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RoboCup (The World Cup Robot Soccer) is an attempt to promote AI and robotics
research by providing a common task for evaluation of various theories, algorithms, and
agent architectures. In order for the robot (physical robot and software agent) to play a
soccer game reasonably well, wide range of technologies need to be integrated and
numbers of technical breakthroughs must be accomplished. The range of technologies
spans both AI and robotics research, such as design principles of autonomous agents,
multi-agent collaboration, strategy acquisition, real-time processing and planning,
intelligent robotics, sensor fusion, and so forth. [6]
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The following terms are used extensively throughout the document.

Blobs: The term blob refers to a region of the image where all of the pixels in that region are of a
homogeneous value. The surrounding area of the image is of a different value.

Blob Identifier Image: The blob identifier image is a binary image that contains blobs. The blob
analysis module can compute blob features on grayscale images but needs the binary image to locate the
regions on which to compute features.

Connected Components: Pixels in an image that are neighboring and all contain the same pixel value. The
neighbors can be defined by using a 4 connected lattice or an 8 connected lattice. Two regions of equal
pixel values but separated by a different value are not considered to be of the same connected components.

Interesting Color: Colors that are being actively sought during the vision processing.

Oriented Team Marker: A team marker that has had an orientation marker registered to it.

Primary Color: One of the three colors that are used to locate everything on the playing field. The colors
are orange, blue, and yellow. Orange identifies the ball, and blue and yellow identify the robots and the
team that they belong to.

Robot Profile: The current position, orientation, linear velocity, and rotational velocity for the robot in
question. These variables are the current values of the linear tracking filter and the information that is sent
to the artificial intelligence computers.

Robot State: The position and orientation of the robot in equation.

Secondary Color: Any other colors that are used for gathering information about the current state
of the robots. This includes information such as orientation. The secondary colors can be any color other
than the primary colors.

Team Marker: A marker that is placed on top of the robot to identify the team that the robot belongs to.
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The RoboCup competition is a program designed to promote robotics research through out the world by
defining a standard problem from which several issues can be addressed. The competition requires a cross-
discipline effort including aspects of Electrical Engineering and Mechanical Engineering as well as
Computer Science. To produce a competent team; the system requires mechanics, digital and analog
electronics, control theory, system theory, algorithms, artificial intelligence, and real-time sensory
processing. The goal of the RoboCup Initiative is to build a system that can play a game of soccer using
robots for the players based upon the rules stated in Appendix A.
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The RoboCup system is designed to play a game of soccer in a way that resembles an actual soccer game
played by human players. The system is completely autonomous and free of human intervention during
game play. The system contains four main components:

•  The vision system
•  The artificial intelligence system
•  The wireless communication to the robots
•  The robots

The artificial intelligence broadcasts commands over a wireless network to the robots, which in turn carry
out the commands. The vision system determines the current game state and sends the state to the AI
computers for further processing and determination of a strategy to be executed.

The system is designed to run at a rate of 60 Hz, and the robots are designed to achieve a maximum
velocity of 2 m/s and a maximum acceleration 2.94 m/s2. The system has been implemented and is
functional, yet runs at a frame rate of 40-45Hz.
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The vision system consists of everything from the lighting and the markers on top of the robots, through the
acquisition and processing of the visual data, to the transmission of the processed data to the artificial
intelligence computers. The vision system processes color images from a CCD camera to locate and track
the robots and the ball. It consists of segmenting the image, locating the objects that are considered to be
interesting, identifying, and tracking these objects. This information is then sent over the network
connection to the artificial intelligence system.

The field conforms to fairly stringent constraints to aid in the visual processing of data. It is uniformly
illuminated at levels between 700 – 1,000 lux, and the number of colors on the field is limited to a few.

The block diagram given in figure 1 describes the system. A camera is mounted above the field to perceive
the global state of the system. Each robot is marked with a team marker that is used to identify the team
that the robot is a member of. These colors are set forth in the RoboCup rules and are either yellow or blue.
The ball is an orange colored golf ball. Aside from the team markers other markers may be placed on top of
the robot, such as an orientation marker, or identification marker. Each frame is grabbed from the camera
and processed using a color segmentation algorithm to separate the colors that are deemed to be interesting.
The interesting colors are then processed according to the classification that each colored object on the field
can fall into. These colors are:
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•  Orange signifying the ball
•  Yellow signifying one team
•  Blue signifying the other team
•  White signifying the walls, field lines, and the

orientation of the robots
•  Green signifying the playing field
•  Black signifying the physical robot covers

Of these six colors only four are considered to be interesting.
They are orange, yellow, blue, and white. The other color
regions of the image are thrown away. The location of the
ball, and the locations and orientation of the robots are
computed. The robots are identified and ordered to specify
which robot corresponds to which team marker. The ball and
robot states, composed of the position and orientation in the
case of the robots, is filtered using a tracking/prediction filter
to reduce the amount of measurement error that is inherent in
the digitization of the image. The states of the ball and the
robots are sent to the AI system over a UDP network
connection for strategy processing and review.

The system hardware is comprised of:

•  1 Sony DXC-9000 3-CCD Color Camera with Zoom
Lens

•  1 Matrox Genesis Image Processing Board with 64 MB
of SRAM and Grab and Display Modules

•  1 Century Optics Wide Angle Adapter

The system software is comprised of:

•  Image Segmentation
•  Blob Analysis
•  Robot Orientation Determination
•  Robot Identification and Linear Filtering
•  Network Functions to Transport Data Across UDP/IP

Connection

The system is built up of 3 separate programs. They are the
calibration program, the vision system proper, and the vision
system display client. The calibration program allows for
color thresholds to be determined in a graphical way. The
vision system proper acquires and processes the digitized
frames and disperses the resulting data. The vision system
display client provides graphical visualization of the
processed data from the vision system proper by acquiring
data from the network and plotting this data in a window.
The vision system display client requires no special hardware
or software.

There are several modes of operation for the vision system. The processed data can be sent to either one or
two artificial intelligence systems. It can also be sent optionally to an arbitrary number of vision display
clients. Two artificial intelligence systems provide the capability for two teams to compete with the use of a
single vision system. The system also allows for the use of difference images before segmentation to
eliminate field noise, and also allows for the optional use of filtering of tracked objects.

Physical Playing Field

Camera

Image Acquisition and
Digitization

Image Processing Module

Tracking Module

Identify Robots

Orient Robots

Filter Data Points

Network Data Dispersion

Lighting

Segment Image Based
on Color

Locate All Interesting
Objects

Figure 1. Vision System High Level
Block Diagram
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The vision system must be able perceive the current game state. This means that it must identify the objects
on the field and track them in real-time with a minimal delay. It needs to separate the ball, two different
team markers, and any additional robot markings from the rest of the field in a reliable way. Each robot on
the Cornell team needs to be able to be identified uniquely in some manner, whether physically if the robots
are visually heterogeneous or in software if the robots are visually homogeneous. This data needs to be
transferred to the AI system. The vision system also needs to be implemented within the time frame given.
The time frame is 9 months.
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The vision system was analyzed and the requirements were determined by, and influenced the requirements
of the system as a whole. The camera was determined to be a single color camera, which can image the
entire field at a height of at least 2.5 meters. The coloring of the additional markers on top of the robots was
determined to be of a uniform color and the robots to be visually homogeneous. The vision frame rate was
determined to be 60 Hz processing an entire frame (both even and odd fields) of data. Each robot needs to
be able to have the orientation determined, and uniquely identified by the system. A separate workstation
was chosen to process all of the vision data and the information needs to be sent to a separate computer
over a network connection for all artificial intelligence processing. The operating system was chosen to be
Microsoft Windows NT. The vision system needs to be able to be calibrated as conditions change and
needs to have a user interface to allow for changing of the system state.
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A global vision system was chosen to allow a suitable camera without size and processing constraints. The
robot requirements specify that on-board robot vision requires that the robot height must be within 22.5 cm.
An on-board vision system also requires either the camera data must be processed on the robot, or sent to a
central processing workstation over wireless communication. Processing vision data requires a large
amount of processing power and the processed data needs to be merged in some comprehensive way to
allow for an organized strategy to be determined by the artificial intelligence system. To eliminate these
problems, a single camera is used to resolve the state of the game. This eliminates both the need to process
vision data and merge this data into a unified game state, and the need to process the data on the robots
themselves. The implementation of this system also allows it to be completed and fully tested within the
time frame given. The use of the single camera thus required that the camera have a high enough resolution

