- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Robotics Ph. D. prgram
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Recharging Bandits: Learning to Schedule Recurring Interventions
ABSTRACT: Traditional multi-armed bandit models posit that the payoff distribution of each action (or "arm") is stationary over time, and hence that the goal of learning is to identify the arm with the highest expected payoff and choose that one forever after. However, in many applications the efficacy of an action depends on the amount of time that has elapsed since it was last performed. Examples arise in precision agriculture, online education, and music recommendations. In this talk we introduce a generalization of the multi-armed bandit problem that models such applications. In the course of analyzing algorithms for this problem, we will encounter some interesting combinatorial questions about coloring the integers subject to bounds on the sizes of subintervals that exclude a given color.
This talk is based on joint work with Nicole Immorlica.