
◼ Today’s topics

◼ User-defined function

◼ for-loop

◼ Conditionals

◼ Announcement/Reminder:

◼ Be sure to read from textbook and do the exercises

(or use another reference book of your choice)

◼ Assignment 1 will be released before next class

◼ Lab Wednesday (Upson 225)

◼ Ed Discussion forum

Last time: scripts

◼ Execute multiple commands as a

batch

◼ Name of script is name of file (w/o

“.m” extension)

◼ File must be in current folder so

MATLAB can find code when it

sees its name

◼ To run, type its name as a

command

◼ Scripts can run other scripts

◼ Alternatives: “Run” button, F5 key

Key features of scripts

◼ Bundle complicated logic

conveniently under one name

◼ Modularity

◼ Inputs and outputs interact with

humans

◼ input(), disp(), fprintf()

◼ Variables live in common

workspace

◼ Danger!

Alternative:

◼ Inputs and outputs interact with

other code

◼ Interaction with humans considered a

“side effect”

◼ Behavior not affected by other

computations/commands

Functions

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)

% 1-line comment to describe the function

% Additional description of function

Executable code that at some point assigns

values to output parameters out1, out2, …

◼ in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).

◼ out1, out2, … are not defined until the executable code in the
function assigns values to them.

function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to

% Cartesian coordinates (x,y).

% theta is in degrees.

rads= theta*pi/180; % radian

x= r*cos(rads);

y= r*sin(rads);

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)

% Convert polar coordinates (r, theta) to

% Cartesian coordinates (x,y). Theta in degrees.

…

% Convert polar (r1,t1) to Cartesian (x1,y1)

r1= 1; t1= 30;

[x1, y1]= polar2xy(r1, t1);

plot(x1, y1, ‘b*’)

…

You have this function:

Code to call the above function:

DEMO

Convert SphereArea from script to function

Variable scope

◼ Scripts place variables on the workspace, but variables in functions

have “local scope”

◼ A new, private workspace every time function is called

◼ Analogy: stack of scratch paper

◼ Evaluate arguments, copy to parameters on next page

◼ Do all work on new page (can’t flip back)

◼ Copy values of output variables to previous page

Printing a value is not the same as returning a value

% Given f and n

d= convertLength(f,n);

d= convertLength(f*12+n);

d= convertLength(f+n/12);

x= min(convertLength(f,n), 1);

y= convertLength(pi*(f+n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft,in)

% Convert length from feet (ft) and inches (in)

% to meters (m).

. . .

Given this function:

How many proper calls to convertLength are shown below?

E: 5 or 0

Comments in functions

◼ Block of comments after the function header is
printed whenever a user types

help <functionName>

at the Command Window

◼ 1st line of this comment block is searched whenever a
user types

lookfor <someWord>

at the Command Window

◼ Every function should have a comment block after the
function header that says what the function does
concisely

Accessing a function

◼ A function is accessible if it is in the current directory or if it is on

the search path

◼ Easy: put all related m-files in the same directory

◼ Better: the path function gives greater flexibility

◼ Precedence order:

◼ Variables in workspace (if script)

◼ Functions in current directory

◼ Search path, left-to-right

Monte Carlo methods
1. Derive a relationship between

some desired quantity and a
probability

2. Use simulation to estimate the
probability
◦ Computer-generated random

numbers

3. Approximate desired quantity
based on prob. estimate

Monte Carlo Approximation of 

Throw N darts

L
L/2

Sq. area = L  L

Circle area = L2/4

Prob. landing in circle
= (circle area)/(sq. area)
= /4

 Nin/N

Monte Carlo Approximation of 

L
L/2

Throw N darts

  4 Nin / N

Monte Carlo Approximation of π

For each of N trials

Throw a dart

If it lands in circle

add 1 to total # of hits

Pi is 4*hits/N

Repetition
FOR-LOOP

Syntax of the for loop
for <var>= <start value>:<incr>:<end bound>

statements to be executed repeatedly

end

Loop header specifies all the values that the index variable will take
on, one for each pass of the loop.

E.g, k= 3:1:7 means k will take on the values 3, 4, 5, 6, 7, one at a
time.

Loop body

for loop examples

for k = 2:0.5:3 k takes on the values 2, 2.5, 3

disp(k) Non-integer increment is OK

end

for k = 1:4 k takes on the values 1, 2, 3, 4

disp(k) Default increment is 1

end

for k = 0:-2:-6 k takes on the values 0, -2, -4, -6

disp(k) “Increment” may be negative

end

for k = 0:-2:-7 k takes on the values 0, -2, -4, -6

disp(k) Colon expression specifies bounds

end

for k = 5:2:1 The set of values for k is the empty

disp(k) set: the loop body won’t execute

end

Monte Carlo Approximation of π

For each of N trials

Throw a dart

If it lands in circle

add 1 to total # of hits

Pi is 4*hits/N

Monte Carlo Approximation of π with N darts on L-by-L board
N=__;

for k = 1:N

end

myPi= 4*hits/N;

Monte Carlo Approximation of π with N darts on L-by-L board
N=__;

for k = 1:N

% Throw kth dart

% Count it if it is in the circle

end

myPi= 4*hits/N;

(0,0)

Generating random dart coordinates
▪Want: Sample from uniform distribution between –L/2 and L/2

▪ Have: Sample from uniform distribution between 0 and 1

▪ Transform “have” to “want” by scaling and shifting

Monte Carlo Approximation of π with N darts on L-by-L board
N=__; L=__;

for k = 1:N

% Throw kth dart

x= rand()*L - L/2;

y= rand()*L - L/2;

% Count it if it is in the circle

end

myPi= 4*hits/N;

(0,0)

Decision-making
IF -STATEMENT

The if construct
if boolean expression1

statements to execute if expression1 is true

elseif boolean expression2

statements to execute if expression1 is false

but expression2 is true

:

else

statements to execute if all previous conditions

are false

end

Boolean expressions

RELATIONAL OPERATORS

▪ < Less than

▪ > Greater than

▪ <= Less than or equal to

▪ >= Greater than or equal to

▪ == Equal to

▪ ~= Not equal to

LOGICAL OPERATORS

▪&& Logical AND (are both
true?)

▪ || Logical OR (is at least one
true?)

▪ ~ Logical NOT (negation)

Logical operator examples
&& logical and: Are both conditions true?

E.g., we ask “is Lxc and xc  R ?”

In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?

E.g., we can ask if xc is outside of [L,R],

i.e., “is xc < L or R < xc ?”

In code: xc<L || R<xc

~ logical not: Negation

E.g., we can ask if xc is not outside [L,R].

In code: ~(xc<L || R<xc)

Monte Carlo Approximation of π

For each of N trials

Throw a dart

If it lands in circle

add 1 to total # of hits

Pi is 4*hits/N

Monte Carlo Approximation of π with N darts on L-by-L board
N=__; L=__; hits= 0;

for k = 1:N

% Throw kth dart

x= rand()*L - L/2;

y= rand()*L - L/2;

% Count it if it is in the circle

if sqrt(x^2 + y^2) <= L/2

hits= hits + 1;

end

end

myPi= 4*hits/N;

(0,0)

