CS 1132 lecture 1

- Motivation
 - a. Quickly get up-to-speed with Matlab programming environment
 - i. Already know another language
 - ii. Grad student who needs to learn technical computing before doing research
 - b. Example of utility: visually check work
 - i. Demo: 4-bar linkage
- II. Instructor
 - a. Physicist
 - b. LIGO (simulation, visualization)
 - c. SpaceX (engineers design autonomous systems)
- III. Topics, goals
 - a. Translate a problem's solution into an algorithm
 - i. Algorithm: unambiguous, step-by-step procedure for doing something
 - b. Implement algorithms in Matlab syntax
 - c. Visualize data and simulations
 - d. Poll: students' goals
 - e. Topics
 - i. Matlab environment, built-in functions
 - ii. Arrays (vector, matrix)
 - iii. Vectorized computation
 - iv. Control flow (if/else, loops)
 - v. User-defined functions
 - vi. Strings and cell arrays
 - vii. Graphics
 - viii. Input/output (files)
 - f. Programming fundamentals (requires practice)
 - i. Top-down design
 - ii. Modular development (to reduce redundancy)
 - iii. Useful documentation
 - 1. Distinguish "what" from "how"
 - iv. Thorough testing
 - 1. How can you be confident in your results when no one can give you the "right answer"?
- IV. Syllabus
 - a. Learning components
 - i. Read textbook, watch videos, complete activities
 - ii. Attend lectures (7 wks), take notes, participate
 - iii. Attend lab, complete lab exercises
 - iv. Complete programming assignments
 - v. Ask questions in office and consulting hours, or on discussion board
 - b. Assessment
 - i. Feedback loop to improve learning

- c. Assignments
 - i. Resubmission allowed after feedback returned
 - ii. Late submissions (within 24hr) penalized
- d. Test
 - i. May replace with a second test
- e. "S" requires mastery of material (course score above 85%)
- f. Alternatives
 - i. CS 1112: more beginner-friendly at start
- g. Academic integrity
 - i. End product isn't valuable; experience producing it is
- V. Demo
 - a. Course website
 - b. Matlab interface
 - i. Command window
 - ii. Workspace window
 - iii. Files window
 - c. Built-in functions
 - d. Variables
 - e. Example script
- VI. Script input, output
 - a. Most computation follows pattern: gather inputs, perform calculations, produce outputs
 - b. input() function
 - c. Prompt in single quotes
 - d. Assign result to variable
 - e. disp() function
- VII. Example: change in sphere area

```
radius= input('Enter radius [mi]: ');

area= 4*pi*r^2;

disp('Surface area [mi^2]: ')
disp(area)
```

VIII. Program development tips

- a. Know what is given (inputs, assumptions)
- b. Be goal-oriented
 - i. Write final output statements
 - ii. Work backwards
- c. If you don't have a value you need, make up a name for it
 - i. Work backwards to compute its value
 - ii. Helps break down steps