CS 2110 Fall 2009

Prelim 2 Review

Prelim 2 Information

Prelim 2

Tuesday, November 16t (Tomorrow!)
Uris Go1 (same as Prelim 1)
7:30-9:00
Topics:
Threads and Concurrency (basic)
BigO
ADTs: Stacks, Queues, PriorityQueues, Maps, Sets
Graph Algorithms: Prim’s, Kruskal’s, Dijkstra’s
No Induction ®

For the prelim...

Don't spend your time memorizing Java APIs!
If you want to use an ADT, it's acceptable to
write code that looks reasonable, even if it's not

the exact Java API. For example,
Queve<integer> myQueue = new Queue<integer>();

myQueue.enqueue(s);

int x = myQueue.dequeue();
This is not correct Java

But it's fine for the exam.

Big-O notation

Big-O is an asymptotic upper bound on a
function
"f(x)is O(g(x))”

Meaning: There exists some constant k such that
f(x) < k g(x)
...as x goes to infinity
Often used to describe upper bounds for both
worst-case and average-case algorithm runtimes

Runtime is a function: The number of operations
performed, usually as a function of input size

Big-O notation

For the prelim, you should know...

Worst case Big-O complexity for the algorithms we’ve
covered and for common implementations of ADT
operations

Examples

Mergesort is worst-case O(n log n)
PriorityQueue insert using a heap is O(log n)

Average case time complexity for some algorithms
and ADT operations, if it has been noted in class

Examples
Quicksort is average case O(n log n)
HashMap insert is average case O(1)

Big-O notation

For the prelim, you should know...

How to estimate the Big-O worst case runtimes of
basic algorithms (written in Java or pseudocode)
Count the operations

Loops tend to multiply the loop body operations by the
loop counter

Trees and divide-and-conquer algorithms tend to
introduce log(n) as a factor in the complexity

Basic recursive algorithms, i.e., binary search or
mergesort

Abstract Data Types

What do we mean by “abstract”?

Defined in terms of operations that can be
performed, not as a concrete structure

Example: Priority Queue is an ADT, Heap is a concrete
data structure

For ADTs, we should know:

Operations offered, and when to use them

Big-O complexity of these operations for standard
implementations

ADTs: The Bag Interface

interface Bag<E> ({
void insert (E obj) ;
E extract(); //extract some element
boolean isEmpty () ;
E peek(); // optional: return next

element without removing

Examples: Queue, Stack, PriorityQueue

First-In-First-Out (FIFO)
Objects come out of a queue in the same order
they were inserted
Linked List implementation
insert(obj): O(z)
Add object to tail of list
Also called enqueue, add
extract(): O(a2)
Remove object from head of list
Also called dequeue, poll

Stacks

Last-In-First-Out (LIFO)
Objects come out of a queue in the opposite
order they were inserted
Linked List implementation
insert(obj): O(z)
Add object to tail of list
Also called push
extract(): O(a2)
Remove object from head of list
Also called pop

Priority Queues

Objects come out of a Priority Queue according
to their priority
Generalized
By using different priorities, can implement Stacks or
Quevues
Heap implementation (as seen in lecture)
Insert(obj, priority): O(logn)
insert object into heap with given priority
Also called add
extract(): O(log n)
Remove and return top of heap (minimum priority element)
Also called poll

11

Concrete Data N

Structure U

Balanced binary tree e . S,
Obeys heap order (5) [3
Invariant: u \'sf

Priority(child) = Priority(parent)

Operations 7 \’9/ '\L’y

insert(value, priority)
extract()

Heap insert()

* Put the new element at the end of the array

* If this violates heap order because it is smaller
than its parent, swap it with its parent

* Continue swapping it up until it finds its rightful
place

* The heap invariant is maintained!

: 2

21 8 19 35

/N /SN /S

22 38 55 10 20

p Insert()

14

35
19

8

21

7N\
/\
/\

5
20

10

55

38

22

p Insert()

14

35
5

8

21

7\
/\
/\

19
20

10

55

38

22

insert ()

* Time is O(log n), since the tree is balanced

— size of tree is exponential as a function of depth

— depth of tree is logarithmic as a function of size

19

extract ()

* Remove the least element —it is at the root

* This leaves a hole at the root — fill it in with the last
element of the array

* If this violates heap order because the root
element is too big, swap it down with the smaller
of its children

* Continue swapping it down until it finds its rightful
place

* The heap invariant is maintained!

