- Today's Lecture:
- Subfunctions
- Vectorized code
- Matrix slicing
- Announcements:
- Assignment I grading feedback expected this weekend; resubmission deadline announced then
- Assignment 2 to be posted before next lecture.

Subfunctions

- There can be more than one function in an M-file
- top function is the main function and has the name of the file
- remaining functions are subfunctions, accessible only by the functions in the same m-file
- Each (sub)function in the file begins with a function header
- Keyword end is not necessary at the end of a (sub)function. However, if you use it, you must use it consistently.

Scalar code

- Scalar operation: $x+y$
where x, y are scalar variables
Single value (not Containnymultide elements)
- How to add two vectors (element-wise)?
- Loop over elements
- Perform scalar operation on each element
- Generally, vectors should have the same length or shape

```
for k = 1:length(x)
    z(k)=x(k) + y(k)
end
```

- Code that performs element-by-element arithmetic/relational/logical operations on array operands in one step
- Scalar operation: $x+y$
where x , y are scalar variables
- Vectorized code: $\mathbf{x + y}$
where \mathbf{x} and/or \mathbf{y} are vectors. Generally, vectors \mathbf{x} and \mathbf{y} should have the same length and shape

Vectorized addition

$$
\begin{aligned}
& \mathbf{x} \begin{array}{|l|l|l|l|}
\hline 2 & 1 & .5 & 8 \\
\hline \\
+ & \mathbf{y} & \begin{array}{|l|l|l|l|}
1 & 2 & 0 & 1 \\
\hline
\end{array} \\
\hline
\end{array} \quad \mathbf{z} \begin{array}{|l|l|l|l|}
\hline 3 & 3 & .5 & 9 \\
\hline
\end{array}
\end{aligned}
$$

Matlab code: $\mathbf{z =} \mathbf{x}+\mathbf{y}$

Vectorized subtraction

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|}
\mathbf{x} & 2 & 1 & .5 & 8 \\
\hline
\end{array} \\
& \text { - y } \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 0 & 1 \\
\hline
\end{array} \\
& =\quad \mathbf{z} \quad \begin{array}{|l|l|l|l|}
\hline 1 & -1 & .5 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Matlab code: $\mathbf{z =} \mathbf{x}-\mathbf{y}$

Vectorized multiplication

$$
\begin{array}{l|l|l|l|l|}
\hline 2 & 1 & .5 & 8 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|}
\mathbf{x} & b & 1 & 2 & 0 \\
\hline
\end{array}
$$

$$
=\quad c \quad \begin{array}{|l|l|l|l|}
\hline 2 & 2 & 0 & 8 \\
\hline
\end{array}
$$

Vectorized

element-by-element arithmetic operations on arrays

A dot (.) is necessary in front of these math operators

Shift

$$
\begin{aligned}
& \text { x } 3 \\
& \left.\begin{array}{l}
\mathrm{y} \\
+2
\end{array} \mathbf{1} \right\rvert\, .5 \begin{array}{|l|l|l|}
\hline \\
\hline
\end{array} \\
& =\quad \mathbf{z} \begin{array}{|l|l|l|l|}
\hline 5 & 4 & 3.5 & 11 \\
\hline
\end{array}
\end{aligned}
$$

Matlab code: $\mathbf{z =} \mathbf{x}+\mathbf{y}$

Reciprocate

	y	2	1	.5	8

$$
=\quad z \begin{array}{|l|l|l|l|}
\hline .5 & 1 & 2 & .125 \\
\hline
\end{array}
$$

Vectorized

element-by-element arithmetic operations between an array and a scalar

A dot (.) is necessary in front of these math operators

Not necessary but OK to use dot for these: \square * \square \square * \square \square. / \square

$$
f(x)=\frac{\sin (5 x) \exp (-x / 2)}{1+x^{2}} \quad-2<=x<=3
$$

$\mathbf{x}=\operatorname{linspace}(-2,3,200)$;
$y=\sin (5 * x) \cdot * \exp (-x / 2) . /\left(1+x .^{\wedge} 2\right) ;$
plot(x,y)
个 \uparrow T
Element-by-element arithmetic operations on arrays

Element-by-element arithmetic operations on arrays... Also called "vectorized code"

```
x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
```

Contrast with scalar operations that we've used previously...
a = 2.1;
$\mathrm{b}=\sin (5 * \mathrm{a})$;
a and b are scalars
The operators are (mostly) the same; the operands may be scalars or vectors.

When an operand is a vector, you have "vectorized code."

Local minimum in a neighborhood

2	-1	.5	0	1
3	8	6	7	7
5	-3	8.5	9	10
52	81	.5	7	2

Neighborhood of component $(2,3)$

Accessing a submatrix (slicing)

2	-1	.5	0	1
3	8	6	7	7
5	-3	8,5	9	10
52	81	.5	7	2

Neighborhood of component $(2,3)$

```
M(1:3,2:4)
```


Local minimum in a neighborhood

Local minimum in a neighborhood

- Write a function minlnNeighborhood
- Input parameters:
- M : matrix of numeric values
- loc: location of the middle of the neighborhood $\operatorname{loc}(1), \operatorname{loc}(2)$ are the row, column numbers
- Output parameter: minVal

The minimum value of the neighborhood

Lead yourself through problem by asking questions!

- Can you find the min of a (sub)matrix?
- Yes! Our function minInMatrix(A)
- Given the indices r, c (representing element $M(r, c)$), is it easy to define the neighborhood?
- Yes, for the general case the neighborhood is

$$
M(r-I: r+I, c-I: c+l)
$$

- But need to deal with the "border cases"

Local minimum in a neighborhood

M| 2 | -1 | .5 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 8 | 6 | 7 | 7 |
| 5 | -3 | 8.5 | 9 | 10 |
| 52 | 81 | .5 | 7 | 2 |\quad Component (3,5)

Want to be able to use the general case, M(r-1:r+1, c-1:c+1)

Local minimum in a neighborhood

M| 2 | -1 | .5 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 8 | 6 | 7 | 7 |
| 5 | -3 | 8.5 | 9 | 10 |
| 52 | 81 | .5 | 7 | 2 |\quad Component (3,5)

Want to be able to use the general case, M(r-1:r+1, c-1:c+1)

Local minimum in a neighborhood

B	B	B	B	B	B	B
B	2	-1	.5	0	1	B
B	3	8	6	7	7	B
B	5	-3	8.5	9	10	B
B	52	81	.5	7	2	B
B	B	B	B	B	B	B

Want to be able to use the general case, m(r-1:r+1,c-1:c+1)

Note: This is an exercise on manipulating a matrix.
Method not suitable for a large matrix!

