CS 1132 lecture 7

- I. Boundary conditions
 - Padding may not be ideal in practice for large matrices requires copying lots of memory. But still a good illustration of slicing and concatenation techniques
 - b. Vectorized code may be harder to read, especially for those not used to it
 - i. If serial code is easier to think about, start with that
 - c. Alternative to padding: use variable slice bounds
 - i. Functions min(), max() are useful for clamping to bounds
- II. Example: vectorized Monte Carlo simulation
- III. Vectorized relational and logical operations
 - a. With vector operands, yield logical ("Boolean") vector results
 - b. Don't double &, | for logical operations (no short-circuiting)
- IV. Advanced slicing
 - a. Can slice with a permutation vector of indices
 - b. Can slice with a logical vector of equal length
 - c. Much more concise than for-loops
 - d. Example: select students who improved on second exam
- V. Logical vectors
 - a. Can count how many are true with sum()
 - b. Can invert selection with ~ (in index)
 - c. Can convert to vector of indices with find()
- VI. rollDie revisited
 - a. Sum of two uniform distributions is not a uniform distribution
 - b. If multiple samples are required, must make multiple calls to rand()
- VII. Character arrays
 - a. Have already used 1D arrays for text prompts
 - b. Can also be 2D, but must be rectangular
 - c. Simple types: take up constant amount of space per value, so allow immediate indexing
 - d. Syntax comparison
 - e. Example: remove all occurrences of a character