
Reference Linking the Web’s Scholarly Papers

Donna Bergmark∗ and Carl Lagoze†

Cornell Digital Library Research Group

Abstract

Along with the explosive growth of the Web has come a great
increase in on-line scholarly literature. Thus the Web is becoming an
efficient source of up-to-date information for the scientific researcher,
and more and more researchers are turning to their computers to keep
current on results in their field. Not only is Web retrieval usually
faster than a walk to the library, but the information obtained from
the Web is potentially more current than what appears in printed
publications.
The increasing proportion of on-line scholarly literature makes it

possible to implement functionality desirable to all researchers – the
ability to access cited documents immediately from the citing paper.
Implementing this direct access is called “reference linking”.
While many authors insert explicit links into their papers to sup-

port reference linking, it is by no means a universal practice. The
approach taken by the Digital Library Research Group at Cornell em-
ploys value-added surrogates to enhance the reference-linking behavior
of Web documents. Given the URL of an on-line paper, a surrogate
object is constructed for that paper. The surrogate fetches the con-
tent of the document and parses it to automatically extract reference
linking data. Applications can then use the surrogate to access this
reference linking data, encoded in XML, via a well-defined API.
We use this API to reference link the D-Lib magazine, an on-line

journal of technical papers relating to digital library research. Cur-
rently we are (automatically) extracting reference linking information
from the papers in this journal with 80% accuracy.

Keywords: reference linking, OpCit, value-added surrogates
Word Count (abstract): 248 (paper): 4500 (estimated)

∗DARPA/CNRI Grant #2057/57-02
†NSF Grant # IIS-9907892

1

1 Background and Motivation

Along with the explosive growth of the Web has come a great in-
crease in on-line scholarly literature. This literature comes in many
forms. Informal on-line archives are repositories for papers and tech-
nical reports. Proceedings are more and more commonly published
on the Web. The collection of on-line journals is growing. People
sometimes just put their papers on their Web site. Thus the Web is
becoming an efficient resource for up-to-date information for the sci-
entific researcher, and more and more researchers are turning to their
computers to keep current on results in their field. Not only is Web
retrieval usually faster than a walk to the library, but the information
obtained from the Web is potentially more current than what appears
in printed publications.
The increasing proportion of on-line scholarly literature makes it

possible to implement functionality desirable to all researchers – the
ability to access cited documents immediately from the citing paper.
Implementing this direct access is called “reference linking”.
Reference linking is actually an old idea. Classical reference linking

arose from a desire to study citation patterns among scholarly arti-
cles. The Science Citation Index[5] founded by Eugene Garfield in the
60’s was invented to do just that, and was a spectacular success. It
was, however, based on human labor. For every paper examined, the
staff captured that paper’s metadata, and then went to the reference
section and did the same for each reference there, or at least for those
references to journals covered by the SCI.
As a result, one could look up links using the Science Citation

Index and build a graph as shown in Figure 1. The nodes in this
graph represent the scientific papers, and directional arcs have two
contextual meanings. Outgoing arcs, with respect to a specific node,
lead to references of that paper. Incoming arcs, with respect to a
specific node, originate from that paper’s citations. Thus from the
graph in Figure 1, we can observe that Paper C has 4 references,
that Papers C, D, and G have been analyzed, that Paper A has two
citations, and that Papers C and G are bibliographically coupled (i.e.
they have a reference in common). The links in the graph are explicitly
contained in the Science Citation Index.
We then fast-forward some 25 years to the current time, where

there is a growing amount of scholarly literature on-line. In many
cases, the authors of this literature have assumed the classical ref-
erence taking task and have inserted references to other works on
the Web. The use of URLs in many of these references allows ef-
ficient movement from the referencing to the cited work. The uni-
directionality of links on the Web makes the corresponding function-
ality, providing access to a paper’s citations a more daunting task.