Table 1. Spatial Error

Dimentions of the Field Length (meters) Width (meters)
2.74 1.525

Camera Resolution

Height Width
Resolution Along Field 

Length(meters)
Resolution Along Field Width 

(meters)
200 200 0.01370000000 0.00762500000
320 240 0.00856250000 0.00635416667
512 512 0.00535156250 0.00297851563
640 480 0.00428125000 0.00317708333
800 600 0.00342500000 0.00254166667

1024 768 0.00267578125 0.00198567708

I m a g e  R e s o l u t i o n 6 4 0 4 8 0

C a m e r a  F r a m e  R a t e  ( s ) 0 . 0 1 6 6 6 7

N u m b e r  o f  C h a n n e l s 3

N u m b e r  o f  C o l o r s 4

C o l o r  T h r e s h o l d s  w i t h o u t  
D i f f e r e n c e  I m a g e s

C o l o r  T h r e s h o l d s  w i t h  
D i f f e r e n c e  I m a g e s

I m a g e  P r o c e s s i n g
N u m b e r  o f  D i f f e r e n c e  I m a g e s 1

N u m b e r  o f  M a s k  G e n e r a t i o n s 1

N u m b e r  o f  I m a g e  M e r g e s 1

N u m b e r  o f  C o l o r  T h r e s h o l d s 1 2 1 2
N u m b e r  o f  L o g i c a l  O p e r a t i o n s 4 4

N u m b e r  o f  B l o b  A n a l y s i s 4 4

T r a c k i n g
N u m b e r  o f  B a l l  t o  T r a c k 1 1

N u m b e r  o f  C o r n e l l  R o b o t s  t o  T r a c k 5 5

N u m b e r  o f  O p p o n e n t  R o b o t s  t o  T r a c k 5 5
N u m b e r  o f  O r i e n t a t i o n  B l o b s  t o  T r a c k 5 5

T o t a l  N u m b e r  o f  O b j e c t s  t o  T r a c k 1 6 1 6

BGRI ++=
BGRI ++=

BGRI ++=
I m a g e  R e s o l u t i o n 6 4 0 4 8 0
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and frame rate to locate the robots with minimal error. The error consists of two parts; spatial error and
temporal error. To resolve object locations within a centimeter of spatial error, the camera resolution needs
to at or greater than 320x240. This analysis is given in Table 1. The frame rate of the camera and top speed
of the robots in intertwined. In order to increase temporal error that is inherent in the vision system the
frame rate of the camera needs to be fast enough that the maneuverable area of the field by the robots is
minimal, but yet still maintain a feasible frame rate. The maneuverable area is defined by the area that the
robot can cover within two consecutive frames. This area is inversely proportional to the frame rate. This

analysis is given in Table 2. The use of a single camera requires that the camera must be able to image the
entire field at a height of at least 3 meters as specified by the RoboCup regulations. However, the RoboCup
lab requires that the camera be able to image the entire field at a height of 2.5 meters. This fixes the lower
bound on the lens field of view to be at 63.598°. This specifies that the camera lens must be a wide-angle
lens.  The wide-angle lens will introduce a fair amount of barrel distortion that needs to be compensated
for.
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The RoboCup regulations specify all objects in terms of color. This and other RoboCup teams using color
vision systems motivated the selection of a color vision system for use. A grayscale system will flatten the
color information preserving the intensity information and eliminating the color information of the vision
data. Specifically, a very small distance in grayscale space separates the color orange (ball) and the color
green (field). Thus a grayscale system would be prone to segmentation errors due to noise in the color
values of either the ball or the field. The distance between the two colors on a 255-color scale is about 20
divisions. This is insufficient because this is the most important
differentiation that must be made. A typical image that may be
acquired during the game is presented to the right. The ball and the
field are not differentiable with a high degree of confidence. The
conversion from the RGB color space to the grayscale color space is
given by

This is a non-affine transformation. Colors that have been captured
with a grayscale camera cannot be recovered. 3 CCD color cameras
capture images based on the RGB color space. Upon converting
orange (RGB coordinates of [255, 0, 0]), green (RGB coordinates of
[0, 255,0]), and blue (RGB coordinates of [0, 0, 255]) to grayscale
using equation 1, the intensity value of all of these colors is 85. Thus
differentiating these three colors in terms of intensity is not reliable
and highly prone to image noise. Grayscale images are also highly
sensitive to lighting variations because this is the information that is
captured by a grayscale camera. The colors that are present in an
image of the field can be considered to be clusters in the used
colorspace. In grayscale, these clusters are all located along a single
axis since grayscale is a linear colorspace. In RGB colorspace, the clusters are located in 3-space and thus
are spread about this three dimensional volume with more space between the colors. Since color cameras
capture in RGB space this separation is preserved through the digitization of the color image. The
conversion to grayscale does not preserve this information.

Table 2. Temporal Error

Camera Frame Rate
Area Covered Traveling 

at 2 m/s (meters2)
Area Covered Traveling 

at 4 m/s (meters2)

PAL: 25Hz 0.020096 0.080384

NTSC: 30Hz 0.013956 0.055822

60Hz 0.003489 0.013956

BGRI ++=
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To identify the objects on the field that are marked as interesting, color segmentation is done to separate the
objects from the rest of the field and spurious objects that are located off of the field. The items of each
color deemed interesting are separately processed and tracked. The segmentation procedure is required be
robust to noise and lighting variations across the field. The tracking procedure is required to be invariant to
occasional spurious data points and measurement error inherent in the image processing procedure. The
tracking procedure is dependent upon the robot markings, and the identification of the robots. The tracking
procedure allows for ball and robot prediction into future frames to compensate for delays in the system.
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The vision system processes in linear time with respect to the number of colors that are determined to be
interesting.  To decrease the vision processing time, any additional markers that are placed on top of the
robots are to be of a uniform color. This method also leaves enough separation in colorspace that the
primary colors can be reliably segmented. If each robot is marked with a separate color that uniquely
determines the robot, five new secondary colors are now searched in the colorspace decreasing the
distances between color clusters in the colorspace. For reliable and robust color separation, these distances
need to be maximized. The robots involved are not all bi-directional and capable of turns of arbitrary
radius. To determine the direction that the robot is facing, an orientation marker is placed on the top of the
robot that allows the vision system to realize the direction that the robot is facing. The use of the path that
the robot is traveling is not appropriate for orientation determination since the robot can change orientation
without traversing a path. The robot is also able to travel in both forward and backward directions. Since

