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Abstract

Langevin diffusion is a commonly used tool for sampling from a given distribution. In this
work, we establish that when the target density p∗ is such that logp∗ is L smooth and m
strongly convex, discrete Langevin diffusion produces a distribution p with KL (p‖p∗) ≤ ε
in Õ(dε ) steps, where d is the dimension of the sample space. We also study the convergence
rate when the strong-convexity assumption is absent. By considering the Langevin diffusion
as a gradient flow in the space of probability distributions, we obtain an elegant analysis that
applies to the stronger property of convergence in KL-divergence and gives a conceptually
simpler proof of the best-known convergence results in weaker metrics.

1. Introduction

Suppose that we would like to sample from a density

p∗(x) = e−U(x)+C

where C is the normalizing constant. We know U(x), but we do not know the normalizing
constant. This comes up, for example, in variational inference, when the normalization
constant is computationally intractable.

One way to sample from p∗ is to consider the Langevin diffusion:

x̄0 ∼ p̄0

dx̄t = −∇U(x̄t)dt+
√

2dBt (1)

Where p̄0 is some initial distribution and Bt is Brownian motion (see Section 4). The
stationary distribution of the above SDE is p∗.

The Langevin MCMC algorithm, given in two equivalent forms in (3) and (4), is an algorithm
based on discretizing (1).

Previous works have shown the convergence of (4) in both total variation distance ([3], [4])
and 2-Wasserstein distance ([5]). The approach in these papers relies on first showing the
convergence of (1), and then bounding the discretization error between (4) and (2).

In this paper, our main goal is to establish the convergence of pt in (4) in KL (pt‖p∗). KL-
divergence is perhaps the most natural notion of distance between probability distributions
in this context, because of its close relationship to maximum likelihood estimation, its
interpretation as information gain in Bayesian statistics, and its central role in information
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theory. Convergence in KL-divergence implies convergence in total variation and 2-Wasserstein
distance, thus we are able to obtain convergence rates in total variation and 2-Wasserstein
that are comparable to the results shown in ([3], [4], [5]).

2. Related Work

The first non-asymptotic analysis of the discrete Langevin diffusion (4) was due to Dalalyan
in [3]. This was soon followed by the work by Durmus and Moulines in [4], which improved
upon the results in [3]. Subsequently, Durmus and Moulines also established convergence of
(4) for the 2-Wasserstein distance in [5]. We remark that the proofs of Lemma 7, 11 and 13
are essentially taken from [5].

In a slightly different direction from the goals of this paper, Bubeck et al [6] and Durmus et
al [9] studied variants of (4) which work when − logp∗ is not smooth. This is important, for
example, when we want to sample from the uniform distribution over some convex set, so
− logp∗ is the indicator function.

Very recently, Dalalyan et al [13] proved the convergence of Langevin Monte Carlo when only
stochastic gradients are available.

Our work also borrows heavily from the theory established in the book of Ambrosio, Gigli
and Savare [1], which studies the underlying probability distribution p̄t induced by (1) as
a gradient flow in probability space. This allows us to view (4) as a deterministic convex
optimization procedure over the probability space, with KL-divergence as the objective. This
beautiful line of work relating SDEs with gradient flows in probability space was begun by
Jordan, Kinderlehrer and Otto [2]. We refer any interested reader to an excellent survey by
Santambrogio in [10].

Finally, we remark that the theory in [1] has some very interesting connections with the
study of normalization flows in [7] and [8]. For example, the tangent velocity of (2), given by
vt = ∇ logp∗ −∇ logpt, can be thought of as a deterministic transformation that induces a
normalizing flow.

3. Our Contribution

In this section, we compare the results we obtain with those in [3], [4] and [5].

Our main contribution is establishing the first nonasymptotic convergence Kullback-Leibler
divergence for (4) when U(x) is m strongly convex and L smooth. (see Theorem 1). As
a consequence, we also unify the proof of convergence in total variation and W2 as simple
corollaries to the convergence in KL.

The following table compares the number of iterations of (3) required to achieve ε error in
each of the three quantities according to the analysis of various papers.
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Table 1: Comparison of iteration complexity
TV W2 KL

[3], [4] Õ( d
ε2

) - -
[5] Õ( d

ε2
) Õ( d

ε2
) -

this
paper

Õ( d
ε2

) Õ( d
ε2

) Õ(dε )

In Section 7, we also state a convergence result for when U is not strongly convex. The
corollary for convergence in total variation has a better dependence on the dimension than
the corresponding result in [3], but a worse dependence on ε.

4. Definitions

We denote by P(Rd) the space of all probability distributions over Rd. In the rest of this
paper, only distributions with densities wrt the Lebesgue measure will appear (see Lemma
16), both in the algorithm and in the analysis. With abuse of notation, we use the same
symbol (e.g. p) to denote both the probability distribution and its density wrt the Lebesgue
measure.

We let Bt be the d-dimensional Brownian motion.

Let p∗ be the target distribution such that U(x) = − logp∗(x)+C has L Lipschitz continuous
gradients and m strong convexity, i.e. for all x:

mI � ∇2U(x) � LI

For a given initial distribution p̄0, the Exact Langevin Diffusion is given by the following
stochastic differential equation (recall U(x)− logp∗(x)):

x̄0 ∼ p̄0

dx̄t = −∇U(x̄t)dt+
√

2dBt (2)

(This is identical to (1), restated here for ease of reference.) For a given initial distribution
p0, and for a given stepsize h, the Langevin MCMC Algorithm is given by the following:

u0 ∼ p0

ui+1 = ui − h · ∇U(ui) +
√

2hξi (3)

Where ξi iid∼ N(0, 1).

For a given initial distribution p0 and stepsize h, the Discretized Langevin Diffusion is
given by the following SDE:

x0 ∼ p0 (4)

dxt = −∇U(xτ(t))dt+
√

2dBt

Let pt denote the distribution of xt
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Where τ(t) , b thc · h (note that τ(t) is parametrized by h). It is easily verified that for any i,
xih from (4) is equivalent to ui in (3). Note that the difference between (2) and (4) is in the
drift term: one is ∇U(x̄t), the other is ∇U(xτ(t))

For the rest of this paper, we will use pt to exclusively denote the distribution of xt in (4).

