
◼ Today’s Lecture:

◼ 1-d and 2-d arrays of type char

◼ Computing with characters

◼ Announcements:

◼ A1 resubmissions currently being graded

◼ Assignment 2 first submission due Monday 9/27

◼ Mon lecture: Review session for Test 1

◼ Test on Wed 9/29 in Thurston 205, 2:40-3:30pm

Su M Tu W Th F Sa

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

Character array (an array of type char)
• We have used strings of characters in programs already:

• n= input('Next number: ')

• sprintf('Answer is %f', ans)

• A string is made up of individual characters, so a string is
a 1-d array of characters

• 'CS1132 rocks!' is a character array of length 13; it
has 7 letters, 4 digits, 1 space, and 1 symbol.

• Can have 2-d array of characters as well

'C''S''1' '3''1' '2'

'r''o''c''k''s''!' 2×6 matrix

'C''S''1' '3''1' '2' 'r''o''c''k''s''!'' ' Row vector of
length 13

Recap: Single quotes enclose char arrays in
Matlab
Anything enclosed in single quotes is a string (even if it looks like
something else)

• '100' is a character array (string) of length 3

• 100 is a numeric value

• 'pi' is a character array of length 2

• pi is the built-in constant 3.14159…

• 'x' is a character (vector of length 1)

• x may be a variable name in your program

Types so far: char, double, logical

a is a 1-d array with type char
components. Often called a string; NOT
the same as a new type in Matlab 2017+
called string.

b is a 1-d array with type double
components. double is the default type
for numbers in Matlab. We call b a
“numeric array”

d is a scalar of the type logical. We call
d a “Boolean value”

b= [3 9]

d= rand() > .5

'C''S''1'a

a= 'CS1'
a= ['C','S','1']

Basic (simple) types in MATLAB

• E.g., char, double, logical

• Each uses a set amount of memory
• Each double value uses 64 bits (=8 bytes)

• Each char value uses 16 bits (=2 bytes)

• Use function whos to see memory usage by variables in workspace

• Can easily determine amount of memory used by a simple array
(array of a basic type, where each component stores one simple
value)

• Later: Special arrays where each component is a container for a
collection of values

Text—sequences of characters often called
strings—are important in computation
Numerical data is often encoded in strings. E.g., a file containing Ithaca
weather data begins with the string

W07629N4226

meaning

Longitude: 76o 29′ West

Latitude: 42o 26′ North

We may need to grab hold of the substring W07629, convert 076 and
29 to the numeric values 76 and 29, and do some computation

A text sequence is a vector (of characters)
Vectors

• Assignment

v= [7, 0, 5];

• Indexing

x= v(3); % x is 5

v(1)= 1; % v is [1 0 5]

w= v(2:3); % w is [0 5]

• : notation

v= 2:5; % v is [2 3 4 5]

• Appending

v= [7 0 5];

v(4)= 2; % v is [7 0 5 2]

• Concatenation

v= [v [4 6]];

% v is [7 0 5 2 4 6]

Strings

• Assignment

s= ['h','e','l','l','o'];

% formal

s= 'hello'; % shortcut

• Indexing

c= s(2); % c is 'e'

s(1)= 'J'; % s is 'Jello'

t= s(2:4); % t is 'ell'

• : notation

s= 'a':'g'; % s is 'abcdefg'

• Appending

s= 'duck';

s(5)= 's'; % s is 'ducks'

• Concatenation

s= [s ' quack'];

% s is 'ducks quack'

Example: removing all occurrences of a
character
• From a genome bank we get a sequence

ATTG CCG TA GCTA CGTACGC AACTGG AAATGGC CGTAT…

• First step is to “clean it up” by removing all the blanks. Write this
function:

function s = removeChar(c, s)
% Return char array s with all occurrences of
% char scalar c removed.

Example: removing all occurrences of a
character

• Can solve this problem using
iteration—check one character
(one component of the vector)
at a time

• Challenge: Can you solve it using
logical indexing?

function t = removeChar_loop(c, s)

% Return char array s with all

% occurrences of char scalar c

% removed.

t= '';

for k = 1:length(s)

if s(k) ~= c

t= [t s(k)];

end

end

Some useful char array functions

s= 'Matlab 1132';

length(s) % 11

isletter(s) % [1 1 1 1 1 1 0 0 0 0 0]

isspace(s) % [0 0 0 0 0 0 1 0 0 0 0]

lower(s) % ‘matlab 1132'

upper(s) % ‘MATLAB 1112'

ischar(s)

% Is s a char array? True (1)

strcmp(s(1:3), 'mat')

% Compare strings str(1:3) & 'mat'. False (0)

strcmp(s(1:3), 'Ma')

% False (0)

The ASCII Table

ASCII characters
(American Standard Code for Information Interchange)

ascii code Character

: :