Table 3. Vision System Tasks

Image Resolution 640 480

Camera Frame Rate (s) 0.016667

Number of Channels 3

Number of Colors 4

Color Thresholds without 
Difference Images

Color Thresholds with 
Difference Images

Image Processing
Number of Difference Images 1

Number of Mask Generations 1

Number of Image Merges 1

Number of Color Thresholds 12 12

Number of Logical Operations 4 4

Number of Blob Analysis 4 4

Tracking

Number of Ball to Track 1 1

Number of Cornell Robots to Track 5 5

Number of Opponent Robots to Track 5 5

Number of Orientation Blobs to Track 5 5

Total Number of Objects to Track 16 16
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not all robots are bi-directional, the robots are required to have a specific direction at times during game
play. This direction cannot be determined from the forward and backward motion of the robots since the
single marker on the robot is a radially symmetric ping-pong ball placed on the top of the robot. A second
marker is used to eliminate the symmetry of the top of the robot and be able to determine the orientation of
the robot in question.
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Commands from the artificial intelligence system are broadcast to the robots and each robot receives a
command that is determined by that robot position on the field. In order to ensure that the commands are
sent to the correct robots on the field, each robot that is being tracked needs to be identified. A mapping is
required to be performed between the blobs that are located by the vision system to the numbers that the
robots have been programmed to respond to, and the ordered list that is stored in the AI program. The blobs
that are located by the image processing are unordered and initially arranged as they are found by raster
scan order.
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The vision system is separated from the artificial intelligence computers and is to be dispersed to the AI
computer and any other systems that processing the vision data. The possible use of multiple clients
necessitates a communication system that allows for multiple computers to access information from the
vision computer. A local area network is built from the vision and artificial intelligence computers to allow
for the efficient transmission of data to all clients. This system allows for multiple computers to be
physically connected to the vision system. The communication link from the vision system and clients
needs to be built on top of this physical layer. A serial or parallel line allows for only a single computer to
access the data from the vision computer, whereas the network does not contain this property. An Ethernet
link was decided based upon the high bandwidth and availability of device driver abstraction. The Matrox
libraries are compiled for both DOS and Windows NT, but Windows NT also contains the networking
protocol suite for UDP/IP. Thus Windows NT was the operating system platform selected. The use of
Microsoft Windows NT also eliminates direct communication to the ports of the computer
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In order to capture images at an update rate of 60 Hz, the Sony DXC-9000 was chosen. This camera has a
resolution of 640x480 and updates at 60 frames per second, using a full frame transfer. The camera
transmits data using a VGA signal. While the VGA signal is analog, the data that is used to create the
analog signal is digital, thus the SNR is very small. The processing of the data is dependent on the amount
of data that is to be analyzed. At the target frame rate, dedicated hardware was determined to be needed in
order to process at a high enough bandwidth. A frame rate of 60 Hz is fast enough that operating system
scheduling and efficient algorithm coding is a major concern when processing on a computer. To connect
the camera, the Matrox Genesis board was selected because a 60 Hz transfer rate has been tested and
verified with the Sony camera. An alternative DSP board, the Coreco Cobra/C6, was not able to verify the
compatibility of the board with the Sony camera running at the frame rate. The Matrox genesis board also
included an extensive library of image processing function calls. The hardware specifications are included
in Appendix B.
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The selection of the Matrox Genesis DSP board added a significant number of constraints to the
determination of the image processing algorithms. Each call to the Genesis board has an overhead of .5 ms.
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With this overhead, 32 calls to the DSP board will result in the entire processing window being wasted on
overhead. The result is that the number of calls to the image processing board must be minimized. The
speed and efficiency of the image processing functions are also dependent on the type of data that the
image buffer contains. Binary type buffers need to be used as often as possible to increase the speed of
processing.  Also, any colorspace conversions, while attractive, cannot be computed on the board at the
specified frame rate. The price of the vision system hardware prohibited the purchase of a system for each
team. Thus the system must be able to accommodate visual processing for both teams. This includes the
dispersion of the data to two computers simultaneously.
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The vision algorithms consist of an image processing module and a tracking module. The image processing
module is comprised of an image segmentation stage and a blob analysis stage. The tracking module is
comprised of blob orientation, identification, and filtering stages.
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The image processing stage of the vision system answers the question of what is in the image, and where is
the object located in the image. The image processing algorithms need to be developed with attention based
toward optimized speed and accuracy. Each frame of data contains 921,600 bytes of data. Thus the system
must be able to have a throughput of at least 52.7MB of data per second. A single pass through the image
requires a throughput of 105.4MB of data per second. Several image processing algorithms were examined
during the algorithm determination. Each algorithm was considered for speed on the Matrox Genesis board.
These include color histogram backprojection with blob aggregation, an distance classifier with
thresholding, and color thresholding. The color thresholding algorithm was selected for both feasibility and
execution speed.
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The color histogram backprojection algorithm is set forth by Michael Swain and Dana Ballard in [10]. This
algorithm is the equivalent to a correlation of the object model and the image in histogram space. This
algorithm identifies the objects that have a similar color histogram to the model images and then localizes
the blobs based upon the size of the blob of a certain color.

The algorithm consists of two parts: a ratio histogram is projected onto the image and then a box sum is
convolved across the entire image. Both the model (here images of the ping pong balls, and the golf ball)
and the image multidimensional histograms are computed. The histograms are computed in the rg-by-wb
color space.

The ratio histogram is defined to be:

where Ri is the histogram ratio, i is the bin number, Mi is the model histogram, and Ii is the image
histogram. This ratio is indexed based on the number of bins in the histogram. This ratio histogram is then
backprojected onto the image by replacing the image value with the value of Ri that the image point











= 1,min

i

i
i I

M
R

C o lo r
B in a r y  V a lu e  F ro m  C o lo r  

T h re s h o ld in g  (R  G  B )

B la c k (0  0  0 )

B lu e (0  0  1 )

G re e n (0  1  0 )

C y a n (0  1  1 )

R e d (1  0  0 )

M a g e n ta (1  0  1 )

Y e llo w (1  1  0 )

W h ite (1  1  1 )
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references. A box sum is then convolved across the image and the blob centers produce peaks in the image.
The algorithm is executed for four different models. They are the ball, the two team colors, and the
orientation color. After the computation of the box sum, we will be looking for the maximum value when
searching for the ball, 5 peaks when we are searching for any of the other target objects. The output from
the image processing algorithm will be the locations of the 16 blob centers that are found in the image.

The histogram backprojection algorithm is robust, yet computationally intensive. At a resolution of
640x480 the golf ball comprises a width of nine pixels of an area of approximately 68.55 pixels2. The sizes
of the ping pong ball in the image are of a small size ratio when compared to the rest of the image;
approximately 2.23175x10-4. This means that the peaks that are determined by the algorithm are not
significantly above the noise floor that is produced by the rest of the image. Conversion of the captured
RGB space image to the rg-by-wb color space is prohibitively expensive and thus cannot be computed.
Maintaining the RGB color space implies that the backprojection of histogram ratios back onto the image
involve a three-dimensional look up table. The size of this table is 2563 = 16777216 entries. Considering
the anticipated non-uniform lighting at the competition across the field, histogram backprojection will
possibly fail to locate robots in brighter of darker areas of the field. RGB space is highly sensitive to
lighting variations and thus the histograms of similarly colored objects on different portions of the field will
not coincide with the model histogram, evaluating to a low match value. The algorithm requires for each
color to localize:

•  One Histogram Mapping
•  One Image Division
•  One Minimum Calculation
•  One LUT mapping
•  One Convolution (Box Sum)
•  One Peak Determination
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A distance based classifier was considered for implementation to classify each pixel by the distance metric
to each of the expected values all the colors marked as interesting. The distance metric used is defined as

To eliminate the classification of uninteresting colors to those colors that are marked as interesting a
threshold is implemented. The classifier is implemented using the following equation

The classifier involves three steps. First the distance of the pixel color to all target colors is computed. Then
the pixel is classified based on the target class that it is closest to. If the distance is greater than a maximum
distance threshold, the pixel is thrown away. This classifier can be achieved using a radial bias or k-means
classifier for classification target vectors that vary through time. This algorithm requires:

•  Three Image Subtractions with Absolute Value for Each Color (One Subtraction for
Each Color Channel)

•  One Triadic Image Addition for Each Color (One Addition for Each Color Channel)
•  One Minimum Calculation
•  One Binary Thresholding

For the minimum of three colors that need to be localized this results in:

∑ −=
3

TPD







 <=

otherwise

thresholdddistd i

,0

,)min(



Detailed Vision Documentation

20

•  Nine Image Subtractions with Absolution Value
•  Three Triadic Image Additions for Each Color
•  Three Minimum Calculations
•  Three Binary Thresholds

As can be noted, the algorithm runs in time O(n) in the number of colors that are classified. This algorithm
cannot be completed in the target amount of time.
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A color thresholding algorithm was selected as the image processing algorithm for both execution speed
and feasibility. Each color channel is thresholded in RGB space and classified by whether or not the pixel is
contained within the cube that is delimited by the thresholds. This algorithm is well suited since the colors
delimited by the RoboCup federation are well separated in color space. This algorithm produces binary
type data buffers quickly to allow for increased processing speed further into processing. The algorithm
requires:

•  Three Binary Thresholds for Each Color
•  One Logical Operation for Each Color

For the minimum of three colors that need to be localized this results in:

