Lecture 14: Function handles

Announcements

- Last lecture!
- A3 due tonight (Mon, Oct 18)
- Textbook challenge activities due tomorrow
- Office hours through this week; consulting remains available

Agenda

- Referring to functions in variables
- Passing functions to other functions
- Anonymous functions
- Parameterized functions

Variables

- Conceptually, a box that stores a value
- Array variables: a big box broken up into smaller ones
- "Variable" - something that can change
- Can assign different values
- Can pass different arguments to functions (input parameters)
- What if we want to change a computation?

Example: accumulation pattern

Sum
function acc $=\operatorname{sumof}(v)$

$$
\begin{aligned}
& \text { acc }=v(1) \text {; } \\
& \text { for } k=2: \text { length }(v) \\
& \quad \operatorname{acc}=\operatorname{sum}([\operatorname{acc} v(k)]) \text {; } \\
& \text { end }
\end{aligned}
$$

Maximum
function acc $=\operatorname{maxof}(\mathrm{v})$

$$
\begin{aligned}
& \operatorname{acc}=v(1) \text {; } \\
& \text { for } k=2: \operatorname{length}(v) \\
& \quad \operatorname{acc}=\max ([\operatorname{acc} v(k)]) ;
\end{aligned}
$$

end

Examples: mathematics

- Where does a function cross zero? (rootfinding)
- What is the area under a function's curve? (integration)
- Where is a function the smallest? (optimization)

Examples: event handling

- Graphical user interface
- When the user clicks this button, execute this function

Function handles

- Allows a variable to refer to a function
- Syntax: @function_name
- Examples:
- h = @sum;
- $s=h\left(\left[\begin{array}{ll}1 & 1\end{array}\right]\right) ; \% s=2$
- $\mathrm{h}=$ @max;
- $m=h\left(\left[\begin{array}{ll}3 & 1\end{array}\right]\right) ; \% m=3$
- function_name can be a:
- built-in function
- user-defined function
- local function (in the same file)

Function functions

- Can write functions that take other functions as arguments
- Input parameter will be a function handle

$$
\text { function } \operatorname{acc}=\operatorname{accof}(v, f)
$$

$$
\begin{aligned}
& \text { acc }=v(1) \text {; } \\
& \text { for } k=2: \operatorname{length}(v) \\
& \qquad \operatorname{acc}=f([\operatorname{acc} v(k)]) \\
& \text { end }
\end{aligned}
$$

Demo: mathematics

- fzero(func,xguess)
- Find root near xguess
- integral(func, xmin, xmax)
- Definite integral from xmin to xmax
- fminbnd(func, xmin, xmax)
- Minimize between xmin and xmax

Anonymous functions

- Creating a new .m file just to use as an argument to functionfunctions feels excessive
- Using local functions is more convenient, but still need to pick a name
- For simple functions, can define anonymously in the expression in which they're used
- Syntax: @(params) expr
- Function body must be a 1-line expression evaluating to the output value
- Example: @(x) sin(x) - x
- Declares a handle to a function of one argument, x, that returns the value of $\sin (x)-x$

Parameterized functions

- Function handles must take exactly the number of arguments that a functionfunction expects to provide
- But user-defined functions often take additional arguments for flexibility
- For a given operation, want to hold some arguments constant
- Use anonymous functions to "bind" values for other input parameters
- Example: @(x) quadratic(x,2,0,-18)
- Binds parameter values 2, 0, -18 to the $2^{\text {nd }}-4^{\text {th }}$ arguments of a named function quadratic()

Example: solving differential equations

- [ts,ys]=ode45(rhs,tspan,y0)
- dydt = rhs(t, y)
- tspan = [t0 tf]
- y, y0, dydt: column vectors
- [length(ts), length(y)] = size(ys)

Where to go from here?

- mathworks.com - Many free tutorials on specific topics
- Getting Started with MATLAB by Rudra Pratap - Good for independent learning with science/engineering applications
- Read function documentation - lots of informative examples
- Just play! (take advantage while it's free) Check out MATLAB Community forums, "File Exchange"