We assume without loss of generality that

arg min
x
U(x) = 0

, and that
U(0) = 0

. (We can always shift the space to achieve this, and the minimizer of U is easy to find using,
say, gradient descent.)

For the rest of this paper, we will let

F (µ) =


∫
µ(x) log

(
µ(x)
p∗(x)

)
dx, if µ has density wrt

Lebesgue measure
∞ else

be the KL-divergence between µ and p∗. It is well known that F is minimized by p∗, and
F (p∗) = 0.

Finally, given a vector field v : Rd → Rd and a distribution µ ∈ P(Rd), we define the
L2(µ)-norm of v as

‖v‖L2(µ) ,
√

Eµ[‖v(x)‖22]

4.1 Background on Wasserstein distance and curves in P(Rd)

Given two distributions µ,ν ∈P(Rd), let Γ(µ,ν) be the set of all joint distributions over
the product space Rd × Rd whose marginals equal µ and ν respectively. (Γ is the set of all
couplings)

The Wasserstein distance is defined as

W2(µ,ν) =

√
inf

γ∈Γ(µ,ν)

∫
(‖x− y‖22)dγ(x, y)

Let (X1,B(X1)) and (X2,B(X2)) be two measurable spaces, µ be a measure, and r : X1 →
X2 be a measurable map. The push-forward measure of µ through r is defined as

r#µ(B) = µ(r−1(B)) ∀B ∈ B(X2)

Intuitively, for any f , Er#µ[f(x)] = Eµ[f(r(x))].
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It is a well known result that for any two distributions µ and ν which have density wrt
the Lebesgue measure, the optimal coupling is induced by a map Topt : Rd → Rd, i.e.
W 2

2 (µ,ν) =
∫

(‖x− y‖22)dγ∗(x, y) for

γ∗ = (Id, Topt)#µ

Where Id is the identity map, and Topt satisfies Topt#µ = ν, so by definition, γ∗ ∈ Γ(µ,ν).
We call Topt the optimal transport map, and Topt−Id the optimal displacement map.

Given two points ν and π in P(Rd), a curve µt : [0, 1] → P(Rd) is a constant-speed-
geodesic between ν and π if µ0 = ν, µ1 = π and W2(µs,µt) = (t − s)W2(ν,π) for
all 0 ≤ s ≤ t ≤ 1. If vπν is the optimal displacement map between ν and π, then the
constant-speed-geodesic µt is nicely characterized by

µt = (Id+ tvπν )#ν (5)

Given a curve µt : R+ →P(Rd), we define its metric derivative as

|µ′t| , lim sup
s→t

W2(µs,µt)

|s− t|
(6)

. Intuitively, this is the speed of the curve in 2-Wasserstein distance. We say that a curve µt
is absolutely continuous if

∫ b
a |µ

′
t|2 <∞ for all a, b ∈ R.

Given a curve µt : R+ →P(Rd) and a sequence of velocity fields vt : R+ → (Rd → Rd), we
say that µt and vt satisfy the continuity equation at t if

d

dt
µt(x) +∇ · (µt(x) · vt(x)) = 0 (7)

(We assume that µt has density wrt Lebesgue measure for all t)

Remark 1 If µt is a constant-speed-geodesic between ν and π, then vπν satisfies (7) at t = 0,
by the characterization in (5).

We say that vt is tangent to µt at t if the continuity equation holds and ‖vt + w‖L2(µt)
≤

‖vt‖L2(µt)
for all w such that ∇ · (µt · w) = 0. Intuitively, vt is tangent to µt if it minimizes

‖vt‖L2(µt)
among all velocity fields v that satisfy the continuity equation.

5. Preliminary Lemmas

This section presents some basic results needed for our main theorem.

5.1 Calculus over P(Rd)

In this section, we present some crucial Lemmas which allow us to study the evolution of
F (µt) along a curve µt : R+ → P(Rd). These results are all immediate consequences of
results proven in [1].
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Lemma 1 For any µ ∈P(Rd), let δF
δµ (µ) : Rd → R be the first variation of F at µ defined

as
(
δF
δµ (µ)

)
(x) , log

(
µ(x)
p∗(x)

)
+ 1. Let the subdifferential of F at µ be given by

wµ , ∇
(
δF

δµ
(µ)

)
: Rd → Rd

. For any curve µt : R+ →P(Rd), and for any vt that satisfies the continuity equation for
µt (see equation (7)), the following holds:

d

dt
F (µt) = Eµt

[
〈wµt(x), vt(x)〉

]
Based on Lemma 1, we define (for any µ ∈P(Rd)) the operator

Dµ(v) , Eµ [〈wµ(x), v(x)〉] : (Rd → Rd)→ R (8)

Dµ(v) is linear in v.

Lemma 2 Let µt be an absolutely continuous curve in P(Rd) with tangent velocity field vt.
Let |µ′t| be the metric derivative of µt.

Then
‖vt‖L2(µt)

= |µ′t|

Lemma 3 For any µ ∈P(Rd), let ‖Dµ‖∗ , sup‖v‖L2(µ)≤1Dµ(v), then

‖Dµ‖∗ =

√∫ ∥∥∥∥∇(δFδµ (µ)

)
(x)

∥∥∥∥2

2

µ(x)dx

Furthermore, for any absolutely continuous curve µt : R+ →P(Rd) with tangent velocity vt,
we have ∣∣∣∣ ddtF (µt)

∣∣∣∣ ≤ ‖Dµt‖∗‖vt‖L2(µt)

As a Corollary of Lemma 2 and Lemma 3, we have the following result:

Corollary 4 Let µt be an absolutely continuous curve with tangent velocity field vt. Then

d

dt
F (µt) ≤ ‖Dµt‖∗ · |µ

′
t|

5.2 Exact and Discrete Gradient Flow for F (p)

In this section, we will study the curve pt : R+ →P(Rd) defined in (4). Unless otherwise
specified, we will assume that p0 is an arbitrary distribution.

Let xt be as defined in (4).
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For any given t and for all s, we define a stochastic process yts as

yts = xs for s ≤ t
dyts = −∇U(yts)ds+

√
2dBs for s ≥ t (9)

let qts denote the distribution for yts

From s = t onwards, this is the exact Langevin diffusion with pt as the initial distribution
(compare with expression (2)).