•  Nine Binary Thresholds
•  Three Logical Operations

The color thresholding segmentation procedure can be shown to
be equivalent to the distance based algorithm with a redefinition
of the distance metric that is used. The contours of the original
distance based classifier produce a cube in the colorspace as
shown in figure 3, projected on to a plane for visual clarity. The
color thresholding procedure produces the same contour lines
rotated to align the sides of the cube to be parallel to the axes of
the colorspace illustrated in figure 4. The original classifier
deviates from the norm 2 distance (Euclidean distance) by at
most 9.3%. The color thresholding classifier deviates from the
norm 2 distance by at most 44.2%. These deviations are located
at the points that radiate out from the center of the contour at 45°
from the axes. All of the colors that are defined by the RoboCup
Federation are located at corners of the RGB color cube (Figure
5) and the shortest distances between any two colors are along
the color axes where this deviation is minimal. In the ideal case
of marker coloring the entire colorspace can be split into eight
regions using a single segmentation along each axis. In the
segmentation of the colorspace into eight regions, each color
then occupies a volume that results from the splitting of the
plane with 3 planes. Thus each color band only needs to be
segmented a single time and the colors can be uniquely
identified by the binary values given in Table 4. Each term refers
to whether the volume is in the positive of negative half of the
cube along the specified axis (Figure 6). The color thresholding
requires much less processing time than the other distance
classifier and due to the tight timing constraint fits into the time
window. While a maximum of nine thresholds are required,
several thresholds can also be merged together to reduce the
number of binary thresholds from nine to a much smaller

Contours of
Equal Distance

Figure 3. Contours for Norm 1
Classifier

Contours of
Equal Distance

Figure 4. Contours for Color
Thresholding
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number, with a lower bound of three. This is dependent upon the actual coloring of the objects. To allow
for variations in the coloring of objects the thresholds are set during the calibration procedure and are
loaded into the vision program during runtime and only close thresholds are merged together allowing for
volume overlap. However algorithmic optimizations use all nine thresholds for the primary colors. This
also allows for not having to merge thresholds, and more robust calibration of the system, at the price of a
speed hit.

Red Axis

Green Axis

Blue Axis

Black
(0, 0, 0)

Red
(255, 0, 0)

White
(255, 255, 255)

Blue
(0, 0, 255) Green

(0, 255, 0)

Figure 5. RGB Color Cube with RoboCup Colors

Table 4. RGB Binary Values

Color
Binary Value From Color 

Thresholding (R G B)

Black (0 0 0)

Blue (0 0 1)

Green (0 1 0)

Cyan (0 1 1)

Red (1 0 0)

Magenta (1 0 1)

Yellow (1 1 0)

White (1 1 1)
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All regions that have been classified as belonging to a specified color result in binary blobs in the blob
identifier image for the colors that are considered interesting. Blob features are computed to enable further
processing of the binary identifier image. These features are center of gravity in both x and y coordinates,
blob area, and blob perimeter. The center of gravity for each blob identifies the location of the blob in
image coordinates, the area and perimeter allow for the computation of the compactness of each blob.
During blob analysis all pixels that evaluate to a binary one in the identifier image are connected to the
neighboring pixels, and the features are computed for these connected components.
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The list of blobs that is the result of the image processing is filtered by both size and shape parameters. Due
to the fact that the markers for all objects on the field are of a specified size, any blobs that are not within
the size constraints are thrown away as noise. Every marker is also either circular or square in shape. To
further filter noise from the image processing step, the compactness of all the blobs are computed from the
perimeter and area features of each blob. The compactness of both a circle and a square of ideal shape is
approximately 1. Any blobs that differ significantly from this compactness are thrown away as spurious
data points. This step eliminates a significant portion of the noise in the image.

Red Axis

Green Axis

Blue Axis

Blue Threshold

Red Threshold

Green Threshold

Example of Volume
Formed from Binary
Thresholding using

Three Planes.
(Red: 1,0,0)

Binary ‘0’ for
Blue Channel

Binary ‘1’ for
Blue Channel

Binary ‘1’ for
Green Channel

Binary ‘0’ for
Green Channel

Binary ‘1’ for
Red Channel

Binary ‘0’ for
Red Channel

Figure 6. Example of Binary Coding of Sub-volumes based on Single Band Thresholds
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A separate marker that is placed on top of the robots, eliminating the symmetry of the robot covers,
determines the orientation of each robot. Following blob analysis, each blob that is classified as an
orientation marker is registered to the blobs that are classified as team markers for the team that is being
tracked. The registration performs an exhaustive greedy search of all combinations of orientation and team
marker blob positions and any orientation marker that is within the specified distance to a team marker is
registered to the corresponding team marker, resulting in an unordered list of oriented robot blobs.

The relative locations of the team markers and the orientations of the markers determine the orientation of
the robot. In order to accurately determine the orientation of the robot, the team marker and the orientation
markers are to be spatially located as far from each other as possible within the bounds of the robot covers.
The position of the markers on the robots relative to the actual orientation of the robot is dependent upon
the shape of the robot covers that are used. The robot covers for
both teams are described in the figure to the right (Figure 7). The
orientation markers themselves are sheets of paper that are
placed on the covers of the robots. To change the color of the
orientation marker, a new sheet of the specified color must be
printed or purchased and cut to proper size. Ping pong balls,
those used for the team markers, are not used since the ping
pong balls would be required to be painted to match certain
colors and the color of paper is easier to control. The use of
paper affects the robot orientation due to parallax error in the
images. The physical height of the paper on the robot colors and
the height of the robot marker are not in the same horizontal
plane and thus requires that the parallax error be corrected prior
to determination of robot orientation. Robots are oriented using
the formula

The orientation is performed with respect to the positive x-axis in the image coordinates and is independent
of the placement of the markers on the robot covers. The corresponding robot dependent orientation is
resolved in the artificial intelligence system. The result of the orientation stage is to produce a list of robot
states
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Because all of the robots are visually homogeneous the individual robots need to be identified to ensure that
the correct commands are sent to the appropriate robots. The identification step uses the temporal
continuity that is inherent in the physical state of the system being tracked. The robots can only traverse a
small portion of the field between frame grabs and this information is exploited in the identification step.
The unordered list of team marker blobs is registered to an ordered list of team marker blobs that was
computed based on the information in the previous frame. This registration is performed using an
exhaustive greedy search algorithm, which attempts to register all team marker blobs with the identified
robots from the previous frame based on a distance measure. For each of the robots on the field, the
distance to all of the unidentified team marker blobs is computed and the blob with the minimum distance
is registered to the robot in question. The blob is considered to be identified and the robot state is updated
in the system. The difference between the robot position in the current frame and in the previous frame is
used to compute the robot linear and rotational velocity. This is stored in the ordered list of robot profiles.







−
−= −

om

om

xx

yy1tanθ

Robot Cover

Team Marker

Orientation Marker

Figure 7. Robot Cover Showing
Orientation
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Inherent in the image capture, digitization, and processing; noise in introduced into the system. This noise
is due to pixelation, sensor noise, and segmentation noise. The results of the processing can then be
modeled as x’(t) = x(t) + ν(t), where ν(t) is gaussian white noise. To eliminate this noise a linear tracking
filter is used to smooth the position and orientation information in both the ball and robot states. The
fundamental trade-off of this increased accuracy in the state information is the delay that is due to sudden
changes in the state information. As the standard deviation of the noise in the state information is reduced,
the lag in the tracking filter is increased. However, since a single pixel shift in the location of an orientation
blob produces a 10-15° shift in the orientation of the robot, the filter is necessary to provide accurate object
profile information to the artificial intelligence system. The filter selection for the ball was chosen to be a
linear prediction filter since the ball has constant velocity and no input forces when traveling freely across
the field. A Kalman filter was also considered for tracking of the robot states since the robots can travel in
non-linear patterns on the field and have input forces that are subject to the commands that they are given.
The Kalman filter was not selected due to increased complexity and computation required of the filter, time
to project completion, and speed of the tracking system. Kalman filtering requires approximately twice the
computation time of the linear filtering algorithms and the system tracking rate is fast enough that the
system position and velocity profiles are linearized about the current time in the system. The filtering
computes the position and velocity information and this is kept in the system as an object profile.