2

A

B

C

D

E

F G

H

CLASSICAL REFERENCE LINKING

Observations:

4. Papers C and G are bibliographically coupled.

2. Papers C, D, and G have been analyzed.

1. Paper C has 4 references.

3. Paper A has 2 citations.

Figure 1: Classical Reference Linking

A

B

C

D

E

F G

H

Observations:

3. Paper A has 2 links to it (at present)

2. Links just happen - no analysis required.

1. HTML page C has 4 links on it

4. Papers C and G are linked to a common page

Figure 2: Linking on the Web

Figure 2 shows just a portion of interlinked Web papers. From the
fragment shown here, we can deduce the HTML page C has four links
in it to other HTML pages; page A has at present two links to it; and
papers C and G are linked to a common page. The graph is implicit;
authors often fail to insert explicit links to references and citations
can be discovered only by exhaustive analysis of the Web.
In our reference linking project we are aiming somewhere between

the classical view and what exists today on the Web. We wish to
make the graph in Figure 2 explicit, as well as automatically supply
additional links where possible.
Our work aims to create a reference linking layer on the Web that

provides sufficient data for a variety of value-added reference linking
applications. Some of these applications may be targeted at human
use, consisting of a user interface for navigating the reference linked
graph. Others may be middleware, massaging data for use by other
applications. Our goal is to provide this layer automatically, without
the direct participation from authors.
Figure 3 is just one example of a human-oriented reference linking

application that exploits the data from a reference linking layer.
Imagine sitting in front of a computer screen, reading Document

A and you come across an intriguing reference: “...Mitchell’s seminal
work on thunks[10].” If there is a copy of this work somewhere on-
line, the “[10]” will be a clickable live link, so that the user could start

3

while reading A)

(user clicks on "[10]"

If GET is successful, the popup
window is replaced by a copy

of Mitchell’s seminal work.

Popup Window

Status: retrieving....

[cancel]

[.ps] [.ps][.pdf]

10. Mitchell, A. Thunks
and Algol. JACM, March...

Document A

-3-

...

...

...

...

...

...

...

...

...

...

...

"...........Mitchell’s seminal work on

on thunks [10]."

Figure 3: A Reference Linking Application

fetching that copy while continuing to read the original paper. One
interface that would support this goal might be a JavaScript popup
window that looks something like the one on the right side of Figure
3; the complete reference string is shown along with some choices of
format (PostScript, pdf) in which the document might be retrieved;
the user can retrieve one of these or cancel. Alternatively, clicking
on the link could bring up an SFX[10] dialogue that presents choices
to the user based on his/her access permissions to various on-line
resources.
Implementing the functionality shown in Figure 3 requires a num-

ber of steps. The reference linking layer must:

1. Figure out that the string [10] in the text is a reference and that
it matches the reference string, 10. Mitchell, A. Thunks and
Algol...; in the paper’s reference section.

2. Parse the reference string to decide what work it is, whether it
is linkable, and whether it is something we’ve seen before so we
can credit Mitchell with this paper as a citation.

3. Provide access to this reference linking data for use by applica-
tions.

The reference linking application must then:

4. Turn the “[10]” into a live link. In HTML and PDF you can
turn this into an anchor that can be clicked. For other formats
some kind of auxiliary display is needed.

4

From a data-flow perspective this process can be describe as anal-
ysis, data access, and presentation. Our work has been concentrating
on the first two. We describe in this paper methods and results on the
extraction of reference linking data from on-line literature. We also
describe the API that makes the data from this analysis available to
client applications. In later work, we plan to examine the presentation
layer.

1.1 Related Work

Reference linking is currently being implemented by a large group of
publishers who have come together forming a group called CrossRef,
an effort that grew out of the DOIX project described by Atkins [2].
This organization, consisting of professional journal publishers, is in-
terlinking their on-line journals. Each publisher generates its own
metadata and shares it with the other publishers in the group.
The ResearchIndex[7] is a well-known reference linking application

which seeks to build a large on-line database of citation information,
in the field of computer science. Their software is available to our
project, and we have borrowed some of their techniques.
Formally, our work is part of a larger project called OpCit based

at Southampton University. Funded jointly by JISC in the UK and
the NSF Digital Libraries Initiative in the US, this project is reference
linking arXhiv, the technical report repository at Los Alamos. The
project’s home page is at <http://opcit.eprints.org>. To read
more about the origins of this project, refer to [6] which discusses the
precursor of Opcit, the Open Journals project.
Finally, there is related work going on at Cornell. SFX, an ad-

vanced reference linking system that takes the user’s context into ac-
count, is being developed by Van de Sompel, now a member of the
Digital Library Research Group at Cornell. We are actively discussing
the merging of his work with the work reported here. They are in fact
quite complementary.