Finally, for each t, we define a sequence zts by

zts = xs for s ≤ t
dzts = (−∇U(ztτ(t)) +∇U(zts))ds, for s ≥ t (10)

let gts denote the distribution for zts

zts represents the discretization error of ps through the divergence between qts and ps (formally
stated in Lemma 5). Note that ztτ(t) = xtτ(t) because τ(t) ≤ t.

Remark 2 The the Bs in (4) and (9) are the same. Thus, xs (from (4)), yts (from (9)) and
zts (from (10)) define a coupling between the the curves ps, qts and gts.

Our proof strategy is as follows:

1. In Lemma 5, we demonstrate that the divergence between ps (discretized Langevin)
and qts (exact Langevin) can be represented as a curve gts.

2. In Lemma 6, we demonstrate that the "decrease in F (pt) due to exact Langevin" given
by d

dsF (qts)
∣∣
s=t

is sufficiently negative.

3. In Lemma 7, we show that the "discretization error" given by d
ds(F (ps)− F (qts))

∣∣
s=t

is small.

4. Added together, they imply that d
dsF (ps)

∣∣
s=t

is sufficiently negative.

Lemma 5 For all x ∈ Rd and t ∈ R+

d

ds
gts(x)

∣∣∣∣
s=t

= (
d

ds
ps(x)− d

ds
qts(x))

∣∣∣∣
s=t

Lemma 6 For all s, t ∈ R+

d

ds
F (qts) = −‖Dqts

‖2∗

Lemma 7 For all t ∈ R+

d

ds

(
F (ps)− F (qts)

)∣∣∣∣
s=t

≤
(

2L2h
√
Epτ(t)

[
‖x‖22

]
+ 2L

√
hd
)
· ‖Dpt‖∗

6. Strong Convexity Result

In this section, we study the consequence of assuming m strong convexity and L smoothness
of U(x).
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6.1 Theorem statement and discussion

Theorem 1 Let xt and pt be as defined in (4) with p0 = N(0, 1
m).

If

h =
mε

16dL2

and

k = 16
L2

m2

d log dL
mε

ε

Then KL (pkh‖p∗) ≤ ε

The above theorem immediately allows us to obtain the convergence rate of pkh in both total
variation and 2-Wasserstein distance.

Corollary 8 Using the choice of k and h in Theorem 1, we get

1. dTV (pkh,p
∗) ≤

√
ε

2. W2(pkh,p
∗) ≤

√
2ε
m

The first item follows from Pinsker’s inequality. The second item follows from (12), where
we take µ0 to be p∗ and µ1 to be pkh, and noting that Dp∗ = 0. To achieve δ accuracy in
Total Variation or W2, we apply Theorem 1 with ε = δ2 and ε = mδ2 respectively.

Remark 3 The log term in Theorem 1 is not crucial. One can run (3) a few times, each
time aiming to only halve the objective F (pt)− F (p∗) (thus the stepsize starts out large and
is also halved each subsequent run). The proof is quite simple and will be omitted.

6.2 Proof of Theorem 1

We now state the Lemmas needed to prove Theorem 1. We first establish a notion of strong
convexity of F (µ) with respect to W2 metric.

Lemma 9 If logp∗(x) is m strongly convex, then

F (µt) ≤ (1− t)F (µ0) + tF (µ1)− m

2
t(1− t)W 2

2 (µ0,µ1) (11)

for all µ0,µ1 ∈P(Rd) and t ∈ [0, 1], let µt : [0, 1]→P(Rd) be the constant-speed geodesic
between µ0 and µ1. (recall from (5) that If vµ1

µ0
is the optimal displacement map from µ0 to

µ1, then µt = (Id+ t · vµ1
µ0

)#µ0.)

Equivalently,

F (µ1) ≥ F (µ0) +Dµ0
(v

µ1
µ0

) +
m

2
W 2

2 (µ0,µ1) (12)

We call this the m-strong-geodesic-convexity of F wrt the W2 distance.
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The above Lemma is essentially implied by well known results on strong-geodesic-convexity,
see for example [1].

Next, we use them strong geodesic convexity of F to upper bound F (µ)−F (p∗) by 1
2m‖Dµ‖2∗

(for any µ ∈P(Rd)). This is analogous to how f(x)− f(x∗) ≤ 1
2m‖∇f(x)‖22 for standard

m-strongly-convex functions in Rd.

Lemma 10 Under our assumption that − logp∗(x) is m strongly convex, we have that for
all µ ∈P(Rd),

F (µ)− F (p∗) ≤ 1

2m
‖Dµ‖2∗

Now, recall pt from (4). We use strong convexity to obtain a bound on Ept

[
‖x‖22

]
for all t.

This will be important for bounding the discretization error in conjunction with Lemma 7

Lemma 11 Let pt be as defined in (4). If p0 is such that Ep0

[
‖x‖22

]
≤ 4d

m , and h ≤ 1
L in

the definition of (4), then for all t ∈ R+,

Ept‖x‖2 ≤
4d

m

Finally, we put everything together to prove Theorem 1.

Proof of Theorem 1

We first note that h = mε
16L2 ≤ 1

L .

By Lemma 11, for all t, Ept

[
‖x‖22

]
≤ 4d

m . Combined with Lemma 7, we get that for all
t ∈ R+

d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤

(
4L2h

√
d

m
+ 2L

√
hd

)
· ‖Dpt‖∗

Suppose that F (pt)− F (p∗) ≥ ε, and let

h =
mε

16dL2
≤ 1

16
min

{
m

L2

√
ε

d
,
mε

L2d

}
then ∀t

d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤

(
4L2h

√
d

m
+ 2L

√
hd

)
≤1

2

√
mε‖Dpt‖∗ ≤

1

2
‖Dpt‖2∗

Where the last inequality is because Lemma 10 and the assumption that F (pt)− F (p∗) ≥ ε
together imply that ‖Dpt‖∗ ≥

√
2mε.
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So combining Lemma 6 and Lemma 5, we have

d

dt
F (pt) =

d

ds
F (qts)

∣∣∣∣
s=t

+
d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤ −‖Dpt‖2∗ +
1

2
‖Dpt‖2∗

= −1

2
‖Dpt‖2∗

≤ −m(F (pt)− F (p∗)) (13)

Where the last line once again follows from Lemma 10.