The linear tracking filter equations are

The propagation of the filtering equations from the previous frame allows for a predicted robot location in
the current frame. Comparing all of the current robot states to the predicted robot profiles identifies the
robots. The match is based on the distance that the robot has traveled, and the change in velocity between
the two frames. Thus the robot identification is dependent on continuity in both robot position and robot
velocity. The current robot velocity is measured as the distance between the position of the robot in the
previous position and the current team marker blob that is being considered. The result of the identification
using the tracking filter is to keep a point on the field that from being identified as a robot while a robot
moves past that point. The distance that the point travels from one frame to the next is nearly zero and thus
would win in the greedy algorithm that only uses the position information from one frame to the next.

The identification stage of robot tracking is
sensitive to errors from the image processing. If a
team marker is not segmented in the image
processing module, due to such errors as severe
color distortion or improper calibration, The robot
profile for the current frame is interpolated from
the previous robot profile. This allows for a
reasonable approximation to the correct robot
profile since the robots are changing slowly with
respect to the frame rate of the vision system.
During the next frame, the interpolated robot
profile is used to search through the robot states to
determine the identification. If an appropriate
robot state is not found for five frames the robot
profile is considered to be invalid, and the
tracking for that robot is dropped.
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Robots that have been dropped from tracking are reacquired based on oriented robot states that do not
register to any robot states that are currently being tracked. Once all of the team states have been registered
and identified, any remaining robots that should be on the field but are not being tracked are assigned a
robot state, and the robot profile initialized to the current position of the team marker on the field. Since the
robots move with arbitrary motions about the field, there is no reliable way to assign the robot
identification to the robot state that is under consideration. Thus the identification of a robot number to the
robot state is done in an arbitrary way. Hence, if two separate robots are not segmented properly and have
been dropped from tracking, the reassignment of robot numbers to these robots is done by which robot
position is first in term of raster scan order of the field image. This is the main cause of robot
misidentification.

The linear filtering[2] of the robots reduces the amount of noise in the robot positions and orientation by
eliminating high frequency components of the change in data. As the position of the input to the linear filter
varies through time, the filter generates a value that represents an approximation based on the current and
all previous measurements of the position or data. The bandwidth of the filter determines the amount of
noise that is allowed to pass through the filter. The decrease in bandwidth, while reducing the variance of
the output, causes a lag in the estimated value for position or orientation. This is apparent in the phase
response of the filter. Thus, sharp changes in data are reflected in the output after a significant amount of
time. The fact that the filter is second order necessitates that the response of the filter contains dampening
that needs to be accounted for.

The filter performs without steady-state error for the case of constant-velocity of the tracked parameter.
While the ball has constant velocity for times when the ball freely rolling along the field, the robots do not
usually have constant velocity during game play. During game play, the velocity of the robots is constant
because of the frame rate that the vision system runs at. Expanding the position of the robot in one
dimension in terms of its Taylor Series produces

The robots are designed to have maximum accelerations of around 3m/s2. For the anticipated update rate of
60 Hz, this results in the acceleration term for the expansion being

This term is small enough that the acceleration of the robot is not necessary as one of the filter states. For
the case of a constant acceleration, the filtered position and orientation will lag behind the actual value of
the robot by a value of

the result of the truncation of the acceleration term in the Taylor Series expansion.

The transient error of the resulting signal is the sum of all the lag errors for a step change in velocity given
by

The total error is thus the error due to input noise and the filter lag and given by the cost function

...)(
!2

)()()(
2

+++= nnn tx
T

txTtxtx ���

( )
m

s
mx

T 4
2

2

max

2

10166666.4)3(
!2

60/1

!2
−×==��

m
h

Tx
b 3

2

10990.4 −∗ ×−=−=
��

( )∑
∞

=

−=
0

2

n
nny xyD

n



Detailed Vision Documentation

26

where the λ is a Lagrange multiplier that determines the importance of each portion of the error. The
resulting filter gains are related by

4-2 ��� ��0�5������������1����
For efficient transmission of data across the network connection with minimal delay, the UDP transmission
protocol was selected. UDP is a member of the TCP/IP network layer protocol suite and is widely available
and included in the Windows NT socket libraries. Opposed to the TCP/IP transmission protocol, the UDP
protocol does not provide for either guaranteed data delivery or acknowledgement of the data being
received at the destination socket. TCP/IP was not selected due to these features that provide for reliable
data transmission. For any data to be transmitted across a TCP connection the receiver is notified and an
acknowledgement is returned. Then the data is packetized and each packet is sent over the network in turn
once the reception of the previous packet is acknowledged. This form of reliable delivery is very slow and
does not fit our needs since the calls to transmit the data blocks all processing on the transmitting and
receiving machine. The vision and the artificial intelligence computers are connected together using a local
area network that can be disconnected from all other network traffic and computers. This eliminates a
significant amount to network noise, and completely eliminates all networking problems such as dropped
packets due to misrouting, maximum number of hops, and so forth. The UDP protocol is thus sufficient for
the transmission of data from one computer to an adjacent computer on the network.

The communication between the vision system and the artificial intelligence computers is performed using
a client server model, where the artificial intelligence computer places a request for data and the vision
system transmits the data to the address that requested the data. This method allows the artificial
intelligence system to obtain the most recent information that is available from the vision system. Other
problems such as network buffer backup are also eliminated using this model. The network buffer may be
backed up if the vision computer simply sends data without the artificial intelligence system being ready to
read the data from the buffer. This occurs when the artificial intelligence program is started after the vision
system and does not read data from the network buffer during the initialization.
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Image capture and processing is done on the Matrox Genesis DSP board. This includes the image capture,
image segmentation and blob analysis using the Genesis Native Libraries. The tracking is done on the host
processor. Data dispersion over the network is also done on the host computer. For each network
connection that the system is expecting, a separate thread is used to disperse the data.

The vision system uses four main structures to organize the data that is processed. These four main
structures are:
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•  genesisStruct: All devices, threads, and buffers that are used on the DSP board
for image processing.

•  blobAnalysisStruct: All threads, buffers, and result structures that are used
for blob analysis

•  trackingStruct: All structures and arrays that are used for object tracking and
filtering

•  calibrationData: All system parameters resulting from calibration. This holds
all constants that are dependent on the environment and which can change.
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The system is calibrated on initialization using a calibration file that is loaded during system start up. The
file contains all of the necessary system calibration parameters. These include the color thresholds for the
ball and the two robot colors, the starting and stopping positions of the image window, the starting and
stopping positions of the field in the image, the number of robots on each team, the physical scale factor to
convert pixels to meters, the camera height in meters, and the robot height in meters. Many of these
parameters can be set once and do not need to be changed. The calibration file format can be found in
Appendix C. The remaining system parameters are computed using these values taken from the calibration
file.

To eliminate unnecessary processing time in the vision system loop, all buffers that are used for image
processing on the DSP board are allocated beforehand. Buffer allocations on the board are synchronous
function calls, and block system execution until the required memory has been allocated. The size and type
of these buffers is known and thus all buffers are allocated at system startup.

The blob analysis features are also declared in the system initialization. These features are added to the
blob analysis feature buffer. The structure used to transfer the data from the DSP board to the host
computer are declared in an array that is large enough to hold the amount of data that is ever expected to
result from the blob analysis stage. The blob analysis module is also instructed to ignore run information
and to use 4-connected to connect neighboring pixels. A run is a horizontal sequence of blob pixels. The 4-
connected connection scheme defines pixels as being connected if neighboring blob pixels are to the top,
bottom, left, or right of the pixel in question. Blob pixels that are on the diagonal are not considered to be
connected.

The tracking information is initialized to zero initially and there are no objects that are currently being
tracked by the system. During system startup, the user is allowed to optionally select objects that are on a
single captured frame to initialize tracking information and assign initial robot identification numbers. If
this step in omitted, then the system assigns robot identification numbers based on the order in which the
objects are located in the image.