20

extract ()

extract ()

4

extract ()

4

extract ()

extract ()

extract ()

extract ()

extract ()

4 5

extract ()

4 5

extract ()

X
: :

21 8 19 35

ANV

22 38 5o 10

extract ()

4 5

extract ()

45 E
3 :

21 20 19 35

ANV

22 38 5o 10

extract ()

45 E
3 :

21 10 19 35

/N N\

22 38 5o 20

33

extract ()

45 E
3 :

21 10 19 35

ANERVAN

22 38 5o 20

34

extract ()

* Time is O(log n), since the tree is balanced

35

Store Iin an ArrayList or Vector

* Elements of the heap are stored in the array in
order, going across each level from left to right,
top to bottom

* The children of the node at array index n are found
atan+1and2n+2

* The parent of node nis found at (n — 1)/2

36

ADT Set

Operations:
void insert (Object element);
boolean contains (Object element) ;
void remove (Object element) ;
int size();

iteration
No duplicates allowed

Hash table implementation: O(1) insert and contains
SortedSet tree implementation: O(log n) insert and
contains

A set makes no promises about ordering, but you can still iterate over it.

37

Dictionaries

ADT Dictionary (aka Map)

Operations:
void insert (Object key, Object wvalue) ;
void update (Object key, Object wvalue) ;
Object find(Object key) ;
void remove (Object key) ;
boolean isEmpty () ;
void clear () ;

Think of: key = word; value = definition
Where used:

Symbol tables

Wide use within other algorithms

A HashMap is a particular implementation of the Map interface
38

Dictionaries

Hash table implementation:
Use a hash function to compute hashes of keys
Store values in an array, indexed by key hash
A collision occurs when two keys have the same hash

How to handle collisions?

Store another data structure, such as a linked list, in the array
location for each key

Put (key, value) pairs into that data structure
insert and find are O(2) when there are no collisions
Expected complexity

Worst case, every hash is a collision

Complexity for insert and find comes from the tertiary data
structure’s complexity, e.g., O(n) for a linked list

A HashMap is a particular implementation of the Map interface
39

Graphs

Set of vertices (or nodes) V, set of edges E
Number of vertices n = |V]|
Number of edges m = |E|

Upper bound O(n2) on number of edges

A complete graph has m = n(n-1)/2

Directed or undirected

Directed edges have distinct head and tail
Weighted edges
Cycles and paths
Connected components
DAGs
Degree of a node (in- and out- degree for
directed graphs)

Graph Representation

You should be able to write a Vertex class in
Java and implement standard graph
algorithms using this class

However, understanding the algorithms is
much more important than memorizing their
code

Spanning Trees

A spanning treeis a
subgraph of an
undirected graph that:

Is a tree

Contains every vertex in the
graph
Number of edgesin a tree
m =n-1

Minimum Spanning Trees (MST)

Spanning tree with minimum sum edge
weights

Prim’s algorithm

Kruskal’s algorithm

Not necessarily unique

Prim’s algorithm

Graph search algorithm, builds up a spanning
tree from one root vertex

Like BFS, but it uses a priority queue
Priority is the weight of the edge to the vertex
Also need to keep track of which edge we used

Always picks smallest edge to an unvisited
vertex
Runtime is O(m log m)

O(m) Priority Queue operations at log(m) each

Prim’s Algorithm

Example

This is our original weighted
graph. The numbers near the
edges indicate their weight.

Prim’s Algorithm

Example

Vertex D has been arbitrarily
chosen as a starting point.
Vertices A, B, Eand F are
connected to D through a
single edge. A is the vertex
nearest to D and will be chosen
as the second vertex along with
the edge AD.

Prim’s Algorithm

Example

The next vertex chosen is the
vertex nearest to either D or A.
B is g away from D and 7 away
fromA, Eis15,andFis6.Fis
the smallest distance away, so
we highlight the vertex F and
the arc DF.