To handle the case when F (pt)− F (p∗) ≤ ε, we use the following argument:

1. We can conclude that F (pt)− F (p∗) ≥ ε implies d
dtF (pt) ≤ 0.

2. By the results of Lemma 16 and Lemma 17, for all t, |p′t| is finite and ‖Dpt‖ is finite,
so d

dtF (pt) is finite and F (pt) is continuous in t.

3. Thus, if F (pt) ≤ ε for some t ≤ kh, then F (ps) ≤ ε for all s ≥ t as F (pt) ≥ ε implies
d
dtF (pt) ≤ 0 and F (pt) is continuous in t. Thus F (pkh)− F (p∗) ≤ ε.

Thus, we need only consider the case that F (pt) ≥ ε for all t ≤ kh. This means that (13)
holds for all t ≤ kh.

By Gronwall’s inequality, we get

F (pkh)− F (p∗) ≤ (F (p0)− F (p∗)) exp(−mkh)

We thus need to pick

k =
1
m log F (p0)−F (p∗)

ε

h
= 16

L2

m2

d log F (p0)−F (p∗)
ε

ε

Using the fact that p0 = N(0, 1
m). Using L-smoothness and m-strong convexity, we can show

that
− logp∗(x) ≤ L

2
‖x‖22 +

d

2
log(

2π

m
)

, and

logp0(x) = −m
2
‖x‖22 −

d

2
log(

2π

m
)

. We thus get that F (p0)− F (p∗) = KL (p0‖p∗) ≤ dL
m , so

k = 16
L2

m2

d log dL
mε

ε
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7. Weak convexity result

In this section, we study the case when logp∗ is not m strongly convex (but still convex and
L smooth). Let πh be the stationary distribution of (4) with stepsize h.

We will assume that we can choose an initial distribution p0 which satisfies

W2(p0,p
∗) = C1 (14)

and √
Ep∗‖x‖22 = C2 (15)

. Let h′ be the largest stepsize such that

W2(πh, p
∗) ≤ C1 ,∀h ≤ h′ (16)

7.1 Theorem statement and discussion

Theorem 2 Let C1, C2 and h′ be defined as in the beginning of this section.

Let xt and pt be as defined in (4) with p0 satisfying (14). If

h =
1

48
min

{
ε

C1(C1 + C2)L2
,

ε2

C2
1dL

2
, h′
}

=
1

48
min

{
ε

C1C2L2
,

ε2

C2
1dL

2
, h′
}

and

k =
2C2

1

εh
+

2C2
1 log(F (r0)− F (p∗))

h

Then KL (pkh‖p∗) ≤ ε

Once again, applying Pinsker’s inequality, we get that the above choice of k and t yields
dTV (rk,p∗) ≤

√
ε. Without strong convexity, we cannot get a bound on W2 from bounding

F (rk)− F (p∗) like we did in corollary 8.

In [3], a proof in the non-strongly-convex case was obtained by running Langevin MCMC on

p̃∗ ∝ p∗ · exp(−δ
d
‖x‖22)

log p̃∗ is thus strongly convex with m = δ
d , and dTV (p∗, p̃∗) ≤ δ. By the results of [3], or [4],

or Theorem 1, we need

k = Õ(
d3

δ4
) (17)

iterations to get dTV (pkh,p
∗) ≤ δ.
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On the other hand, if we assume log(F (p0)− F (p∗)) ≤ 1
ε and h′ ≥ 1

10 min
{

ε
C1C2L2 ,

ε2

C2
1dL

2

}
the results of Theorem 2 implies that

h =
ε

L2C1
min

{
1

C2
,
ε

dC1

}
To get dTV (pkh,p

∗) ≤ δ, we need

k =
L2C3

1

δ4
max

{
C2,

dC1

δ2

}
Even if we ignore C1 and C2, our result is not strictly better than (17) as we have a worse
dependence on δ. However, we do have a better dependence on d.

The proof of Theorem 2 is quite similar to that of Theorem 1, so we defer it to the appendix.
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8. Supplementary Materials

Proof of Lemma 1 The proof is directly from results in [1]. See Theorem 10.4.9, with
F(µ|γ) = KL (µ‖γ), with µ = µ, γ = p∗, σ = µ

p∗ , F (ρ) = ρ log ρ, LF (σ) = σ, and

wµ = ∇LF (σ)
σ = ∇ log µ

p∗ . The expression for d
dtF (pt) comes from expression 10.1.16 (section

E of chapter 10.1.2, page 233). See also expressions 10.4.67 and 10.4.68.

(One can also refer to Theorem 10.4.13 and Theorem 10.4.17 for proofs of wµ for the KL-
divergence functional in more general settings.) By Lemma 16, wpt is well defined for all t.

Proof of Lemma 2 Theorem 8.3.1 of [1].

Proof of Lemma 3 By definition of Dµt(v) in (8) and Lemma 1 and Cauchy Schwarz.

Proof of Lemma 5 In this proof, we treat t as a fixed but arbitrary number, and prove the
Lemma for all t ∈ R+. We will use xs, yts, zts, ps, qts and gts as defined in (4), (9) and (10).

First, consider the case when t = τ(t). By definition, xt = ytt = ztt , and pt = qtt = gtt. By
Fokker Planck,

d

ds
ps(x)

∣∣∣∣
s=t

= −∇U(xt) + tr(∇2pt)

= −∇U(ytt) + tr(∇2qtt)

=
d

ds
qts(x)

∣∣∣∣
s=t

On the other hand

dzts
∣∣
s=t

= −∇U(ztτ(t)) +∇U(ztt) = −∇U(xt) +∇U(xt) = 0

Thus d
dsg

t
s

∣∣
s=t

= 0 So Lemma 5 holds.

In the remainder of this proof, we assume that t 6= τ(t).

For a given Θ ∈ R2d, we let Π1(Θ) denote the projection of Θ onto its first d coordinates,
and Π2(Θ) denote the projection of Θ onto its last d coordinates. With abuse of notation,
for P ∈P(R2d), we let Π1(P) and Π2(P) denote the corresponding marginal densities.

