
Lecture 14: Function handles

Announcements

• Last lecture!

• A3 due tonight (Mon, Oct 18)

• Textbook challenge activities due 
tomorrow

• Office hours through this week; 
consulting remains available

Agenda

• Referring to functions in 
variables

• Passing functions to other 
functions

• Anonymous functions

• Parameterized functions



Variables

• Conceptually, a box that stores a 
value
• Array variables: a big box broken 

up into smaller ones

• “Variable” – something that can 
change
• Can assign different values

• Can pass different arguments to 
functions (input parameters)

• What if we want to change a 
computation?



Example: accumulation pattern

Sum

function acc = sumof(v)

acc = v(1);

for k = 2:length(v)

acc = sum([acc v(k)]);

end

Maximum

function acc = maxof(v)

acc = v(1);

for k = 2:length(v)

acc = max([acc v(k)]);

end



Examples: mathematics

• Where does a function cross zero? (rootfinding)

• What is the area under a function’s curve? (integration)

• Where is a function the smallest? (optimization)



Examples: event handling

• Graphical user interface
• When the user clicks this button, execute this function



Function handles

• Allows a variable to refer to a 
function

• Syntax: @function_name

• Examples:
• h = @sum;

• s = h([1 1]);  % s = 2

• h = @max;

• m = h([3 1]);  % m = 3

• function_name can be a:
• built-in function

• user-defined function

• local function (in the same file)



Function functions

• Can write functions that take 
other functions as arguments
• Input parameter will be a function 

handle

function acc = accof(v,f)

acc = v(1);

for k = 2:length(v)

acc = f([acc v(k)]);

end



Demo: mathematics

• fzero(func,xguess)
• Find root near xguess

• integral(func,xmin,xmax)
• Definite integral from xmin to 

xmax

• fminbnd(func,xmin,xmax)
• Minimize between xmin and xmax



Anonymous functions

• Creating a new .m file just to use 
as an argument to function-
functions feels excessive

• Using local functions is more 
convenient, but still need to pick 
a name

• For simple functions, can define 
anonymously in the expression 
in which they’re used

• Syntax: @(params) expr
• Function body must be a 1-line 

expression evaluating to the 
output value

• Example: @(x) sin(x) – x
• Declares a handle to a function of 

one argument, x, that returns the 
value of sin(x)-x



Parameterized functions

• Function handles must take 
exactly the number of 
arguments that a function-
function expects to provide
• But user-defined functions often 

take additional arguments for 
flexibility

• For a given operation, want to 
hold some arguments constant

• Use anonymous functions to 
“bind” values for other input 
parameters

• Example:
@(x) quadratic(x,2,0,-18)

• Binds parameter values 2, 0, -18 to
the 2nd-4th arguments of a named
function quadratic()



Example: solving differential equations

• [ts,ys]=ode45(rhs,tspan,y0)
• dydt = rhs(t, y)

• tspan = [t0 tf]

• y, y0, dydt: column vectors

• [length(ts), length(y)] = 
size(ys)



Where to go from here?

• mathworks.com – Many free tutorials on specific topics

• Getting Started with MATLAB by Rudra Pratap – Good for 
independent learning with science/engineering applications

• Read function documentation – lots of informative examples

• Just play! (take advantage while it’s free)  Check out MATLAB 
Community forums, “File Exchange”