2 Definitions

In this section we present basic terms and definitions that will be used
in the remainder of the paper.

2.1 Items and Works

There are two different types of entities contained in Figure 3: there is
Document A which the user is reading, and there is thing B, a work by
Mitchell, which is referred to by A. There is a subtle, but important,

5

difference between A and B. A is an Item, something that has a format
type, is on-line, and can be analyzed by a computer program. B is a
Work, or an abstraction of a paper. In the example shown, B happens
to exist in the form of several Items. In general, however, a Work
need not be findable on-line. Thus we say that Works exist in the
form of zero or more Items. Our definition of Item deviates slightly
from standard library usage in that it is limited to on-line copies. See
Svenonius [9] for a good philosophical discussion of what a work is,
and how the work and item distinction has played a role in traditional
library cataloguing theory.
In the rest of this report, we drop the capitalization of work and

item, but continue to distinguish between the two terms.

2.2 References and Citations

References and Citations were discussed in relationship to Figure 1 and
their definitions need not be repeated here except to note that both
references and citations are works. In the remainder of this paper we
will use four terms associated with references:

• linkable references are copies of work that can be found on-line;
they are items as well as works.

• reference anchor will refer to the reference in the text of the
paper being analyzed, e.g. [10] in Figure 3;

• context will be the sentence containing that reference anchor;

• reference string will be the complete description of the work in
the document, e.g. 10. Mitchell. A. Thunks

2.3 Repository

A repository, also known sometimes as an archive, is any collection of
on-line items, e.g. an on-line journal, a department’s technical reports,
or a person’s on-line bibliography. Southampton’s work, for example,
is analyzing the arXiv repository. At Cornell, we are focussing on the
more general problem of architecting a reference layer for the Web
that works irregardless of repository boundaries. It should also be
noted that in our project, when we analyze respositories for reference
linking information, we do not keep copies of any items.

2.4 Intralink and Interlink

If we analyzed every item in a repository, then we can intralink that
repository, since if one item references a work that is itself an item in
the repository, we have a linkable reference.

6

If we analyze several repositories, then we can interlink items in
these repositories. The extreme limit of this work, as more and more
items are analyzsed, is to interlink the Web, at least the scholarly side
of it.

3 The Reference Linking API

The reference linking architecture developed at Cornell is unique in
several respects. First, because we are aiming to link on-line literature
without author intervention, we are taking an automatic approach to
parsing document source in order to extract the item’s metadata as
well as the metadata of the item’s references. This contrasts with
CrossRef’s approach. In a recent article, Arms[1] argues that “au-
tomated librarianship”, using computers to do some of the organi-
zational tasks formerly done by humans, is necessary in order to ef-
fectively deal with costs of organizing and managing on-line content.
Similarly, automated reference linking complements and extends that
manually done by authors. The advantage of automatic metadata ex-
traction, although it may be less accurate than hand-generated meta-
data, is that it becomes possible to process a vastly larger set of Web
content.
Secondly, we have a different approach to collecting and storing ref-

erence linking data. Most other reference linking projects (e.g. Open
Journals and ResearchIndex) use databases to store information about
works and items and do a lot of “database crunching”. For example,
there would be one database of all the titles, and perhaps another
database of all the authors, and a third with references. Some sort of
API would be built on top of these databases to extract and present
data as required.
Instead of using databases to store this information, we use item

surrogates. A surrogate is a digital object that encapsulates reference
linking information relating to one single item on the Web. Reference
linking data is thus distributed across the collection of surrogate ob-
jects, and all the data relating to one item is grouped together within
a single surrogate. The surrogate also embodies the reference linking
behavior of on-line items.
This use of surrogates for reference linking is consistent with our

overall architectural approach in digital library research at Cornell.
We make use of “value-added surrogates”[8] as a vehicle for endow-
ing digital objects with a wide variety of extensible behaviors (e.g.
preservation, access management).
A third unusual aspect of reference linking at Cornell is that we

do not put together one monolithic reference linking service. Rather,
we provide an API on top of which a variety of such services can be