We will consider three stochastic processes: Θs,Λ
t
s,Ψ

t
s over R2d for s ∈ [τ(t), τ(t) + h).

14



First, we introduce the stochastic process Θs for s ∈ [τ(t), τ(t) + h)

Θτ(t) =

[
xτ(t)

−∇U(xτ(t))

]
dΘs =

[
Π2(Θs)

0

]
dt+

[√
2dBt
0

]
for s ∈ [τ(t), τ(t) + h)

We let Ps denote the density for Θs. Intuitively, Ps is the joint density between xs and
−∇U(xτ(t)). One can verify that Π1(Θs) = xs and Π1(Ps) = ps. By Fokker-Planck, we have
∀Θ ∈ R2d

d

ds
Ps(Θ)

∣∣∣∣
s=t

=−∇ ·
(
Pt(Θ) ·

[
Π2(Θ)

0

])
+

d∑
i=1

∂2

∂Θ2
i

Pt(Θ) (18)

Next, for any given t, we introduce the stochastic process Λts for s ∈ [τ(t), τ(t) + h).

Λts = Θs for s ≤ t

dΛts =

[
−∇U(Π1(Λts))

0

]
ds+

[√
2dBs
0

]
for s ≥ t

Let Qt
s denote the density for Λt

s. One can verify that Π1(Λt
s) = yts and Π1(Qt

s) = qts. By
Fokker-Planck, we have ∀Θ ∈ R2d

d

ds
Qt
s(Θ)

∣∣∣∣
s=t

=−∇ ·
(
Qt
t(Θ) ·

[
−∇U(Π1(Θ))

0

])
+

d∑
i=1

∂2

∂Θ2
i

Qt
t(Θ) (19)

Finally, define

Ψt
s = Θs for s ≤ t

dΨt
s =

[
Π2(Ψt

s) +∇U(Π1(Ψt
s))

0

]
ds

+

[√
2dBs
0

]
for s ≥ t

Let Gt
s denote the density for Ψt

s. One can verify that Π1(Ψt
s) = zts and Π1(Gt

s) = gts. By
Fokker-Planck, we have ∀Θ ∈ R2d

d

ds
Gt
s(Θ)

∣∣∣∣
s=t

= −∇ ·
(
Gt
t(Θ) ·

[
Π2(Θ) +∇U(Π1(Θ))

0

])
(20)
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By definition, Θt = Λtt = Ψt
t almost surely, and Pt = Qt

t = Gt
t. Taking the difference between

(18), (19) thus gives

d

ds
Ps(Θ)−Qt

s(Θ)

∣∣∣∣
s=t

=−∇ ·
(
Pt (Θ) ·

[
Π2(Θ) +∇U(Π1(Θ))

0

])
=

d

ds
Gt
s (Θ)

∣∣∣∣
s=t

Finally, marginalizing out the last d coordinates on both sides, and recalling that Π1(Ps) = ps,
Π1(Qt

s) = qts and Π1(Gt
s) = gts, we prove the Lemma.

Proof of Lemma 6 The fact that qts is the steepest descent follows from the fact that
Fokker-Planck equation for Langevin diffusion yields, for all x ∈ Rd

d

ds
qts(x) =∇ · (qts(x)∇ logp∗(x)) + tr(∇2qts(x))

=∇ ·
(
qts(x)

(
∇ log

p∗(x)

qts(x)

))
By definition of (7), we get that

vs = ∇ log
p∗(x)

qts(x)
(21)

satisfies the continuity equation for qts. By Lemma 1,

wqts
= ∇ log

(
qts
p∗

)
Thus

d

ds
F (qts) = Dqts

(vs) = −Eqts

[
‖wqts

‖22
]

= −‖Dqts
‖2∗

The last equality follows from the first statement of Lemma 3.

Proof of Lemma 7 Consider zts and gts as defined in (10). By Lemma 5, d
dsg

t
s

∣∣
s=t

=

( ddsps −
d
dsq

t
s)
∣∣
s=t

. The first variation of F , defined by

lim
ε→0

F (µ + ε∆)− F (µ)

ε
=

∫ (
δF

δµ
(µ)

)
(x) ·∆(x)dx

is linear (see Chapter 7.2 of [11]). (In the above, ∆ : Rd → R is an arbitrary 0-mean
perturbation). In addition, because pt = qtt = gtt, we have δF

δµ (pt) = δF
δµ (qtt) = δF

δµ (gtt), we
get that

d

ds
F (gts)

∣∣∣∣
s=t

=

(
d

ds
F (ps)−

d

ds
F (qts)

)∣∣∣∣
s=t

16



We will upper bound |gt′s |
∣∣
s=t

, then apply Corollary 4.

|gt′s |
∣∣
s=t

= lim
ε→0

1

ε
W2(gtt+ε,g

t
t)

≤ lim
ε→0

1

ε

√
E
[∥∥ε(∇U(xt)−∇U(xτ(t)))

∥∥2

2

]
=

√
E
[∥∥∇U(xt)−∇U(xτ(t))

∥∥2

2

]
≤
√
E
[
L2‖xt − xτ(t)‖22

]
=L

√
E
[
‖(t− τ(t))∇U(xτ(t)) +

√
2(Bt −Bτ(t))‖22

]
≤2L(t− τ(t))

√
E
[
‖∇U(xτ(t))‖22

]
+ 2L

√
(t− τ(t))d

≤2L(t− τ(t))
√
L2E

[
‖xτ(t)‖22

]
+ 2L

√
(t− τ(t))d

Where the first line is by definition of metric derivative, second line is by the coupling between
gtt and gtt+ε) induced by the joint distribution (ztt , z

t
t+ε) and the fact that ztτ(t) = xt. The

fourth line is by Lipschitz-gradient of U(x), fifth line is by definition of xt, sixth line is by
variance of Bt −B0, seventh line is once again by Lipschitz-gradient of U(x).