Prim’s Algorithm

Example

The algorithm carries on as
above. Vertex B, which is 7
away from A, is highlighted.

Prim’s Algorithm
Example

End Result

Notice how each vertex has at
least 1 edge connecting to it
and that the edge is the least of
the edges connected to the

vertex.

Kruskal’s Algorithm

Idea: Find MST by connecting forest components
using shortest edges

Process edges from least to greatest

Initially, every node is its own component

Either an edge connects two different components or it
connects a component to itself
Add an edge only in the former case

Picks smallest edge between two components

O(m log m) time to sort the edges

Also need the union-find structure to keep track of components, but
it does not change the running time

Kruskal’s Algorithm

Example

This is our original graph. The
numbers near the arcs indicate
their weight. None of the arcs
are highlighted.

(o o]

Kruskal’s Algorithm

Example

AD and CE are the shortest
arcs, with length 5, and AD has
been arbitrarily chosen, so it is
highlighted.

Kruskal’s Algorithm
Example

CE is now the shortest arc that
does not form a cycle, with
length 5, so it is highlighted as
the second arc.

Kruskal’s Algorithm

Example

The next arc, DF with length 6,
is highlighted using much the
same method.

Kruskal’s Algorithm

Example

The next-shortest arcs are AB
and BE, both with length 7. AB
is chosen arbitrarily, and is
highlighted. The arc BD has
been highlighted in red,
because there already exists a
path (in green) between B and
D, so it would form a cycle
(ABD) if it were chosen.

Kruskal’s Algorithm

Example

The process continues to
highlight the next-smallest arc,
BE with length 7. Many more
arcs are highlighted in red at
this stage: BC because it would
form the loop BCE, DE because
it would form the loop DEBA,
and FE because it would form
FEBAD.

Kruskal’s Algorithm
Example

Finally, the process finishes
with the arc EG of length g9, and
the minimum spanning tree is
found.

Dijkstra’s Algorithm

Compute length of shortest path from source
vertex to every other vertex

Works on directed and undirected graphs
Works only on graphs with non-negative
edge weights

O(m log m) runtime when implemented with
Priority Queue, same as Prim’s

Dijkstra’s Algorithm

Similar to Prim’s algorithm
Difference lies in the priority

Priority is the length of shortest path to a visited
vertex + cost of edge to unvisited vertex

We know the shortest path to every visited vertex
On unweighted graphs, BFS gives us the
same result as Dijkstra’s algorithm

Dijkstra’s Algorithm

Assign to every node a distance value. Set it to zero for our
initial node and to infinity for all other nodes.

Mark all nodes as unvisited. Set initial node as current.

For current node, consider all its unvisited neighbors and
calculate their tentative distance (from the initial node) If
this distance is less than the previously recorded distance,
overwrite the distance.

When we are done considering all neighbors of the current
node, mark it as visited. A visited node will not be checked
ever again; its distance recorded now is final and minimal.
If all nodes have been visited, finish. Otherwise, set the
unvisited node with the smallest distance (from the initial
node) as the next "current node" and continue from step 3.

Dijkstra’s Algorithm
Example

Initial distances set to o for
initial node and oo for all other

nodes.

Dijkstra’s Algorithm
Example

Set distances for all nodes
connected to the initial node.
Mark the initial node as done
(red).

Dijkstra’s Algorithm

Example

Select the node is with the
smallest distance that isn't
done, and update the distances
to its neighbors.

F=11:5+6=11
B=7:5+9=14>7
E=20:5+15=20

Mark D as visited.

A

Dijkstra’s Algorithm
Example

Set the current node to B.
E=14:7+7=14
C=15:7+8=15

Mark B as visited.

Dijkstra’s Algorithm
Example

Repeat the process:
E=14:11+8=19>14
G=22:11+11=22

Mark F as visited

Dijkstra’s Algorithm
Example

)
Repeat the process: A N 7

\ 8
C=15:14+5=19> 15 B
G=22:14+9=23>22

5
Mark E as visited >) / 7
14
15

Question Time

Now we’ll take a 5-10 minute break
We'll begin Q&A session afterwards

