- Today's Lecture:
 - Subfunctions
 - Vectorized code
 - Matrix slicing
- Announcements:
 - Assignment I grading feedback expected this weekend; resubmission deadline announced then
 - Assignment 2 to be posted before next lecture.

Subfunctions

- There can be more than one function in an M-file
- top function is the main function and has the name of the file
- remaining functions are subfunctions, accessible only by the functions in the same m-file
- Each (sub)function in the file begins with a function header
- Keyword end is not necessary at the end of a (sub)function. However, if you use it, you must use it consistently.

Scalar code

 Scalar operation: x + y where x, y are scalar variables

Single Value (not Containing multiple elements)

- How to add two vectors (element-wise)?
 - Loop over elements
 - Perform scalar operation on each element
 - Generally, vectors should have the same length or shape

for k = 1:length(x)z(k) = x(k) + y(k)end

- Code that performs element-by-element arithmetic/relational/logical operations on array operands in one step
- Scalar operation: x + y
 where x, y are scalar variables
- Vectorized code: x + y

where x and/or y are vectors. Generally, vectors x and y should have the same length and shape

Vectorized addition

Matlab code: z = x + y

Vectorized subtraction

Matlab code: z = x - y

Vectorized multiplication

Vectorized element-by-element arithmetic operations on arrays

Shift

Matlab code: z = x + y

Reciprocate

Vectorized

element-by-element arithmetic operations between an array and a scalar

 Plot this!

See plotComparison.m

$$f(x) = \frac{\sin(5x)\exp(-x/2)}{1+x^2} \qquad \text{for} \\ -2 <= x <= 3$$

Element-by-element arithmetic operations on arrays... Also called "vectorized code"

$$x = linspace(-2,3,200);$$

 $y = sin(5*x).*exp(-x/2)./(1 + x.^2)$

Contrast with scalar operations that we've used previously...

$$a = 2.1;$$

$$b = sin(5*a);$$

The operators are (mostly) the same; the operands may be scalars or vectors.

;

When an operand is a vector, you have "vectorized code."

Accessing a submatrix (slicing)

- Write a function minInNeighborhood
- Input parameters:
 - M: matrix of numeric values
 - loc: location of the middle of the neighborhood
 loc(1), loc(2) are the row, column numbers
- Output parameter: minVal

The minimum value of the neighborhood

Lead yourself through problem by asking questions!

- Can you find the min of a (sub)matrix?
 - Yes! Our function minInMatrix(A)
- Given the indices r, c (representing element M(r,c)), is it easy to define the neighborhood?
 - Yes, for the general case the neighborhood is M(r-1:r+1, c-1:c+1)
 - But need to deal with the "border cases"

Want to be able to use the general case, M(r-1:r+1,c-1:c+1)

Want to be able to use the general case, M(r-1:r+1,c-1:c+1)

Want to be able to use the general case, m(r-1:r+1,c-1:c+1)

> Note: This is an exercise on manipulating a matrix. Method not suitable for a large matrix!