7

built. Such an approach has been quite successful in other, unrelated
endeavors (see, for example, [3]).
Having an API specifies the operational semantics of reference link-

ing; it also allows us to cleanly separate the analysis phase of reference
linking from the presentation phase. The advantage of creating an API
is that no decision is made in advance of what the data should be used
for.

3.1 How the API Works

The combination of surrogates and an API essentially allows us to
access an on-line paper and ask it “what are your references” and
“what is your metadata?” In fact, the API is a set of methods, where
each method is simply one of the questions or requests that can be
directed at the surrogate. Each surrogate answers the same set of
questions, with respect to its own item.
A typical use of the API would be to analyze all the papers in

some repository or other collection (e.g. somebody’s Web site). This
architecture is depicted in Figure 4. The central column represents
some repository of network-accessible documents. The items listed in
this column are linkable (they are on-line) and therefore analyzable
(we have their bits).

open archive,
D-Lib, etc.

other
copies

bibliographic
data

dissemination

Other
Work

:
:

Item

Item

surrogate

surrogateWork

repository repository

Figure 4: An Architecture for Reference Analysis

On the left are drawn the works that the items represent. Any
work might have several copies spread across several archives. All of
these copies are “items” corresponding to that work.
To the right of the archive items are the surrogates, shown as

“blobs”. They know how to disseminate bibliographic data about
the item, and indirectly, about the work. As stated above, client
applications ask the questions and then display or otherwise use the
results. The API supplies the data.
The surrogates can be created on-demand to supply the data, or

they can be stored and used later to supply the data. Thus the refer-
ence linking layer imposed on Web objects can be static or dynamic
or some mixture of both.

8

This paper does not cover issues related to storage, discovery of,
and access to surrogates. In general, we envision the creation of spe-
cialized search services that will lead users and client applications to
surrogates, rather than “raw” copies of scholarly papers, and thus
make available the enhanced functionality of the surrogates.

3.2 Components of the API

The four defined methods in the Cornell reference linking API are:

• getLinkedText – returns the contents of the paper (as data)
augmented with reference linking information. A primary use of
this method would be to display the document with some of its
reference anchors turned into live links, as in Figure 3.

• getReferenceList – this interface would be used by applications
that wish to know what references are contained in this paper.
For example, if one were building the SCI, this would be the
question to ask, along with the next one.

• getMyData - this returns that paper’s own metadata. It could
have other uses; for example, one client might have a button
labeled “get BibTeX”; when the button is pushed, the client
invokes getMyData on the surrogate, and reformats the results
into something suitable for cutting and pasting into a LaTeX
bibliography.

• getCurrentCitationList – the list of works citing this paper
to the best of the surrogate’s knowledge. Support for citations
is not immediately needed for reference linking, but is a valuable
addition to any reference linking service, and so it is provided
for in this API. This method is useful to client applications that
want to know what other documents cite this one, as they might
be related or provide more current information. If on-line, we
have a linkable citation. Note that there is a subtle difference in
tractability of making, for an item, its list of references and its
list of citations. However, the more citations that are known for
an item, the more explicit is its Figure 2 graph.

3.3 Output from the API

Figure 4 showed the surrogates disseminating bibliographic informa-
tion about their items, in response to a particular method in the API
being invoked. Each method returns a byte-stream of structured data
coded in XML. For illustrative purposes, we look at the output of
getReferenceList and getLinkedText in more detail.