During system initialization, all network threads are allocated and started. The threads are used to service
network requests that are presented to the vision system and to perform data interpolation if necessary.
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The image capture of the frame from the camera is done in a double buffering fashion. This allows for a
frame to be captured into memory on the DSP board while processing takes place. Without double
buffering, the capture of a frame of data needs to be done after processing of the data is completed. As the
frame is captured into memory, processing of data is halted.
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The vision system uses a
circular buffer containing two
separate buffers for the
acquisition of data. More buffers
can also be used. After the
completion of processing a
buffer of data, the input buffer is
marked as free and the next
frame grab is initiated into the
free buffer. The second buffer
now contains new data and
marked as the working buffer,
and the processing moves to the
working buffer. Since the image
processing loop takes more time
to complete then the transfer of
data from the camera to the board, the vision system does not need to wait for the completion of the frame
grab and immediately begins processing to new buffer of unprocessed data.

Since the field only takes up a portion of the image, the field portion of the captured frame is windowed
and used for processing. The location and dimensions of the window is located in the calibration
information that is read at system initialization. This windowed image is stored as a child buffer of the
original image. Separate child buffers of the windowed child buffer provide access to each of the color
channels. This is illustrated in Figure 9. The child buffers allow for processing of image regions and bands
without needing to transfer image data to a separate buffer, increasing the system throughput.

Camera

Image Acquisition and
Digitization

Image Processing Module

Initiate Grab of Next
Frame into the Free

Buffer

Begin Processing
Previous Frame in

the Working Buffer

Figure 8. Image Acquisition and Digitization Breakdown

Original RGB Captured Image
from the Camera with Separate

R, G, and B Bands
inInt3Buf (Double-buffered)

Extracted Child Buffer
Window Representing the

Playing Field with Separate
R, G, and B Bands

winInt3Buf (Double-buffered)

Red Band of the Child Buffer
Window Representing the

Playing Field
rInt1Buf (Double-buffered)

Green Band of the Child
Buffer Window Representing

the Playing Field
gInt1Buf (Double-buffered)

Blue Band of the Child Buffer
Window Representing the

Playing Field
bInt1Buf (Double-buffered)

Figure 9. Image Windowing and Band Extraction
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The color based
segmentation performs
segmentation using the
windowed buffer from the
capture buffer which has
been marked as the working
buffer in the acquisition
stage. The segmentation
allows for the optional
computation of a difference
image to mask the parts of
the field that are not the
objects that are attempting to
be tracked. An image of the
field without robots and
without the ball is captured
and stored in system
memory. The current frame
is then subtracted from this
objectless image and
absolute value is applied.
Regions of the difference
image that are large in any
of the color bands are
regions where there are high
color differences. This is a
good indication that the ball
or one of the robots is
present at that region. The
camera flicker typically will
not allow unchanged regions
of the image to have a
difference image value of zero. The difference image locates the positions of the ball and robots on the
field, but will not produce a constant color across the image. The colors of the objects that are in the
difference are dependent on both the color of the object and also the color of the area in the reference
image. For example, an orange ball will produce an orange object when it is subtracted from the dark field,
but will produce a cyan colored object when it is subtracted from the white wall.

Thus the color constancy needs to be resolved to ensure that the colors will remain constant as the objects
move across the field. To resolve this issue, regions of the difference image which indicate objects are
replaced by the respective portions of the source image sing a binary mask generated from the difference
image. Once the difference image are formed, a binary image where the pixels that above a threshold are
set to 0x00 and those below are set to 0xFF is generated from the difference image. The image that is
generated is a binary mask, which is color channel dependent. In order to generate a mask that is
independent of the color bands, these masks are merged together using an AND operator. This produces a
single band mask where at least one of the color bands differ from the reference image by at least the
threshold are set to 0xFF. Values of 30 to 80 work well to eliminate most of the static image from the
difference image. Once the mask image is generated, the source image is merged with a constant image of
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Generate Mask
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RGB Colorspace
Generating Blob
Identifier Image
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Figure 10. Segmentation Step Breakdown
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value 0x00. This produces an image where
regions of the source image that contain color
differences from the robotless reference image
pass the source image, and the remainder of
the image is constant 0x00. This produces a
merged image such as shown in figure 11.The
result of the difference image is then used for
the color thresholding. If difference imaging is
not used, then the image processing begins
with the color thresholding. The color
thresholding process converts each of the
integer (8-bit) color band images into a binary
image based on the threshold for the color
band. The binary images allow for faster
processing of data due to the reduced data
throughput by a factor of eight. Each color that
is interesting is segmented separately from the
other colors. The bands are also thresholded
using different values to allow for different
thresholds to be used for each color. The
resulting binary images designate the blobs in
the color band where the regions fall into the
threshold volumes on each band. The results
are shown in Figure 13 below.

The colored regions can be extracted using a
simple logical operation that selects either the
positive or negative parts of the binary images
depending on the color. This is shown in Figure 12 to the above. The thresholding produces 12 binary
images, one for each color channel for each interesting color. To perform the logical operation for all the
interesting colors results in four logical operations, where the Boolean function to be performed is taken
from Table 4 in Section 9.1.3. The opcodes for the separate logical operations were derived to perform the
necessary function since the operations are not defined in the Genesis library. The Texas Instruments’ C80

Figure 13. Results of Binary Thresholding for the Ball

Figure 11. Difference and Source Image Merge
Result

Figure 12. Result of Logical Operation
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processor allows for any logical operation to be performed by determining the proper opcode. This custom
opcode generation is described in the manual TMS320C80 (MVP) Parallel Processor User’s Guide and also
described in Appendix D. These opcodes are defined in the file “defines.h”. Due to the function call
overhead of the Genesis Native Library the thresholding is done such that the positive binary images for all
bands is produced for the color that is being separated. This results in the logical operation for all the colors
being an AND of all color bands. Since the Boolean function that the logical operation performs is the
same, all the buffers are processed at the same time with a single call to the DSP board, saving 1.5 ms in
overhead time, and allowing all primary colors to be segmented separately.  The results from all color band
thresholding for a specific band is placed into a child buffer. Then the logical operation is performed on the
parent buffer, which performs the logical operation on all of the results at once. The child buffering is
illustrated in Figure 14. The result of the logical operation is a group of binary identifier images that are
passed to the blob analysis module. These images are arranged such that the blob analysis needs to process
only a single buffer.

The processing times on the Matrox board are presented below in Table 5 where the times include the .5ms

overhead required for all processing function calls to the board. From the times, it is shown that the image
must be subsampled in order for the processing to be completed in close to the required amount of time.
This subsampling doubles the error in the blob position computation. After subsampling, each pixel
corresponds to 8.5625 mm. This increased error represents an error of .313% of the field length and .561%
of the field width. This error is smaller than the error that is introduced into the system during calibration.

The list of times for the image segmentation procedure is given in Table 6. The image segmentation is
performed using the function call “processFrame()”, and can be found in the file
“imageProcessing.c”. The function process frames using the Genesis Native Library calls:

•  ImIntDyadic(): Generate the Difference Image
•  ImIntBinarize(): Generate the Mask Image for All Bands
•  ImIntTriadic(): AND operation on Binary Masks
•  ImIntTriadic(): Merge Source Image and Mask
•  ImBinConvert(): Conversion from 8-bit to 1-bit binary. Color Thresholds
•  ImBinTriadic(): Logical Operation to Extract Sub-volume

Table 5. Image Segmentation Times

Operation Subsample Execution Time (ms)
Convert from Integer to Binary (1 operation) 1 2.79

Convert from Integer to Binary (1 operation) 2 0.836

Logical Operation (all colors) 1 3.334

Logical Operation (all colors) 2 1.52

Table 6. Image Segmentation Times

Operation Number of calls Execution Time (ms) Total Execution Time (ms)

Differnce Image Preprocessing
Generate Difference Image 1 2.680 2.680
Generate Binary Mask for All Bands 1 1.613 1.613
AND operation on Binary Masks 1 1.153 1.153
Merge Source Image and Mask 1 2.579 2.579
Total Time 8.025

Color Thresholding and Segmentation
Conversion from 8-bit to 1-bit 9 0.836 7.524
Logical operation on 1-bit 1 1.520 1.520
Total Time 9.044

