For-loop comparisons (1)

Matlab Fortran 77
for k = 1:n INTEGER k
B ... DO 106 k = 1, n
end C ce
for k in range(1, n + 1): Ada
... for k in 1 .. n loop
C99, C++, Java end loop;
for (int k = 1; k <= n; ++k) {
/] ...

¥

For-loop comparisons (2)

Matlab OCaml
for k = 1:n for k =1 to n do
B e (* ... *)
end done
Scala LISP
for (k ¢ 1 to n) { (loop for k from 1 to n
/] ... do ; ...
})
Rust Perl
for k in 1..=n { foreach my $k (1..n) {
/] ... # ...

¥ }

Announcements/Agenda

* Assighnment 1 posted; due Sep
13

sl Ml Tul Wl Th| Fl_sa
1 2 4

15

22

29

9 10
16 17
23 24

30

* (review) How to make decisions

« if/elseif/else, relational &
Boolean operators

* How to repeat until something

happens
LL e while
18 * How to see what you're doing
T * plot

e How to make lists
* \ectors

fprintf()

* Format specifiers: %T, %e, %S
* Fixed point: %8. 3T

* 8 columns, right-aligned

* Tenths, hundredths, &
thousandths decimal places

* Fits up t0-999.999

* Floating-point: %. 3e
* 4 sig-figs

e New line: \n

If your output will be read by both
people and machines, always use

Otherwise, Chaos could ensue.

Boolean expressions: relational operators

* A boolean value is either true (1)

or false (0) < Less than
. > Greater than
* Obtain boolean values by - Less than or equal to
comparing thlngs >= Greater than or equal to

e Operators only act on two things
at once — don't try to chain them

Equal to

4
!

Not equal to

a < X < bdoesnotdowhatitlooks like

Logical operators “short-circuit”

A && expression short-

a>b && c>d circuits to false if the left
true - operand evaluates to false.

A | | expression short-circuits

a>b && c>d »

false

Entire expression is false since
the first part is false

Logical operators “short-circuit”

Q

>b || ¢c>d

false

|

a>b || c>d

|

true

Entire expression is true since
the first part is true

A && expression short-
circuits to false if the left
operand evaluates to false.

A | | expression short-circuits
to true if the left operand
evaluates to true.

Why short-circuit?

* Right-hand Boolean expression
may be expensive or potentially
invalid

* Much clearer than alternatives

if (x < 9.5) || (tan(x) < 1)
% ...
end

if (x ~= 0) && (y/x > 1e-8)
% oo
end

Last time: Monte Carlo estimator for i

for N, trials: * Goal: draw blue hits, red misses

generate random dart location , L
if dart is in circle:

if dart is in circle:
draw blue dot

count as a hit ,
otherwise:

estimatertas 4 N,../ N, .. draw red dot

Application 1: Draw blue and red darts

* Draw red star: plot(x, y, 'r*")
* Draw blue star: plot(x, y, 'b*")
* Don't erase old points: hold on

* Preserve geometry: axis equal

Application 2: Estimate 1t via annulus

e New math
P=N hits/ N darts
n=P/(% - (r/L)?)

e New condition

(x"2 + y"2 < (L/2)"2) && ...
(X2 + y"2 > r"2)

~((X™2 + yr2 > (L/2)~2) || ...
(X"2 + y*2 < r"~2))

Application 3: Stop when we're close

* A for-loop always repeats a fixed number of times
* There are ways to leave a loop early, but they're not used in this class

* Want to stop repeating when a Boolean expression changes value

* Matlab can do this: while-loop

 BUT a for-loop gave us a counter for free
* Need to make our own

While-loops in place of for-loops

N= ; L= ; hits= 0;

for k= 1:N

X = rand*L - L/2;
y = rand*L - L/2;

if x*2 + y*2 <= (L/2)"2
hits= hits + 1;
end

end
myPi= 4*hits/N;

N= ; L= 5 hits= 0;
k= 1;
while k <= N

X = rand*L - L/2;
y = rand*L - L/2;

if x"2 + y"*2 <= (L/2)"2
hits= hits + 1;
end
k= k + 1;
end
myPi= 4*hits/N;

Repeating something N times

for k= 1:N
% Do something

end

% Initialize loop variables
k= 1;
while k <= N

% Do something

% Update loop variables
k= k+1;
end

Common loop patterns

Do something an indefinite number of
Do something N times times

for k= 1:N % Initialize loop variables
% Do something

while not stopping signal

end % Do something

% Update loop variables

end

Storing dart positions

* Don't want to declare N different variables
* What if N changes? Comes from user input?
* How to change variable name in each loop iteration?

e Need a list

Arrays

The basic variable in Matlab is a matrix
e Scalar: 1x1 matrix
* 1-D array of length 4:

e 1x4 matrix (row vector) or 4x1 matrix (column vector)

e 2-D array: a matrix, naturally

Array indexing: starts at 1

g 5 o4l 47
1 2 3 4 5 6

Let X be a vector and k be
an index. Then:

* Kk must be a positive integer
1l <= k & & k <= length(x)

* To access the kth element: x (k)
* Read:y = x(k)
e Write: x(k) =y

Creating vectors

count ICHIIC ICHICH CHICN

count= zeros(1,6)

a= linspace(12,24,5) O 12 | 15 | 18 | 21 | 24 |
b= 7:-2:0 M 7|53 |1
c=[37 21’ < EIEEENES
d= [3; 7; 2] « IEN

' '

Example: cumulative sum

e Write a program fragment that calculates the cumulative sums of a
given vector v.

* The cumulative sums should be stored in a vector of the same length
as V.
VvV
cumulative sums of v

|
<
N\
=
N’
o

csum(1)

Il
v

csum(2)

Il
v

csum(k)

