
Announcements

• Assignment 1 due Sep 13
• Submit what you have by the

deadline to avoid penalizing next
week's resubmission

Agenda

• Applications of vectors and
probability

• How to plot data beyond points
• Bar charts, lines

• How to populate vectors
efficiently

• How to store 2D data
• Matrices

Su M Tu W Th F Sa

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

Example: cumulative sum

• Write a program fragment that calculates the cumulative sums of a
given vector v.

• The cumulative sums should be stored in a vector of the same length
as v.
1, 3, 5, 0 v

1, 4, 9, 9 cumulative sums of v

csum(1) = v(1)

csum(2) = v(1) + v(2) = csum(1) + v2

csum(3) = v(1) + v(2) + v(3) = csum(2) + v3

csum(k) = ???

Rolling dice

• Problem: watch for loaded dice
being used at Casino Night

• Solution: write a program to
visualize how even the odds are

• Questions
• How should the data be recorded?

• How many rolls will it take before
the data should look fair?

• How do I know my program will
work during the big event?

• Approach: simulation!

Program design: step 1

% Collect data

Repeat:

Roll die

Increment corresponding "bin"

% Visualize results

Draw bar for each bin with height ∝ bin count

Possible outcomes from rolling a fair 6-sided die

1 2 3 4 5 6

How to keep track of results

Simulation result

1 2 3 4 5 6

1 2 3 4 5 6
0

10

20

30

40

50

60

bar(1:6, counts)

Bin numbers

Data in bins

51 60 59 55 59 54counts

function counts = rollDie(rolls)

FACES= 6; % #faces on die

counts= zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die

for k = 1:rolls

% Roll the die

% Increment the appropriate bin

end

% Show histogram of outcome

bar(1:FACES, counts)

Uniform probability

Fair dice

• Equally likely to be 1 as to be 6
• or 2, or 3, or 4, or 5

rand()

• Equally likely to be in (0,½) as to
be in (½,1)
• Equally likely to be in any two

intervals of the same width (down
to ~1e-15)

• In particular, equally likely to be in
(0,1/6) as in (5/6,1)

Uniform probability
distribution in (0,1)

rand()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000
100000 random numbers using rand -- uniform probability distribution

“Normal” distribution

with zero mean and unit

standard deviation
randn()

Mapping ranges to outcomes

Option 1: If-else

• Tedious to write

• What if number of outcomes
(sides on die) changes?

Option 2: Scale and round

• Multiply so each outcome’s
range has width 1

• Round to integer

• (shift if necessary)

ceil(6*rand())
(prefer floor()+1 for languages other

than MATLAB)

0 1 2 6543

round(rand()*6)

21 3 5 60

0 1 2 6543

ceil(rand()*6)

2 61 3

4

54

function counts = rollDie(rolls)

FACES= 6; % #faces on die

counts= zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die

for k = 1:rolls

% Roll the die

face= ceil(rand()*FACES);

% Increment the appropriate bin

end

% Show histogram of outcome

bar(1:FACES, counts)

Choosing bins based on outcome

Option 1: if-else

• Tedious to write

• What if number of outcomes
(sides on die) changes?

Option 2: Direct indexing

• If indices are integers from 1 to
N, and outcomes are integers
from 1 to N, use outcome as
index

function counts = rollDie(rolls)

FACES= 6; % #faces on die

counts= zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die

for k = 1:rolls

% Roll the die

face= ceil(rand()*FACES);

% Increment the appropriate bin

counts(face)= counts(face) + 1;

end

% Show histogram of outcome

bar(1:FACES, counts)

More plotting

Figure management

• title('Title of figure')

• xlabel('Label for x-axis') % also ylabel

• figure % open a new figure window

• close all % close all figure windows

• shg % show current figure window

• hold on % plot on top of current figure contents

• hold off % subsequent plots replace figure contents (default)

• axis off % hide axes; to show (default), use on

• axis equal % x, y tics are same size

Start with drawing a single line segment

a= 0; % x-coord of pt 1

b= 1; % y-coord of pt 1

c= 5; % x-coord of pt 2

d= 3; % y-coord of pt 2

plot([a c], [b d], '-*')

x-values
(a vector)

y-values
(a vector)

Line/marker
format

Colors: r, g, b, m
Line types: -, :
Symbols: ., o, *

Default: auto-colored line

Making an x-y plot

a= [0 4 3 8]; % x-coords

b= [1 2 5 3]; % y-coords

plot(a, b, '-*')

x-values
(a vector)

y-values
(a vector)

Line/marker
format

0 2 4 6 8 10
0

1

2

3

4

5

6

Making an x-y plot with multiple graphs
(lines)

a= [0 4 5 8];

b= [1 2 5 3];

f= [0 4 6 8 10];

g= [2 2 6 4 3];

plot(a,b,'-*',f,g,'c')

legend('graph 1 name', 'graph 2 name')

xlabel('x values')

ylabel('y values')

title('My graphs', 'Fontsize',14)

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

x values

y
 v

a
lu

e
s

My graphs

graph 1 name

graph 2 name

See also showMultigraph, plotComparison2.m

Initialize vectors/matrices if dimensions are
known

…instead of “building” the array one component at a time

% Build y on the fly

x=linspace(a,b,n);

for k=1:n

y(k)=myF(x(k));

end

% Initialize y

x=linspace(a,b,n);

y=zeros(1,n);

for k=1:n

y(k)=myF(x(k));

end

Much faster for large n!

2D arrays

2-d array: matrix

• An array is a named collection of like data organized into rows and
columns

• A 2-d array is a table, called a matrix

• Two indices identify the position of a value in a matrix, e.g.,

mat(r,c)

refers to component in row r, column c of matrix mat

• Array index starts at 1

• Rectangular: all rows have the same #of columns

c

r

Creating a matrix

• Built-in functions: ones(), zeros(), rand()
• E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

• “Build” a matrix using square brackets, [], but the dimension must
match up:
• [x y] puts y to the right of x

• [x; y] puts y below x

• [4 0 3; 5 1 9] creates the matrix

• [4 0 3; ones(1,3)] gives

• [4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1

Working with a matrix:
size() and individual components

Given a matrix M,

[nr, nc]= size(M) % nr is #of rows,

% nc is #of columns

nr= size(M, 1) % # of rows

nc= size(M, 2) % # of columns

M(2,4)= 1;

disp(M(3,1))

M(1,nc)= 4;

2 0.5-1 -3

52 7.581 2

5 98.5-3 10

3 768 7

Traverse a matrix using nested loops

function printMatrix(M)

% Print the values in matrix M

printMatrix.m

Pattern for traversing a matrix ("row-major")

[nr, nc] = size(M);

for r = 1:nr

% At row r

for c = 1:nc

% At column c (in row r)

% Do something with M(r,c) ...

end

% Optional end-of-row action

end