9

The XML data disseminated by getReferenceList contains one
top level element, <reference list>, which in turn consists of 0 or
more <reference> elements.
Figure 5 shows the second reference (ord="2") of an example sur-

rogate’s item. The <reference> element consists of:

1. The bibliographic data related to the reference work, expressed
in Dublin Core format.

2. The reference string exactly as it appeared in the item (enclosed
in a <literal> element and entified)

3. Zero or more contexts in which the work was cited in this item,
listed as <context>s within a <context list>.

Note the “[2]” in the example’s <context>. Since the reference
string for the Maly paper contains a URL, this may become the an-
chor of a live link in any text returned by a call to this surrogate’s
getLinkedText method. Each reference anchor in the text returned
by getLinkedText is enclosed in a <reflink> element, which is suf-
ficiently rich to point to various on-line copies of the reference, to
retrieve the reference string itself, and so on.
The <reflink> can be translated (by a xslt processor) into “ac-

tionable links”, such as HREF’s, XLinks, or OpenURLS, or embedded
JavaScripts. Figure 6 shows an example <reflink> element, along
with how it might look after being converted into an XLink of type
simple.
The XML data returned by each of the four methods in the API

can then serve as input to other processing; it could be transformed
by xslt and rendered, or undergo further manipulation. This leads to
the two-phased architecture shown in Figure 7 with structured data –
XML – at the interface between the two phases.

3.4 A Java Implementation of the API

The API can be easily implemented in Java, Perl, or even as part of
a larger protocol. Our Java implementation will briefly be discussed
in this section.
The API is implemented as three packages, only one of which

(Linkable.API) is needed by reference linking applications. The other
packages include one for parsing source documents (Linkable.Analysis)
and another for helper routines (Linkable.Utility).
Only one parameter is required for constructing a surrogate ob-

ject, the URL of the item to be parsed. The surrogate invokes one
or another analyzer depending on the item’s format. Typically the
item is translated to XML before further analysis. Formatting hints
(e.g. font size, line breaks) are retained in the XML version to enable
decomposition of the item into header, body, and reference sections.

10

<? xml version="1.0" ?>

<api:reference_list length="17"

xmlns:api="http://www.cs.cornell.edu/cdlrg/..."

xmlns:dc="http://purl.org/DC">

<api:reference ord="1">

:

:

<api:reference ord="2">

<dc:title>

Smart Objects, Dump Archives: A User-Centric,

Layered Digital Library Framework

</dc:title>

<dc:date>1999-03-01</dc:date>

<dc:identifier>10.1045/march99-maly</dc:identifier>

<dc:creator>K Maly</dc:creator>

<api:displayID>

http://www.dlib.org/dlib/march99-maly/03maly.html

</api:displayID>

<api:literal tag="2.">

Maly K, "Smart Objects, Dumb Archives: A User-Centric,

Layered Digital Library Framework" in D-Lib Magazine,

March 1999,

<http://www.dlib.org/dlib/march99-maly/03maly.html>.

</api:literal>

<api:context_list anchor="[2]">

<api:context>

The need for standards to support the interoperation of

digital library systems has been reported on before in

D-Lib[1],[2] as have efforts to discover common ground

in related standard processes(Dublin Core and INDECS[3]).

</api:context>

</api:context_list>

</api:reference>

:

:

</api:reference_list>

Figure 5: XML for a Reference Object

11

Original Text:

... it was said [5] that ...

Linked Text with custom tag:

... it was said

<reflink ord="5" author="last-name-of-first-author"

title="title of this work"

year="1999"

url="http://www.some.org/filename">[5]</reflink>

that ...

Linked Text with XLink:

... it was said

<ref-xl xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="http://www.some.org/filename">[5]</ref-xl>

that...

Figure 6: A linked XML Item, first with reflink then with XLink.

XML

Item,
with
links

Rep of
item

...............ARCHIVE

.ps
.pdf
.tex
.dvi
.txt

.htm
:

batch processor
browser/renderer

XSL

...
..............
.....
..............

[10]
...........
...........
..........
..........
..........

(Work metadata)
databases

. . .

(other disseminations
- see API)

ANALYSIS DISPLAY

Surrogates

Figure 7: Overall Reference Linking Architecture
.