Total Time for Image Segmentation 17.069
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Figure 14. Illustration of Buffer Management for Logical Operation
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The blob analysis locates all of the
blobs that are the result of the sub-
volume extraction in the color
segmentation step.  The blob
analysis stage connects all of the
pixels that are a binary ‘1’ together
if they are neighboring each other.
Once all of the pixels are connected,
the requested features are computed
for each blob. These features are
area, perimeter, and center of
gravity. The blob analysis is
performed on the single binary
image that is the result of the color
segmentation step. This allows for a
single call to compute the blob
features. The child buffers for each
individual color are separated to
ensure that blobs are not connected
which correspond to different sub-volumes. Once the blob analysis is completed, the results are transferred
to the host computer from the DSP board. The results are transferred in one step by transferring data into a
structure that contains more features then those that are requested to be computed. These additional features
in the structure are invalid and subsequently ignored in the tracking module. The structure is of type
IM_BLOB_GROUP1_ST. It contains the fields that are described in Code Segment 1. The blob analysis
computes only the binary features of the blob analysis image. Other than binary features, it can also
compute grayscale features; however, the grayscale feature computation takes more processing time than
the binary features, and a grayscale image of the field in also not available. Than would require an
additional image processing step to perform the conversion to grayscale. The binary features also perform
well enough for the locating the blobs. The blob analysis
allows for sub-pixel results when computing the center of
gravity. This is due to the averaging that is used for the
computation.

 The blob area is simply the number of pixels that comprise a
blob. The perimeter of the blob is the total number of edge
pixels in a blob. The times for the blob analysis and transfer
are provided in Table 7. The times for the blob analysis are a
rough estimate; the times are data dependent and vary
depending on the number and size of the blobs. The blob
analysis is computed using the Genesis Native Library
function “imBlobCompute()” and the results are
retrieved using the “imBlobGetResults()”function.

Image Processing Module

Tracking Module

Segment Image Based
on Color

Locate All Interesting
Objects

Compute Blob
Features

Transfer Data from
DSP board to Host

Memory

Figure 16. Blob Analysis Breakdown

/* Blob analysis results --- group1 */
typedef struct
{
    unsigned short number_of_blobs;
    unsigned short label_value;
    unsigned long area;
    unsigned short box_x_min;
    unsigned short box_y_min;
    unsigned short box_x_max;
    unsigned short box_y_max;
    unsigned short number_of_holes;
    unsigned short number_of_runs;
    float perimeter;
    float length;
    float breadth;
    float center_of_gravity_x;
    float center_of_gravity_y;
} IM_BLOB_GROUP1_ST;

Code Segment 1. Blob Analysis Result
Structure
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The blob analysis and transfer are performed in the function “analyseBlobs()” and is found in the file
“imageProcessing.c”

The error in the blob analysis is typical small. The variance for blob positions is 7.4988x10-5 meters along
the x-axis and 3.2395x10-5 meters along the y-axis. X-y plots for the positions of a robot is shown above.
The model for the blob positions can be described as x’(t) = x(t)+v(t) where v(t) is the measurement noise
with mean of 0 and variance as stated above.
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Once the blob results have been transferred to the board, the list of blobs is initially filtered and
preprocessed. The filtering consists of size and shape filtering, and the preprocessing consists of separating
the blobs that correspond to the different colors from each other. The buffer that contains the blob identifier
image contains four child buffers, one for each color. The blob analysis processes the parent buffer to
reduce the amount of overhead for the function call. To separate the blobs that correspond to the different
colors, each blob that is of the specified size and shape is then examined for its position in the blob analysis
identifier image. The size and shape of each blob is first examined to reduce the amount of time to compare
the blob location values.  If the blob falls within a certain child buffer, then the blob is added to the list of
blobs for that color. Once a blob has been added to the list of blobs for a particular color, the offset from
the child window location in the blob identifier image is removed. This results in four separate lists of
blobs. The blob features are no longer needed, and only the center of gravity is used. Each blob is stored as
a list of points in the window using a structure of type point. The point
structure contains only the x and y positions of the blob relative to the
upper left hand corner of the window and are in image coordinates. The
initial filtering and blob preprocessing is found in the function
“preprocessBlobResults()” and is found in the file “track.c”
The filtering constants are defined in the file “defines.h”. These
include the maximum and minimum size for blobs and the maximum
compactness. The blob areas after filtering are between 5 and 35. The
lower bound allows for partial results from image segmentation, yet is
large enough to remove most of the noise from the blob identifier image.

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Robot Path Along X-Axis (meters)

R
o

b
o

t 
P

a
th

 A
lo

n
g

 Y
-A

x
is

 (
m

e
te

rs
)

Figure 18. Position for a Moving Object

0.673 0.6735 0.674 0.6745 0.675 0.6755 0.676 0.6765
0.754

0.7545

0.755

0.7555

0.756

0.7565

Position along x-axis (meters)

P
os

iti
on

 a
lo

ng
 y

-a
xi

s 
(m

et
er

s)

Figure 17. Position for a Stationary Object

Table 7. Blob Analysis Computation and Transfer Times

Operation
Time to Complete using 
difference images(ms)

Time to Complete without 
using difference images (ms)

imBlobCompute 2.636 16.999

imBlobGetResult 2.102 6.695

Total Blob Analysis Time 4.738 23.694

struct Point {
// all values represent pixels

float x;
float y;

};

Code Segment 2. Point
Structure
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The upper bound allows for slightly larger blobs that can result from pixelation of the image and dilation
from setting the thresholds lower than necessary. The ideal blob area is 17.1399 pixels.

The blob compactness is close to one for the objects that are being located. The compactness is defined as:

A circle has the minimum compactness value of 1 and a square has a compactness value of 1.2732. To
allow for slightly irregular shapes to result from the segmentation process, all objects with a compactness
value of greater than 2 are discarded as noise. The filtering and preprocessing removes a significant amount
of noise from the system.

After the blobs have been filtered for size and shape, the barrel distortion and parallax error is removed
from the blob locations. The imaging distortion is removed after filtering to reduce computation for blobs
that are not possibly objects being sought.

The barrel distortion is removed using a third order polynomial fit to the distortion introduced in the lens.
The barrel distortion is a function of the lens itself and thus is independent of both the camera height and
the location of the field in the image.

The parallax error is a function of the camera height and the height of the object under consideration. The
parallax error is produced by the incident angle from the camera to the object on the field. The error is zero
at the point directly below the camera and increases as the object moves radially away from the camera and
as the height of the object increases. Figure 19 describes parallax error. Since different classes of objects
have different heights, the position obtained from the blob analysis is the product of the projection of the
object center onto the image plane. The difference in height of the object requires that all objects must be
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projected onto the same plane and have the
differences in height accounted for. In particular,
the orientation markers and the team markers have
different heights and thus is subject to error if the
parallax error is not removed previous to the
orientation determination. The parallax error is
removed by undoing the projection of the objects.
The projection is removed using the equation

d’ is the true radial distance from the center of the
lens to the object . d is the radial distance from the
camera to the projection of the object. h is the distance from the camera lens to the field, and h’ is the
distance from the object to the camera. The transformation is a scalar and is identified below as P. The
origin of the distances needs to be with respect to the location of the center of the camera, thus the distances
need to be offset to place the origin under the camera. After removing the projection, the coordinates are
converted back to image coordinates. Thus with the coordinate transform, the equation becomes

The transformation can be performed separately and thus removed the need to convert from rectangular
coordinates to polar coordinates. After rearranging the above equation, the transformation becomes

Both the offset and the scalar P can be computed beforehand. The scalar P is computed for each class of
objects; ball, team marker, and orientation marker. These scalars are computed during the system
initialization and are stored in the calibration information. The storage of the scalars is in an array that is
indexed using the constants BALL, ROBOT, and ORIENT, which are defined in “defines.h”. The
parallax error removal is found in “paralaxCorrect()” in “transformation.c”.

 The list of points from the filtering is then sent to the tracking module.
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The tracking module tracks all of the objects on the field. The position of the ball is determined and filtered
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Figure 21. Tracking Module Breakdown
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using a linear tracking filter. The robots are oriented, identified, and filtered also using a linear tracking
filter. The list of points that represent the ball is sent directly to the tracking filter to have the position of the
ball estimated. The blobs that represent the robots and the orientation markers are first registered together,
then the oriented blobs are sent to the tracking filter to be identified and have the robot positions and
orientation estimated.