: :

65 ‘A’

66 ‘B’

67 ‘C’

: :

90 ‘Z’

: :

ascii code Character

: :

: :

48 ‘0’

49 ‘1’

50 ‘2’

: :

57 ‘9’

: :

Character vs Unicode code points

str= ’Age 19’

%a 1-d array of characters

code= double(str)

%convert chars to Unicode values

str1= char(code)

%convert Unicode values to chars

Arithmetic and relational ops on characters

◼ ’c’-’a’ gives 2

◼ ’6’-’5’ gives 1

◼ letter1=’e’; letter2=’f’;

◼ letter1-letter2 gives -1

◼ ’c’>’a’ gives true

◼ letter1==letter2 gives false

◼ ’A’ + 2 gives 67

◼ char(’A’+2) gives ‘C’

What is in variable g (if it gets created)?

d1= 'Mar 3'; d2= 'Mar 9';

x1= d1(5); x2= d2(5);

g= x2-x1;

Alfa: the character ‘6’

Bravo: the numeric value 6

Charlie: Error in assigning variables x1, x2

Delta: Error in the subtraction operation

Echo: Some other value or error

What is in variable g (if it gets created)?

d1= 'Mar 13'; d2= 'Mar 29';

x1= d1(5:6); x2= d2(5:6);

g= x2-x1;

Alfa: the string ‘16’

Bravo: the numeric value 16

Echo: Some other value or error

Charlie: Error in assigning variables x1, x2

Delta: Error in the subtraction operation

Example: toUpper

Write a function toUpper(cha) to convert character cha to

upper case if cha is a lower case letter. Return the

converted letter. If cha is not a lower case letter, simply

return the character cha.

Hint: Think about the distance between a letter and the

base letter ‘a’ (or ‘A’). E.g.,

a b c d e f g h …

A B C D E F G H …

Of course, do not use Matlab function upper!

distance = ‘g’-‘a’ = 6 = ‘G’-‘A’

function up = toUpper(cha)

% up is the upper case of character cha.

% If cha is not a letter then up is just cha.

function up = toUpper(cha)

% up is the upper case of character cha.

% If cha is not a letter then up is just cha.

up= cha;

cha is lower case if it is between ‘a’ and ‘z’

function up = toUpper(cha)

% up is the upper case of character cha.

% If cha is not a letter then up is just cha.

up= cha;

if (cha >= 'a' && cha <= 'z')

% Find distance of cha from ‘a’

end

function up = toUpper(cha)

% up is the upper case of character cha.

% If cha is not a letter then up is just cha.

up= cha;

if (cha >= 'a' && cha <= 'z')

% Find distance of cha from ‘a’

offset= cha - 'a';

% Go same distance from ‘A’

end

function up = toUpper(cha)

% up is the upper case of character cha.

% If cha is not a letter then up is just cha.

up= cha;

if (cha >= 'a' && cha <= 'z')

% Find distance of cha from ‘a’

offset= cha - 'a';

% Go same distance from ‘A’

up= char('A' + offset);

end

Example: censoring words

function D = censor(str, A)

% Replace all occurrences of string str in

% character matrix A with X’s, regardless of

% case.

% Assume str is never split across two lines.

% D is A with X’s replacing str.

A

U s M A T L A Be
i n t h a t l a b .

U s M A T X X Xe
i n t h a t X X X .

D

Function strcmpi
does case-insensitive
string comparison

function D = censor(str, A)

% Replace all occurrences of string str in character matrix A,

% regardless of case, with X's.

% A is a matrix of characters.

% str is a string. Assume that str is never split across two lines.

% D is A with X's replacing the censored string str.

D= A;

ns= length(str);

[nr,nc]= size(A);

% Build a string of X's of the right length

% Traverse the matrix to censor string str

A
U s M A T L A Be

i n t h a t l a b .

1 2 3 … c … 8 9 10 1211

1

2

function D = censor(str, A)

% Replace all occurrences of string str in character matrix A,

% regardless of case, with X's.

% A is a matrix of characters.

% str is a string. Assume that str is never split across two lines.

% D is A with X's replacing the censored string str.

D= A;

ns= length(str);

[nr,nc]= size(A);

% Build a string of X's of the right length

Xs= char(zeros(1,ns));

for k= 1:ns

Xs(k)= 'X';

end

% Traverse the matrix to censor string str

for r= 1:nr

for c= 1:nc-ns+1

if strcmpi(str , A(r, c:c+ns-1))

D(r, c:c+ns-1)= Xs;

end

end

end

Returns an array of type double

Changes the type to char

A
U s M A T L A Be

i n t h a t l a b .

X XX
Xs

1

X XX

2 3 10

Case insensitive comparison
of strings

12