12

When the surrogate is returned to the client application, the item
has been parsed and preliminary reference data has been stored into
data fields within the surrogate. Invoking one of the four methods on
the surrogate, e.g. getLinkedText(), causes further analysis of the
reference data and culminates in an XML byte array.
The surrogates can be constructed and used on the fly and then

discarded, or they may be stored for further use. This allows for a
wide range of applications, from constructing a database of citation
information to providing a completely dynamic reference linking ser-
vice.
The Java implementation consists of less than 6000 lines of code

and uses both dom and sax parsing of XML data.

4 Experiments with the Architecture

The reference linking API can be used for a large variety of applica-
tions. This section briefly sketches two of them.

4.1 A Simple Display Application

Surrogate
XML file

some URL
simple display

application

Figure 8: A Simple Reference Linking Application

The first example shows how on-demand surrogate creation can be
used to provide a basis for a reference linked document viewer. A demo
of this application is currently being built as part of a student project.
In Figure 8, the client application is given the URL of some on-line
item. The application instantiates a surrogate object, passing it that
URL. Instantiation of the surrogate causes the item at that URL to
be analyzed. All further interactions with the reference linking API
are via this surrogate.
The right-hand side of Figure 8 shows the client application in-

voking various methods on the surrogate. Here is a sample snippet of
Java code in this application:

Surrogate s = new Surrogate (url);
display (s.getLinkedText());

This application uses the API to obtain the linked text for the item
located at the specified url; the result of this request is a XML byte
array, which is then passed to a routine, display(), which presents

13

the linked text to a user. For a display similar to that shown in Figure
3, the steps in the presentation are as follows:

1. Run xslt or a similar translator to convert the API’s <reflink>
elements into JavaScript code.

2. Display the translated XML object to the user.

3. When the user clicks on a reference anchor that has a live link,
bring up the retrieving... dialogue, showing the complete refer-
ence string, and show what formats exist for this work.

4. If the user clicks on the cancel button, quit. Otherwise retrieve
the format selected by the user and display it in a separate win-
dow.

This example has shown the API being used in a dynamic mode.

4.2 Reference Linking the D-Lib Magazine

The second example is one which gathers and stores reference linking
information for future use. We are currently using the Java implemen-
tation of the reference linking API to analyze D-Lib articles. D-Lib
is an online journal that has been appearing eleven times a year since
July 1995; it makes an excellent test bed for automatic extraction
software because there is little editorial imposition on the format of
the papers submitted to the journal, and therefore provides a wide
selection of paper layouts. All D-Lib articles are written in HTML.
Figure 9 illustrates the major steps in analyzing a D-Lib paper.

The application, running from the command line, (1) inputs a file of
D-Lib URLs. (The file was automatically generated from D-Lib ta-
ble of contents pages.) For each URL, the application (2) constructs
a surrogate object, which proceeds to extract reference linking infor-
mation, and (3) gets a handle to the surrogate; and (4) stores the
surrogate. The Java code to perform this processing is as follows:

Surrogate s = new Surrogate (url);
s.save();

(The reference linking API contains, in addition to the four methods
mentioned earlier, save() and restore().
This example has shown the API being used in a static, or batch,

mode.

5 Evaluation of the Implementation

Because our approach extracts all reference linking and bibliographic
data automatically, it cannot be expected that the data will be 100%

14

urls application
D-Lib

surrogates

surrogate

read
(1)

(3) a surrogate
for this item

(4)save

(2) construct a surrogate
for this url

Figure 9: The application to intralink D-Lib.

