
Page 1 of 3 
 

CS 1132 lecture 1 
I. Motivation 

a. Quickly get up-to-speed with Matlab programming environment 

i. Already know another language 

ii. Grad student who needs to learn technical computing before doing research 

b. Example of utility: visually check work 

i. Demo: 4-bar linkage 

II. Instructor 

a. Physicist 

b. LIGO (simulation, visualization) 

c. SpaceX (engineers design autonomous systems) 

III. Topics, goals 

a. Translate a problem’s solution into an algorithm 

i. Algorithm: unambiguous, step-by-step procedure for doing something 

b. Implement algorithms in Matlab syntax 

c. Visualize data and simulations 

d. Poll: students’ goals 

e. Topics 

i. Matlab environment, built-in functions 

ii. Arrays (vector, matrix) 

iii. Vectorized computation 

iv. Control flow (if/else, loops) 

v. User-defined functions 

vi. Strings and cell arrays 

vii. Graphics 

viii. Input/output (files) 

f. Programming fundamentals (requires practice) 

i. Top-down design 

ii. Modular development (to reduce redundancy) 

iii. Useful documentation 

1. Distinguish “what” from “how” 

iv. Thorough testing 

1. How can you be confident in your results when no one can give you the 

“right answer”? 

IV. Syllabus 

a. Learning components 

i. Read textbook, watch videos, complete activities 

ii. Attend lectures (7 wks), take notes, participate 

iii. Attend lab, complete lab exercises 

iv. Complete programming assignments 

v. Ask questions in office and consulting hours, or on discussion board 

b. Assessment 

i. Feedback loop to improve learning 



Page 2 of 3 
 

c. Assignments 

i. Resubmission allowed after feedback returned 

ii. Late submissions (within 24hr) penalized 

d. Test 

i. May replace with a second test 

e. “S” requires mastery of material (course score above 85%) 

f. Alternatives 

i. CS 1112: more beginner-friendly at start 

g. Academic integrity 

i. End product isn’t valuable; experience producing it is 

V. Demo 

a. Course website 

b. Matlab interface 

i. Command window 

ii. Workspace window 

iii. Files window 

c. Built-in functions 

d. Variables 

e. Example script 

VI. Script input, output 

a. Most computation follows pattern: gather inputs, perform calculations, produce 

outputs 

b. input() function 

c. Prompt in single quotes 

d. Assign result to variable 

e. disp() function 

VII. Example: change in sphere area 

radius= input('Enter radius [mi]: '); 

 

 

area= 4*pi*r^2; 

 

 

 

disp('Surface area [mi^2]: ') 

disp(area) 

 

 



Page 3 of 3 
 

VIII. Program development tips 

a. Know what is given (inputs, assumptions) 

b. Be goal-oriented 

i. Write final output statements 

ii. Work backwards 

c. If you don’t have a value you need, make up a name for it 

i. Work backwards to compute its value 

ii. Helps break down steps 


