CS 1132 lecture 6

- I. Subfunctions
 - a. Motivation
 - i. Example: modular pi approximation
 - May define multiple functions in same ".m" file, but only first one (whose name must match file's) can be seen from outside (called from scripts, other functions, or command window)
 - c. May end functions with "end" keyword, but if used, must be used consistently
 - i. Required for subfunctions in scripts
 - d. Useful for modularizing tasks (makes high-level logic easier to see), or for helper functions that are too specific to be reused in other contexts
- II. Vectorized code
 - a. Motivation
 - i. Example: vector geometry
 - ii. Example: Computing weighted grades for whole class
 - iii. For-loops can be slow in MATLAB
 - b. "scalar" variable/expression: stores a single value
 - c. Can use for-loops to perform elementwise scalar operations on vectors
 - d. Vectorized operations, dot syntax
 - Simple rule: always use dot for multiplication, division, exponentiation
 - e. Vectorized functions

- i. Most built-in math functions are vectorized
- ii. Aim to make your own functions vector-compatible (preemptively use dot-operators everywhere)

III. Slicing

- a. Syntax: range expressions as indices
- b. Subarray can be used as if it were its own array
- c. When used on LHS, assignments will change original array

IV. Stencil operations

- a. Motivation: image processing, PDEs
- Approach: define a function to process a whole array, then slice subarrays corresponding to neighborhoods and pass those to the function

V. Boundary conditions

- a. If ignored, could get an index-out-of-bounds error
- b. Option 1: pad matrix with border
 - i. Need a "valid" border value
 - ii. Construction options
 - 1. Concatenate boundary rows, columns using brackets
 - 2. Copy data over fill by assigning to slice
 - iii. Need to adjust indices specified by user to account for new top, left border
- c. Option 2: use variables for subarray extents, clamped with min() and max()