accurate. Fortunately (unlike for library services) a reference linking
service for on-line documents does not have to be completely accurate.
Rather, one aims for the “sweet spot” where at least one copy of the
reference can be retrieved (so recall is not that important), and where
there are not too many false links (precision has to be good enough).
We believe that an 80% accuracy level is the minimum acceptable
threshhold that would permit interesting value added services.
Since our work with D-Lib resulted in a large number of surrogates,

we simply examined their reference linking data for accuracy. Our
current results show that we are very near to achieving our desired
level of accuracy. The accuracy of our parsing improves as each new
batch of papers is processed.
There are two categories of parsing errors: incorrectly extracting

bibliographic data about the item being analyzed; and incorrectly
parsing the reference strings contained in the analyzed items. We
therefore devised a performance metric based on both of these inputs.
For each item analyzed, the item accuracy is the number of ele-

ments parsed correctly, divided by the total number of elements in the
item. Specifically, the elements used are: the item’s title, the item’s
authors (each author counts as one element), the item’s year of publi-
cation, the reference contexts (each context counts as one element) and
the average reference accuracy times the number of reference strings.
The reference accuracy for one reference string is the per centage of

its elements that are correctly parsed. These elements include: title,
each author, year, contexts, and URL (if present). Figure 10 shows
a hypothetical item with its hypothetical references, the hypothetical
parsing results, and calcluation of the item accuracy, in this case 75%.
For evaluation purposes, we selected a random set of 70 D-Lib

papers. Of this number, 4 were not able to be converted to XML (i.e.
XHTML) and so were discarded. For the remainder, item accuracies
were determined by human inspection of the data contained in stored
surrogates; the item accuracy is plotted in Figure 11. As can be seen,
most of the items lie above our desired 80% level of accuracy.

15

Reference Accuracy (16 reference strings)
Number Number Reference Number Number Reference

Ordinal Elements correct Accuracy Ordinal Elements correct Accuracy
1 7 4 57 9 4 3 75
2 5 1 20 10 5 5 100
3 5 5 100 11 5 5 100
4 5 5 100 12 8 6 75
5 7 7 100 13 5 2 40
6 5 5 100 14 6 6 100
7 4 1 25 15 5 1 20
8 7 6 86 16 4 1 25

Total Reference Accuracy = 1123; Average = 1123/16 = 70.19

Item Accuracy
How Many

What How Many Correct %
title 1 1

authors 2 0
year 1 1

contexts 8 8
references 16 11

Totals 28 21 75%

Figure 10: Example of Item Accuracy for hypothetical item with 2 authors,
16 references and 8 reference contexts. First calculate the average Reference
Accuracy (top figure, 70%). Then in the bottom table, use 70% of 16 (11)
references as the average accuracy of reference parsing. The Item Accuracy
metric is then 21 divided by 28, or 75%.

16

Figure 11: Item Accuracies for a set of 66 D-Lib papers

D-Lib 1995 to August 2000 Subsample: Metadata Extraction
Description Number % of Total
Number of D-Lib papers: 70 100
Converted to XHTML: 66 94
Extraction is Perfect 45 68
Good (70% or more) 9 14
Poor (below 70%) 12 18

Table 1: Number of D-Lib items whose bibliographic data was correctly
extracted. The rightmost 2 columns are the 70-item subset of D-Lib papers.
The bottom 3 rows are a per centage of row 2, that is, of the items that could
be turned into XHTML.

For a given set of items, the number and kind of references in those
items is much larger and varied than the set. Figures 12 and 13 show
the accuracy of parsing the reference strings in the same set of D-
Lib papers. Again the majority of the references parse to the desired
degree of accuracy, with a surprising number parsed perfectly. The
overall level of accuracy is above 80%.
While the overall averages are acceptable, it is harder to get ac-

curacy concentrated into one place – that is, to parse all the item’s
metadata and each its references correctly. We therefore look at how
often it was possible to perfectly extract a paper’s metadata, which
would correspond to the number of times the user would get a per-
fect answer in response to the getMyData() method. We also looked
at how often reference strings in a paper are perfectly parsed, which

17

Figure 12: Reference Accuracies for a set of 66 D-Lib papers, batch 1.

Figure 13: Reference Accuracies for a set of 66 D-Lib papers, batch 2.

D-Lib 1995 though August 2000 Sample
Description Number % of Total
Number of References: 504 100
Parsing is Perfect 288 57
Good (70% or more) 102 20
Poor (below 70%) 114 23

Table 2: Number of correctly parsed references in the 70-item sample of
D-Lib Papers. The two right-most columns show the results for 66 D-Lib
papers that contain 504 references

18

corresponds to the quality of the response to the getReferenceList
request. The results are contained in Tables 1 and 2.