Thus, we upper bound |gt′s |
∣∣
s=t

by 2L2(t− τ(t))
√

E
[
‖xτ(t)‖22

]
+ 2L

√
(t− τ(t))d. Applying

Corollary 4, and using the fact that for all t, t− τ(t) ≤ h, we get

d

ds
F (gts)

∣∣∣∣
s=t

≤
(

2L2h
√

E
[
‖xτ(t)‖22

]
+ 2L

√
hd

)
‖Dgtt

‖∗

≤
(

2L2h
√

E
[
‖xτ(t)‖22

]
+ 2L

√
hd

)
‖Dpt‖∗

The last line is because gtt = pt by definition.

Proof of Lemma 9 By Theorem 9.4.11 and Proposition 9.3.2 of [1], m-strong-convexity of
logp∗ implies geodesic convexity. Expression (11) then follows from the definition of geodesic
convexity in definition 9.1.1 of [1].

Rearrranging terms, dividing by t and taking limit as t→ 0, we get

F (µ1) ≥ F (µ0) + lim
t→0

F (µt)− F (µ0)

t
+
m

2
W 2

2 (µ0,µ1)

= F (µ0) +Dµ0
(v

µ1
µ0

) +
m

2
W 2

2 (µ0,µ1)
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The last equality follows by Lemma 1 and by the remark immediately following (7).

We remark that the proof of (12) is completely analogous to the proof of first-order charac-
terization of strongly convex functions over Rd.

Proof of Lemma 10 We consider (12), and use two facts

1. For any µ ∈P(Rd), Dµ(v) is linear in v. (see (8))

2. For any µ,ν ∈ P(Rd), W 2
2 (µ,ν) = Eµ‖vνµ(x)‖22, by definition of W2 and vνµ as the

optimal displacement map.

We apply Lemma 10 with µ0 = p∗ and µ1 = µ. Let vp
∗

µ be the optimal displacement map
from µ to p∗, so (12) gives

F (µ)− F (p∗) ≤ −Dµ(vp
∗

µ )− m

2
W 2

2 (µ,p∗)

= −Dµ(vp
∗

µ )− m

2
Eµ‖vp

∗
µ (x)‖22

Let v∗ , arg max‖v‖L2(µ)≤1−Dµ(v), so Dµ(v∗) = −‖Dµ‖∗ by linearity. We know that the
maximizer of

arg max
v
−Dµ(v)− m

2
Eµ‖vp

∗
µ (x)‖22 = c · v∗

for some real number c. Taking derivatives wrt c gives c = 1
m‖Dµ‖∗. Thus we get

F (µ)− F (p∗) ≤ m

2
‖Dµ‖2∗

Proof of Lemma 11 We prove this by induction on k. First, by definition of p0 = N(0, 1
m),

we get that

Ept

[
‖x‖22

]
=

d

m
≤ 4d

m
,∀t ≤ 0h

Next, we assume that for some k, and for all t ≤ kh, Ept

[
‖x‖22

]
≤ 4d

m .

For the inductive step, we consider t ∈ (kh, (k + 1)h]

From (4),

xt = xkh − (t− kh)∇U(xkh) +
√

2(Bt −Bkh)

By smoothness and strong convexity and the assumption that arg minx U(x) = 0, we get
that for all x and for all t:

‖(x− (t− kh)∇U(x))− 0‖2 ≤ (1−mt)‖x− 0‖2

18



(note that h ≤ 1
L implies that t− kh ≤ 1

L .) So for all t

Ex∼pt‖x‖22
=Ex∼pkh‖x− (t− kh)∇U(x) +

√
2(Bt −Bkh)‖22

=Ex∼pkh‖x− (t− kh)∇U(x)‖22 + E‖
√

2(Bt −Bkh)‖22
≤(1−mt)Ex∼pkh‖x‖

2
2 + 2dt

=Ex∼pkh‖x‖
2
2 + (2dt−mtEx∼pkh‖x‖

2
2)

By inductive hypothesis, we have Ex∼pt‖x‖22 ≤ 4d
m for all t ≤ kh

If Ex∼pkh‖x‖22 ≥ 2d
m , then Ex∼pt‖x‖22 ≤ Ex∼pkh‖x‖22 ≤ 4d

m .

If Ex∼pkh‖x‖22 ≤ 2d
m , then Ex∼pt‖x‖22 ≤ 2d

m + 2d
L ≤

4d
m (by t− kh ≤ 1

L and by L ≥ m).

Thus if pkh is such that Epkh‖x‖22 ≤ 4d
m , then it must be that Ept‖x‖2 ≤ 4d

m for all
t ∈ (kh, (k + 1)h], thus proving the inductive step.

8.1 Proof of Theorem 2

First, we present a Lemma for upper bounding F (µ)− F (p∗) for µ ∈P(Rd) in the absence
of strong convexity. The following Lemma plays an analogous role to Lemma 10.

Lemma 12 Let F be convex in W2, then for all µ ∈P(Rd),

F (µ)− F (p∗) ≤ ‖Dµ‖∗W2(µ,p∗)

Proof of Lemma 12 Similar to the proof of Lemma 10, we consider (12), but with m = 0,
(and once again vp

∗
µ denotes the optimal displacement map from µ to p∗):

F (µ)− F (p∗) ≤ −Dp(vp
∗

µ )

≤ ‖Dµ‖∗ · ‖vp
∗

µ ‖L2(µ)

≤ ‖Dµ‖∗ ·W2(µ,p∗)

Where first inequality is from (12), second line is by definition of ‖Dµ‖∗, third line is by
defintion of Wasserstein distance and the fact that vp

∗
µ is the optimal transport map.

Next, we establish that for a fixed stepsize h,W2(pt,πh) is nonincreasing, using a synchronous
coupling technique taken from [5].

Lemma 13 Let pt be defined as in the statement of Theorem (2). Let h be a fixed stepsize
satisfying h ≤ min{ 1

L , h
′}. Then for all k,

W2(pkh,πh) ≤W2(p0,πh)
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Proof of Lemma 13

First, we demonstrate that (4) is contractive in W2.

We will prove this by induction.

Base case: trivially true.

Inductive Hypothesis: W2(pkh,πh) ≤W2(p0,πh) for some k.

Inductive Step: Let T be the optimal transport map from pkh to πh. We will demonstrate
a coupling between p(k+1)h and πh with cost less thanW2(pkh,πh). The Lemma then follows
from induction.

