
◼ Today’s Lecture:

◼ Subfunctions

◼ Vectorized code

◼ Matrix slicing

◼ Announcements:

◼ Assignment 1 grading feedback expected this weekend;
resubmission deadline announced then

◼ Assignment 2 to be posted before next lecture.

Subfunctions

◼ There can be more than one function in an M-file

◼ top function is the main function and has the name of the file

◼ remaining functions are subfunctions, accessible only by the

functions in the same m-file

◼ Each (sub)function in the file begins with a function header

◼ Keyword end is not necessary at the end of

a (sub)function. However, if you use it, you must use

it consistently.

Scalar code

◼ Scalar operation: x + y

where x, y are scalar variables

◼ How to add two vectors (element-wise)?

◼ Loop over elements

◼ Perform scalar operation on each element

◼ Generally, vectors should have the same length or shape

for k = 1:length(x)
z(k)= x(k) + y(k)

end

Vectorized code
—a Matlab-specific feature

◼ Code that performs element-by-element arithmetic/relational/logical
operations on array operands in one step

◼ Scalar operation: x + y

where x, y are scalar variables

◼ Vectorized code: x + y

where x and/or y are vectors. Generally, vectors x and y should have the
same length and shape

Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y

Vectorized subtraction

2 8.51x

1 102y-

1 7.5-1z=

Matlab code: z= x - y

Vectorized multiplication

2 8.51a

1 102b×

2 802c=

Matlab code: c= a .* b

Vectorized

element-by-element arithmetic operations

on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3

Reciprocate

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1

./

A dot (.) is necessary in front of these math operators

Vectorized

element-by-element arithmetic operations between an

array and a scalar

+

-

*

/

+

-

*

.^ .^

Not necessary but OK to use dot for these: .* .* ./, ,

Plot this!

2
1

)2/exp()5sin(
)(

x

xx
xf

+

−
=

for
-2 <= x <= 3

x = linspace(-2,3,200);

y = sin(5*x).*exp(-x/2)./(1 + x.^2);

plot(x,y)

Element-by-element arithmetic
operations on arrays

See plotComparison.m

Element-by-element arithmetic operations on arrays…

Also called “vectorized code”

x = linspace(-2,3,200);

y = sin(5*x).*exp(-x/2)./(1 + x.^2);

Contrast with scalar operations that we’ve used

previously…

a = 2.1;

b = sin(5*a);

Local minimum in a neighborhood

2 0.5-1 1

52 7.581 2

5 98.5-3 10

3 768 7 Component (2,3)

Neighborhood of component (2,3)

Accessing a submatrix (slicing)

2 0.5-1 1

52 7.581 2

5 98.5-3 10

3 768 7

Neighborhood of component (2,3)

M(2,3)

M(1:3,2:4)

M

Component (2,3)

Local minimum in a neighborhood

2 0.5-1 1

52 7.581 2

5 98.5-3 10

3 768 7

Neighborhood of component (3,5)

Component (3,5)

Local minimum in a neighborhood

◼ Write a function minInNeighborhood

◼ Input parameters:

◼ M: matrix of numeric values

◼ loc: location of the middle of the neighborhood

loc(1), loc(2) are the row, column numbers

◼ Output parameter: minVal

The minimum value of the neighborhood

Lead yourself through problem by asking questions!

◼ Can you find the min of a (sub)matrix?

◼ Yes! Our function minInMatrix(A)

◼ Given the indices r, c (representing element M(r,c)), is it easy to
define the neighborhood?

◼ Yes, for the general case the neighborhood is

M(r-1:r+1, c-1:c+1)

◼ But need to deal with the “border cases”

Local minimum in a neighborhood

2 0.5-1 1

52 7.581 2

5 98.5-3 10

3 768 7

Component (3,5)

Want to be able to use the general case,
M(r-1:r+1,c-1:c+1)

M

Local minimum in a neighborhood

2 0.5-1 1

52 7.581 2

5 98.5-3 10

3 768 7

Want to be able to use the general case,
M(r-1:r+1,c-1:c+1)

M

Component (3,5)

Local minimum in a neighborhood

Want to be able to use the general case,
m(r-1:r+1,c-1:c+1)

2 0.5-1 1

52 7.581 2

5 98.5-3 10

3 768 7

B BBB BB

B

B

B

B

B B BBB BB

B

B

B

B

B

Note:This is an exercise on manipulating a matrix.

Method not suitable for a large matrix!

