOL

= COmmon Business COBOL included the idea of
riented Language records (a single data structure
* Developed by the US with multiple fields, each field
government (about 1960) holding a value)

— Design was greatly influenced by
Grace Hopper

e Goal: Programs should look like
English
— Idea was that anyone should be

able to read and understand a
COBOL program

s
T

[Wikipedia]

10

Simula & Smalltalk

* These languages introduced and
popularized Object Oriented
Programming (OOP)

— Simula was developed in
Norway as a language for
simulation in the 60s

— Smalltalk was developed at
Xerox PARC in the 70s

* These languages included
— Classes
— Objects
— Subclasses & Inheritance

Java — 1995

eJava includes

—Assignment statements,
loops, conditionals from
(but syntax
from C)

—Recursion from
—Fields from
—QOP from

Java™ and logo © Sun Microsystems, Inc.

We assume you already know Java...

Classes and objects

Static vs instance fields and methods
Local variables

Primitive vs reference types

Private vs public vs package
Constructors

Method sighatures

Arrays

Subtypes and Inheritance, Shadowing

Java is object oriented

n most prior languages, code was executed
ine by line and accessed variables or record

n Java, we think of the data as being
organized into objects that come with their
own methods, which are used to access them
— This shift in perspective is critical

— When coding in Java one is always thinking about
“which object is running this code?”

Dynamic vs. Static

* Some kinds of information is “static”
— There can only be one instance
— Like a “global variable” in C or C++ (or assembler)
— In languages like FORTRAN, COBOL most data is static.

* Object-oriented information is “dynamic”
— Each object has its own private copy

— When we create a new object, we make new copies of the
variables it uses to keep its state

— Languages like C and C++ allow us to allocate memory at
runtime, but don’ t offer a lot of help for managing it

* |nJava this distinction becomes very important

Constructors

e Called to create new instances of a class

e Default constructor initializes all fields to default
values (0 or null)

class
int wval

int wval)
this.val = wval;

Static Initializers

e Run once when class is loaded
* Used to initialize static objects

class
static courses new
static

courses "CS 2110"
courses "CS 2112"

public static void

Static methods and variables

* If a method or a variable is declared “static”
there will be just one instance for the class

— Otherwise, we think of each object as having its
own “version” of the method or variable

* Anyone can call a static method or access a
static variable

e But to access a dynamic method or variable
Java needs to know which object you mean

Static vs Instance Example

class Widget
static int nextSerialNumber
int serialNumber

serialNumber nextSerialNumber
nextSerialNumber

public static void
new

new

new
serialNumber
serialNumber
serialNumber

VEIES

Refer to my and fields & methods of same class/object
by (unqualified) name:

— serialNumber

— nextSerialNumber

Refer to fields & methods in another class using name of the

— Widget.nextSerialNumber

Refer to fields & methods of another object using name of
the

— a.serialNumber

Example

— System.out.println(a.serialNumber)
* out s a static field in class System

* The value of System. out is an instance of a class that has an
instance method println (int)

If an object must refer to itself, use

A Common Pitfall

local variable shadows field

class
int val

boolean

ih(:val v

you would like to set the instance field val = v
but you have declared a new local variable val

assignment has no effect on the field val

The main Method

main (String([]

Avoiding trouble

* Keep in mind that “main” is a static method

— Hence anything main calls needs to have an associated
object instance, or itself be static

* Use of static methods is discouraged

class Thing {
int counter;
static int sequence;

public static void main(String[] args) {
int ¢ = ++counter; // Illegal: counter is assoc
// with an object of type
// Thing. But which object?
int s = ++sequence;// Legal: sequence is
// static too

Overloading of Methods

A class can have several methods of the same
name

— But all methods must have different signatures

— The signature of a method is its name plus types of its
parameters

* Example: String.valueOf (.. .) inJava API
— There are 9 of them:

* valueOf (boolean) ;
* valueOf (int) ;
* valueOf (long) ;

* Parameter types are part of the method’ s
signature

Primitive vs Reference Types

* Primitive types

* efficient
*1 or 2 words
* not an Object — unboxed

e Reference types
objects and arrays

usually require more memory
can have special value null
can compare with nonzera

generate val
next

if you try to dereference

“equals()”

== tests whether variables Two different strings with value
hold identical values "hello”

— shallow equality

— works fine for primitive types

equals () test whether two
objects (e.g., String)

contain equivalent data
— deep equality
— need to use for reference types

To compare object contents, override

But if you do this, must also override
(more on this later)

(19 (19

=* vs “equals()” for String

"xy" == new String("xy") False "xy".equals(new String("xy"))

"xy" == "xy" True "xy". equals("xy")
xy —— lell + llyll True xy equals(

Use of “==" quite tricky for Strings---see Equals.java

Arrays are reference types

Array elements can be reference
types or primitive types

If 2 is an array,

length

Its elements are

The length is fixed!

"hello"

Accessing Array Elements
Sequentially

public class
public static void

out

Class Hierarchy

EPuzzle
Puzzle
EPuzzle

Puzzle
Object

Every class (except) has a unique
Immediate superclass, called its

Overriding

* A method in a subclass overrides a method in
superclass if:

®* both methods have the same name,

* both methods have the same signature (number and
type of parameters and return type), and

®* both are static methods or both are instance methods

 Methods are dispatched according to the runtime
type of the object (dynamic binding / late binding)

Overriding (cont’d)

Casting and Method Dispatch

//upcasting

Always calls methods of the class that was
use for creation with "new .

Overriding (cont’d)

Unexpected Consequence

//illegal!!

//upcasting

//would invoke private method in
class B at runtime!

An overriding method cannot have more
restricted access than the method it overrides

Accessing Overridden Methods

* Suppose a class S overrides a method m in its
parent

* Methods in S can invoke the overridden
method in the parent as

In particular, can invoke the overridden
method in the overriding method!

* Caveat: g:annot compose super more than
once as In

Overloading Revisited

Remember: overloading resolved at compile time

Output:
Overload.m (Base)
Overload.m (Base)

Shadowing

* Like overriding, but for fields instead of methods
— Superclass: variable v of some type
— Subclass: variable v perhaps of some other type
— Method in subclass can access shadowed variable using

e Variable references are resolved using static binding
(i.e., at compile-time), not dynamic binding (i.e., not at
runtime)

— Variable reference r.v uses the static type (declared type)
of the variable r, not the runtime type of the object
referred to by

* Shadowing variables is bad medicine and should be
avoided

Experimentation and Debugging

Don't be afraid to experiment if you are not sure how
things work
— Documentation isn’ t always clear

— Interactive Development Environments (IDEs), e.g. Eclipse,
make this easier

Debugging

— Do not just make random changes, hoping something will work
— Think about what could cause the observed behavior

— |solate the bug

An IDE makes this easier by providing a Debugging Mode

Can set breakpoints, step through the program while
watching chosen variables