Since xkh ∼ pkh (see (4)), the optimal coupling between pkh and πh is given by the pair of
random variables (xkh, T (xkh)). For t ∈ [kh, (k + 1)h],

x(k+1)h = xkh − h∇U(xkh) +
√

2(B(k+1)h −Bkh))

. Consider the coupling γ between pkh and πh defined by the following pair of random
variables (

xkh − h∇U(xkh) +
√

2(B(k+1)h −Bkh),

T (xkh)− h∇U(T (xkh)) +
√

2(B(k+1)h −Bkh)
)

(Note that πh is stationary under the discrete Langevin diffusion with stepsize h, so γ does
have the right marginals).

To demonstrate contraction in W2:

W 2
2 (p(k+1)h,πh)

≤E
[∥∥∥(xkh − h∇U(xkh) +

√
2(B(k+1)h −Bkh)

)
−
(
T (xkh)− h∇U(T (xkh)) +

√
2(B(k+1)h −Bkh)

)∥∥∥2

2

]
=E

[
‖(xkh − h∇U(xkh))− (T (xkh)− h∇U(T (xkh)))‖22

]
≤E[‖xkh − T (xkh)‖22 − 2h〈∇U(xkh)−∇U(T (xkh)), xkh − T (xkh)〉

+ h2‖∇U(xkh)−∇U(T (xkh))‖22]

≤E
[
‖xkh − T (xkh)‖22

]
=W 2

2 (pkh,πh)

where the last equality follows by optimality of T , and the last inequality follows because
L-smoothness of U(x) implies

− 2h〈∇U(xkh)−∇U(T (xkh)), xkh − T (xkh)〉

≤ − h

L
‖∇U(xkh)−∇U(T (xkh))‖22

≤− h2‖∇U(xkh)−∇U(T (xkh))‖22
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This completes the inductive step.

Corollary 14 Let pt be as defined in (2). Then for all t,

W2(pt,p
∗) ≤ 4C1

Proof of Corollary 14 First, if t = τ(t), then by Lemma 13 and (16) and triangle inequality,
we get our conclusion.

So assume that t 6= τ(t). Using identical arguments as in Lemma 13, and noting the
assumption on h′ in (16) and the fact that h ≤ h′, we can show that

W2(pt,πt−τ(t)) ≤W2(pτ(t),πt−τ(t)) (22)

By triangle inequality and the assumption in (16), we have

W2(pt,p
∗)

≤W2(pt,πt−τ(t)) +W2(πt−τ(t),p
∗)

≤W2(pτ(t),πt−τ(t)) +W2(πt−τ(t),p
∗)

≤W2(pτ(t),πh) +W2(πh,p
∗)

+W2(πh,p
∗) +W2(πt−τ(t),p

∗)

≤4C1

Where the first inequality is by triangle inequality, the second inequality is by (22), third
inequality is by triangle inequality, fourth inequality is by assumption (16) and the fact that
t− τ(t) ≤ h ≤ h′.

Next, we use Lemma 13, to bound E
[
‖xkh‖22

]
for all k:

Lemma 15 Let h, xt and pt be as defined in the statement of Theorem 2. Then for all k

E
[
‖xkh‖22

]
≤ 4(C2

1 + C2
2 )

Proof of Lemma 15

Let γ(x, y) be the optimal coupling between pkh and πh. Let γ′(x, y) be the optimal coupling
between πh and p∗. Then
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Epkh

[
‖x‖22

]
= Eγ

[
‖x‖22

]
= Eγ

[
‖x− y + y‖22

]
≤ 2Eγ

[
‖x− y‖22

]
+ 2Eγ

[
‖y‖22

]
= 2W2(pkh,πh) + 2Eπh

[
‖y‖22

]
= 2W2(pkh,πh) + 2Eγ′

[
‖x‖22

]
= 2W2(pkh,πh) + 2Eγ′

[
‖x− y + y‖22

]
≤ 2W2(pkh,πh) + 4Eγ′

[
‖x− y‖22

]
+ 4Eγ′

[
‖y‖22

]
≤ 2W2(pkh,πh) + 4W2(πh,p

∗) + 4Ep∗
[
‖x‖22

]
By definition of C2 at the start of Section 7, we have

Ep∗
[
‖x‖22

]
≤ C2

2

.

By Lemma 13, we have
W2(pkh,πh) ≤W2(p0,πh) ≤ C1

By definition of h′ at the start of Section 7, and h in Theorem 2 (which ensures h ≤ h′), we
have

W2(πh,p
∗) ≤ C1

Proof of Theorem 2 First, we bound the discretization error (for an arbitrary t). By
Lemma 7:

d

ds

(
F (ps)− F (qts)

)∣∣∣∣
s=t

≤
(

2L2t
√
Epτ(t)‖xτ(t)‖22 + 2L

√
td
)
· ‖Dpt‖∗

≤
(

2L2t
√
Epτ(t)‖xτ(t)‖22 + 2L

√
td
)
· ‖Dpt‖∗

Given the choice of

h =
1

48
min

{
ε

C1(C1 + C2)L2
,

ε2

L2C2
1d
, h′
}

, we can ensure that(
L2h

√
E‖xτ(t)‖22 + 2L

√
hd
)
≤1

4

(
L2h

√
18(C2

1 + C2
2 ) + 2L

√
hd

)
≤ ε

8C1
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where the first inequality comes from Lemma 15.

Assume that F (ps)− F (p∗) ≥ ε. By Lemma 12 and Corollary 14, we have

‖Dps‖∗ ≥
F (ps)− F (p∗)

W2(ps,p∗)

≥ ε

W2(ps,p∗)

≥ ε

4C1
(23)

This implies that
d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤ 1

2
‖Dpt‖2∗

The rate of decrease of F (pt) thus satisfies

d

dt
F (pt)− F (p∗) =

d

dt
F (qts)− F (p∗)

∣∣∣∣
s=t

+
d

dt
(F (ps)− F (qts))

∣∣∣∣
s=t

=− ‖Dpt‖2∗ +
1

2
‖Dpt‖2∗

≤− 1

2
‖Dpt‖2∗

≤− 1

2C2
1

(F (pt)− F (p∗))2

We now study two regimes. The first regime is when F (pt)−F (p∗) ≥ 1, d
dtF (pt)−F (p∗) ≤

