
Page 1 of 3 
 

CS 1132: Lecture 10 (cell arrays, file I/O) 
I. Primitive arrays 

a. Homogeneous data type 

b. Rectangular 

i. Poor fit for lists of strings 

II. Cells 

a. Value may have any type (including nested cell) - heterogeneous 

b. Value may be an array (including nested cell array) – nested 

i. Good for lists of strings 

c. A cell array itself is | is not still rectangular 

d. Syntax: 

i. Curly braces for creation, nesting 

ii. Curly braces for indexing 

iii. Square brackets for primitive arrays, concatenation 

III. Example: Roman numerals 

a. Still a decimal system, but each “digit” may be written with 0-4 

characters 

b. To translate from Arabic to Roman, construct a lookup table for each 

decimal place 

i. Each entry in table may have a different length 

c. If thousands place stops at MMM, can’t use 2D cell array, but can use 

nested cell arrays (or 4 separate named arrays) 

d. Nesting order needs to increment ones place the fastest 

i. Outermost loop should be ____________ place 



Page 2 of 3 
 

ii. Innermost loop should be ____________ place 

IV. File input/output 

a. Needed to process non-trivial data from real world 

b. Needed to move data between different systems 

c. 3-step process: 

i. Open file: fopen() 

1. Input is filename; return value is “file identifier” (used as 

argument for all other file I/O functions) 

2. Need to specify if opening for reading, (re)writing 

(creates or truncates), or appending 

a. Careful – don’t accidentally overwrite important 

files! 

ii. Read from or write to file 

1. To write text, use fprintf() with fid as first arg (to print 

strings, use ‘%s’ format specifier) 

iii. Close file (don’t forget this step!): fclose() 

1. Analogous to end keyword, but Matlab can’t catch if you 

omit it 

2. Returns a status code, so end line with semicolon 

d. Files know how large they are and track how much you have read, so 

you can ask if you’re at the end: feof() 

V. Line-oriented text files 

a. For random access, read whole file into memory, store each line in a 

cell array element 



Page 3 of 3 
 

b. Lines are separated with newline characters (one or two, depending 

on OS): ‘\r’, ‘\n’ 

c. fgetl(): read a line, discard newline characters at end 

d. str2double(): convert text numbers (char array) to numeric values 

(double) 

e. If random access to lines is not required, can process one line at a 

time as a “stream” 

i. Only store the data you’re interested in (NORAD example) 


