
For-loop comparisons (1)

Matlab
for k = 1:n

% ...
end

Python
for k in range(1, n + 1):

...

C99, C++, Java
for (int k = 1; k <= n; ++k) {

// ...
}

Fortran 77
INTEGER k
DO 10 k = 1, n

C ...
10 CONTINUE

Ada
for k in 1 .. n loop

-- ...
end loop;

For-loop comparisons (2)

Matlab
for k = 1:n

% ...
end

Scala
for (k ← 1 to n) {

// ...
}

Rust
for k in 1..=n {

// ...
}

OCaml
for k = 1 to n do

(* ... *)
done

LISP
(loop for k from 1 to n

do ; ...
)

Perl
foreach my $k (1..n) {

...
}

Announcements/Agenda

• Assignment 1 posted; due Sep
13

• (review) How to make decisions
• if/elseif/else, relational &

Boolean operators

• How to repeat until something
happens
• while

• How to see what you're doing
• plot

• How to make lists
• Vectors

Su M Tu W Th F Sa

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

fprintf()

• Format specifiers: %f, %e, %s

• Fixed point: %8.3f
• 8 columns, right-aligned

• Tenths, hundredths, &
thousandths decimal places

• Fits up to -999.999

• Floating-point: %.3e
• 4 sig-figs

• New line: \n

If your output will be read by both
people and machines, always use

%.17g

Otherwise, Chaos could ensue.

Boolean expressions: relational operators

• A boolean value is either true (1)
or false (0)

• Obtain boolean values by
comparing things

• Operators only act on two things
at once – don't try to chain them

Symbol Comparison

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

~= Not equal to

a < x < b does not do what it looks like

Logical operators “short-circuit”

a > b && c > d

true Go on

a > b && c > d

false Stop

Entire expression is false since

the first part is false

A && expression short-
circuits to false if the left
operand evaluates to false.

A || expression short-circuits
to _________________ if

Logical operators “short-circuit”

a > b || c > d

false Go on

a > b || c > d

true Stop

Entire expression is true since

the first part is true

A && expression short-
circuits to false if the left
operand evaluates to false.

A || expression short-circuits
to true if the left operand
evaluates to true.

Why short-circuit?

• Right-hand Boolean expression
may be expensive or potentially
invalid

• Much clearer than alternatives

if (x < 0.5) || (tan(x) < 1)

% ...

end

if (x ~= 0) && (y/x > 1e-8)

% ...

end

Last time: Monte Carlo estimator for π

for Ndarts trials:

generate random dart location

if dart is in circle:

count as a hit

estimate π as 4 Nhits / Ndarts

• Goal: draw blue hits, red misses

if dart is in circle:

draw blue dot

otherwise:

draw red dot

Application 1: Draw blue and red darts

• Draw red star: plot(x, y, 'r*')

• Draw blue star: plot(x, y, 'b*')

• Don't erase old points: hold on

• Preserve geometry: axis equal

Application 2: Estimate π via annulus

• New math

• New condition
L

r

(0,0)

P ≈ Nhits/Ndarts

π = P/(¼ - (r/L)2)

(x^2 + y^2 < (L/2)^2) && ...
(x^2 + y^2 > r^2)

~((x^2 + y^2 > (L/2)^2) || ...
(x^2 + y^2 < r^2))

Application 3: Stop when we're close

• A for-loop always repeats a fixed number of times
• There are ways to leave a loop early, but they're not used in this class

• Want to stop repeating when a Boolean expression changes value
• "Are we there yet?"

• Matlab can do this: while-loop

• BUT a for-loop gave us a counter for free
• Need to make our own

While-loops in place of for-loops

N= ___; L= ___; hits= 0;

for k= 1:N

% Throw kth dart

x = rand*L – L/2;

y = rand*L – L/2;

% Count if in circle

if x^2 + y^2 <= (L/2)^2

hits= hits + 1;

end

end

myPi= 4*hits/N;

N= ___; L= ___; hits= 0;

k= 1;

while k <= N

% Throw kth dart

x = rand*L – L/2;

y = rand*L – L/2;

% Count if in circle

if x^2 + y^2 <= (L/2)^2

hits= hits + 1;

end

k= k + 1;

end

myPi= 4*hits/N;

Repeating something N times

for k= 1:N

% Do something

...

end

% Initialize loop variables

k= 1;

while k <= N

% Do something

...

% Update loop variables

k= k+1;

end

Common loop patterns

Do something N times

for k= 1:N

% Do something

...

end

Do something an indefinite number of
times

% Initialize loop variables

while not stopping signal

% Do something

...

% Update loop variables

...

end

Storing dart positions

• Don't want to declare N different variables
• What if N changes? Comes from user input?

• How to change variable name in each loop iteration?

• Need a list

Arrays

The basic variable in Matlab is a matrix

• Scalar: 1×1 matrix

• 1-D array of length 4:
• 1×4 matrix (row vector) or 4×1 matrix (column vector)

• 2-D array: a matrix, naturally

Array indexing: starts at 1

x 5 0.4 .91 -4 -1 7

1 2 3 4 5 6

Let x be a vector and k be
an index. Then:

• k must be a positive integer

• 1 <= k && k <= length(x)

• To access the kth element: x(k)
• Read: y = x(k)

• Write: x(k) = y

Creating vectors

count= zeros(1,6)

a= linspace(12,24,5)

b= 7:-2:0

c= [3 7 2 1]

d= [3; 7; 2]

count 0 0 0 0 0 0

a 12 15 18 21 24

b 7 5 3 1

c 3 7 2 1

d 3

7

2

Example: cumulative sum

• Write a program fragment that calculates the cumulative sums of a
given vector v.

• The cumulative sums should be stored in a vector of the same length
as v.
1, 3, 5, 0 v

1, 4, 9, 9 cumulative sums of v

csum(1) = v(1);

csum(2) = ?

csum(k) = ?