− 1
2C2

1
(F (pt)− F (p∗)), which implies

F (pt)− F (p∗) ≤ (F (p0)− F (p∗)) exp(− t

2C2
1

)

We thus achieve F (pt)− F (p∗) ≤ 1 in

t ≥ 2C2
1 log(F (p0)− F (p∗))

In the second regime, F (pt) − F (p∗) ≤ 1. By noting that ft = 1
t is the solution to

d
dtft = −f2

t , and letting ft = 1
2C2

1
(F (pt)− F (p∗)), we get F (pt)− F (p∗) ≤ 2C2

1
t . To achieve

F (pt)− F (p∗) ≤ ε, we set t =
2C2

1
ε . Overall, we just need to set

t ≥ 2C2
1

ε
+ 2C2

1 log(F (p0)− F (p∗))

This, combined with the choice of h earlier, proves the theorem.
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8.2 Some regularity results

In this subsection, we provide some regularity results needed in various parts of the paper.

Lemma 16 Let wµ be as defined in Lemma 1. Let pt be as defined in 4. For all t, wpt is
well defined, and Ept

[
‖wpt‖22

]
is finite.

Proof of Lemma 16 First, we establish the following statement: For any t, there exists a
δ ∈ R with µδ,y(x) being the distribution of N(y, δ) and p ∈P(Rd) such that

1. For all x ∈ Rd, pt(x) = Ey∼p
[
µδ,y(x)

]
2. Ep

[
‖x‖22

]
is finite.

If t = τ(t), then let p = (Id(·)−h∇U(·))#pτ(t)−1 and let δ = 2h. Otherwise, if t 6= τ(t), then
let p = (Id(·)− (t− τ(t))∇U(·))#pτ(t) and δ = 2(t− τ(t)). Where we used the definition of
push-forward distribution from (4). 1. now can be easily verified.

To see 2, let t′ = τ(t)− 1 in case 1 and let t′ = τ(t) in case 2.

Ep

[
‖x‖22

]
=Ept′

[
‖x− h∇U(x)‖22

]
≤2Ept′

[
‖x‖22

]
+ 2h2Ept′

[
‖∇U(x)‖22

]
≤2Ept′

[
‖x‖22

]
+ 2h2L2Ept′

[
‖x‖22

]
≤(2 + 2h2L2)

4d

m

Where the last inequality follows by Lemma 11.

Since µδ,y(x) for all x, y, Ep

[
µδ,y(x)

]
is differentiable for all x. This proves the first part of

the Lemma.

Next, a nice property of Gaussians is that

∇xµδ,y(x) = −
µδ,y
δ

(x− y)

Thus,

∇ logpt(x)

=
1

δ
∇ logEy∼p

[
µδ,y(x)

]
=

1

δ

1

Ey∼p
[
µδ,y(x)

]Ey∼p [((y − x)µδ,y(x))
)]

=
1

δ
Ey∼µxδ [y]− x

Where µxδ denotes the conditional distribution of y given x, when y ∼ p and x ∼ µδ,y.
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Thus

Ex∼pt(x)

[
‖∇ logpt(x)‖22

]
≤1

δ
Ex∼pt(x)

[
2Ey∼µxδ

[
‖y‖22

]
+ 2‖x‖22

]
=

2

δ
Ey∼p

[
‖y‖22

]
+

2

δ
Ex∼pt

[
‖x‖22

]
≤∞

Where the first inequality is by Jensen’s inequality and Young’s inequality and the preceding
result, the second inequality is by definition of conditional distribution, the third inequality is
by the fact that δ > 0 (by definition at the start of the proof), the fact that Ex∼pt

[
‖x‖22

]
≤ 4d

m
(by Lemma 11), and by the fact that Ey∼p

[
‖y‖22

]
<∞ (see item 2. at the start of the proof)

Finally, we have that

‖wpt‖2L2(pt)

=Ept

[
‖wpt(x)‖22

]
=Ept

[
‖∇ logpt(x)−∇ logp∗(x)‖22

]
≤2Ept

[
‖∇ logpt(x)‖22

]
+ 2Ept

[
‖∇ logp∗(x)‖22

]
<∞

Where the last inequality uses the fact that ‖∇ logp(x)‖2 = ‖∇U(x)‖2 ≤ L‖x‖2 and
Ept

[
‖x‖22

]
≤ 4d

m .

Lemma 17 Let pt be as defined in (4). Then |p′t| is finite for all t, where |p′t| is the metric
derivative of pt, as defined in (6).

Proof of Lemma 17 We define the random variable ξ to be distributed as N(0, 1).
For all t, let xt be as defined in (4). One can verify that the random variable yt ,
xτ(t) − ∇(t − τ(t))U(xτ(t)) +

√
2(t− τ(t))ξ has the same distribution as xt. Thus yt and

yt+ε define a coupling between pt and pt+ε. We thus have
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Let h , t− τ(t)

|p′t|

= lim
ε→0

1

ε
W2(pt,pt+ε)

≤ lim
ε→0

1

ε

√
E
[
‖yt − yt+ε‖22

]
= lim
ε→0

1

ε

√
Ex∼pτ(t)

[
‖ε∇U(x) + (

√
2(h+ ε)−

√
2h)ξ‖22

]
= lim
ε→0

1

ε

√
Ex∼pτ(t)

[
‖ε∇U(x)‖22

]
+ E

[
‖(
√

2(h+ ε)−
√

2h)ξ‖22
]

≤ lim
ε→0

1

ε

√
Ex∼pτ(t)

[
‖ε∇U(x)‖22

]
+

1

ε

√
E
[
‖(
√

2(h+ ε)−
√

2h)ξ‖22
]

=
√
Ex∼pτ(t)

[
‖∇U(x)‖22

]
+

1√
8h

√
E
[
‖ξ‖22

]

Where the last inequality follows by Taylor expansion of
√

2h+ 2ε. We can bound the first
term by a finite number using ‖∇U(x)‖22 ≤ L2‖x‖22, then applying Lemma 11. The second
term is finite for h 6= 0.

For the case h = 0, we know that wpt satisfies the continuity equation for pt at t, and so
|p′t| = ‖wpt‖L2(pt) <∞, by Lemma 2 and Lemma 16.
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