6 Conclusions

This project shows that automatic extraction of reference linking in-
formation is difficult, but possible. The extraction of reference linking
data is difficult mainly because parsing text produced by many differ-
ent authors in many different formats with many different conventions
is problematical. However, we have found that there are a relatively
limited set of variations in format, and have successfully developed
grammars to handle most of them. A separate paper [4] discusses this
problem in more detail, and presents some algorithms for extracting
reference linking information.
At this point we are analyzing papers, examining the errors, patch-

ing up the Java API, and then analyzing new papers. As each addi-
tional paper gets processed, the implementation improves a little. If
we look at the proportion of elements that can be correctly extracted
from an item or from a reference, we have more than 80% item and
reference accuracy.
Of course, using any available metadata would improve this ac-

curacy, since then we would need only to handle context extraction
and matching reference strings to contexts. But in our D-Lib analy-
sis, such metadata has only recently begun to be available, and so we
extract this information ourselves, automatically.
ResearchIndex also automatically extracts data from items discov-

ered online, and does a remarkably good job. Its main strength lies
in applying clustering methods and other artificial intelligence tech-
niques to the analyzed material. Our software does not incorporate
AI methods, but does almost as well.

7 Further Research

When the API is used in batch mode (where surrogates are saved for
re-use), it might be useful to run an offline “upgrade” procedure which
allows human editing of surrogate encapsulated data. When an edited
surrogate is resurrected, it will have the corrected information. How
to expedite this process is one potential area for research.
Another research area is data consistency. Over the course of time

many surrogates are instantiated and the same work could be en-
countered more than once (for example, as references in two different
items). Slightly different data could exist for each instance. The prob-
lem then is to let the two surrogates that “know” about each version
pool their information so that both surrogates have consistent data.

19

This requires either that the surrogates be able to find and commu-
nicate with each other, or that there be a central database that both
surrogates could consult.
We might investigate in future research the problem of arranging

for the surrogates to communicate among themselves. For now we
keep a small database of works seen so far which at least allows sketchy
information to be updated.
The work done so far indicates that the architecture and design

for the reference linking API are sound. The flexible object-oriented
API makes it exceptionally easy to build new reference linking appli-
cations.

20

References

[1] W. Arms. Automated digital libraries: How effectviely can com-
puters be used for the skill tasks of professional librarianship.
D-Lib Magazine, July 2000.

[2] H. Atkins, C. Lyons, H. Ratner, C. Risher, C. Shillum,
D. Sidman, and A. Stevens. Refererence linking with
DOIs: A case study. D-Lib Magazine, 6(2), February 2000.
<http://www.dlib.org/dlib/february00/02risher.html>

[3] D. Bergmark and S. Keshav. Building blocks for IP telephony.
IEEE Communications Magazine, 38(4):88–94, April 2000.

[4] D. Bergmark. Automatic extraction of reference linking infor-
mation from online documents. Technical Report TR 2000-1821,
Cornell Computer Science Department, November 2000. in prepa-
ration.

[5] E. Garfield. Science Citation Index - a new dimension in indexing.
Science, 144(3619):649, 1964.

[6] Steve Hitchcock, Les Carr, Wendy Hall, Stephen Harris, S. Pro-
bets, D. Evans, and D. Brailsford. Linking electronic journals:
Lessons from the Open Journal project. D-Lib Magazine, De-
cember 1998.

[7] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital li-
braries and autonomous citation indexing. IEEE Computer,
32(6):67–71, 1999. <http://www.researchindex.com>

[8] Sandra Payette and Carl Lagoze. Value-added surrogates for dis-
tributed content. D-Lib Magazine, 6(6), June 2000.

[9] Elaine Svenonius. The Intellectual Foundation of Information
Organization. M.I.T. Press, 2000.

[10] Herbert van de Sompel and Patrick Hochstenbach. Reference
linking in a hybrid libary environment, part 2: SFX, a generic
linking solution. D-Lib Magazine, 5(4), April 1999.

21