Object tracking is initiated with a call to “getAllObjectPositions()” in the file “track.c”
Subsequent function calls are handled dependent upon the different modes of object tracking available.
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The orientation procedure registers orientation blobs to team marker blobs by using an exhaustive search.
For each team marker blob, every available orientation blob is examined for possible registration. The
registration consists of examining the Euclidean distance from a team marker blob to all orientation blobs.
If the distance is significantly larger than the physical distance from the orientation marker to the team
marker on the top of the robot, then the next orientation marker is considered. If an orientation marker is
found, then the angle between the team marker blob and the orientation marker blob is computed, the
results are placed into a state structure, and the orientation blob is removed from the list. The state structure
holds the position of the team marker blob and also the angle to the registered orientation marker. If an
orientation marker is not found, then the orientation for the team marker is set to NOT_ORIENTED.  The
computation of the orientation of the robots uses the information already computed during the registration

getAllObjectLocations()
“track.c”

trackBallPosition()
“ball_filter.c” trackRobotPositions()

Robot_filter.c”
Team Brazil and Team Italy

(two calls to function)

trackRobotPositions()
Robot_filter.c”
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orientBlobs()
“orientation.c”

orientBlobs()
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Filter and
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Figure 22. Modes for Object Tracking
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of the orientation and team marker
blobs, allowing reduced
computational complexity. The
orientation registration has
complexity of O(nm) where n is
the number of team marker blobs
found and m is the number of
orientation marker blobs. The
orientation of the robots contains
significant amounts of error. The
variance for the orientation of the
robots is .0017 radians or
5.79.7402x10-2°. These statistics
are for the orientation for a
stationary object. This error implies that the orientation of
the robot orientation should be filtered even if the
position of the robots is not. To reduce the amount of
error in the orientation, the orientation markers are placed
on the edge of the robot covers. This increases the
distance between the two markers. The orientation
determination can be modeled as

The terms vym(t), vyo(t), vxm(t), and vxo(t) are the noise that
is introduced into the system due to measurement and
pixelation. The noise terms are uncorrelated and have similar
distribution. The mean is zero and the variance is as stated above in
section 10.4. The equation can be separated into two parts. The part that
represents the true orientation and a part that represents the noise in the
orientation.

The noise terms then have zero mean and variance that is twice the
variance given above in section 10.4. An approximation to the orientation error can be given by

Where 7.49x10-5 is the variance of the error in the position estimate and .03 is the distance between the two
markers. The variance is then 2.5x10-3 radians or .1430°.

The orientation procedure can be found in “orientBlobs()” in the file “orientation.c”
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struct state {
// position is in pixels

float x;
float y;

// orientation is in radians
float w;

};

Code Segment 3. State
Structure



Detailed Algorithmic Analysis and System Implementation

39

�8-3 �����������
�
���
��� 
�(�)
�����*
����
�'

The robot identification can be done optionally with the linear filtering to aid in the identification. With the
linear filtering, robot misidentification is less prominent. The filter allows for both the position and the
velocity of the robots to be continuous. At the beginning of the identification and filtering process, the
current filter state is updated to predict the robot location in the current frame. The equation for the update
of the filter is

The units that are used for the filtering equations are pixels for the position of the robots and pixels per
frame for the velocity. Since the velocity information is in pixels per frame, the time scale T for the update
equations in one. This update of the filter state provides an estimate as to where the robots are expected to
be on the field and how quickly they are moving during the current frame. The robot identification registers
team marker blobs based on the closeness to this predicted state.

Each team marker blob that is located in the current frame is attempted to be registered with the robots that
are located and tracked from all of the previous frames. The registration is performed using an exhaustive
search of all the team markers that have been found. If the position difference between two successive
frames differs by more than the physically realizable distance, then the team marker blob is disregarded.
The registration is based upon the difference that is possible between the predicted robot location and
velocity and the position and velocity of objects that are observed in the current frame. The team marker
that has the minimal difference is accepted and registered as long as the position is physically realizable.
The difference measure that is used is the sum of the change in position and velocity between two frames.
The change is position from the current frame and the predicted position is computed and allows for the
change in position between the two frames. Since the filtering is working in pixels per frame for velocity,
these values are also the current velocity of the blob that is in question. The difference between this
velocity and the velocity of the predicted state is then computed. These are summed to get the error term
that is the metric for robot identification. The equations used for position error are:
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Figure 25. Identification and Filtering Breakdown
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The equations that are used for velocity error are:

The total error used for robot registration is

Once a robot is found and registered to the ordered list of actual robots, the new robot position is filtered to
generate an estimated position and velocity that is sent to the artificial intelligence computers. The new
state is based upon the observed position in the current
frame and all previous observations with diminishing
weight given to the previous frames.

The identification procedure gives precedent to the states
that have orientation markers registered to them. The
oriented robot states are a good indication that a robot is
located at that location. Once all of the oriented robot states
are examined for robot identification, the unoriented robot
states are then examined. The information is then placed
into a profile structure. The profile structure contains the
position, orientation, and linear and rotational velocity of
the object. This information contains the current state of the
filter for that object. If any of the robots in the ordered list
are still left to be currently located on the field, the
remaining robot profiles are then extrapolated. After
identification, the tracking state for a robot is marked as
either TRACKING or TRACKING_NO_ORIENT
if no orientation information is available but has
been located on the field. If the robot state is
extrapolated, the tracking state for the robot is set to
the number of frames that the profile has been
extrapolated. These states are defined in the file
“defines.h”.

The filtering allows for later extrapolation of the
robot profile into the future. The filtering operates
on both the robot position and the robot orientation.
The robot orientation filtering in complicated by the
fact that the robot orientation is angular. The
assumption made is that the robot can only rotate
about its axis at a rate of π/2 radians per cycle.
Without this assumption the direction of rotation is
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Figure 26. Robot Path with Filtering

struct profile {
// position is in pixels

float x;
float y;

// orientation is in radians
float w;

// linear velocity is in pixels per cycle
float dx;
float dy;

// rotational velocity is in radians per cycle
float dw;

};

Code Segment 4. Profile Structure
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impossible to determine from two discrete measurements. If the direction of the rotation is consistent with
the difference between the measured angle and the predicted angle and within π/2 radians, then the
orientation information is filtered. If at any point the filtered orientation is outside the range -π to π, then
the orientation is recentered to fall into the range.

The filtering is found to reduce the amount of error. The variance of the errors has been essentially reduced
by a factor of two. The variance is 3.2429x10-5 along the x-axis and 5.3253x10-6 along the y-axis.
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Transmission of the data over the
network requires that the data be
formatted and placed into packets.
The packet structure contains all
of the relevant information about
the position and velocity of the
ball and all of the robots that are
on the field. The structure is found
to the {CODE}. All of the data is
given in Cartesian coordinates.
The data that is sent to the
artificial intelligence computers is
the data that is used for the tracking filters with the exception of the opponent robots, which are not filtered.
The inclusion of the additional information in the opponent robot structure allows the same packet structure
to be used for the vision display client. The orientation and rotational velocity is considered to be invalid
for the opponent robots when the data is sent to the artificial intelligence.

The data packetization is determined by the mode that the vision system is currently operating in. If the
vision system is in IN_HOUSE mode, then the robot position, velocity, orientation, and rotational velocity
is computed for all of the robots on the field. All of the data for the Brazil robots and only the position of
the Italy robots is sent to the Brazil artificial intelligence computers. All of the data for the Italy robots and
only the position of the Brazil robots is sent to the Italy robots. Thus the artificial intelligence computers
are not given an additional advantage when they are competing against each other. The data that is sent to
the computers in IN_HOUSE mode is similar to what is to be expected during competition. These two sets
of packets are then sent to the artificial intelligence computers upon the request for new data. In
competition mode, only one set of data is packetized and sent to the artificial intelligence computers upon a
request for more data. If the vision display client is being run, then the all of the data that has been collected
for the ball, and the robots is packetized and sent to the vision display client upon a request for the data.
This data contains the position, velocity, orientation, and rotational velocity of all the robots on the field, if
the system is in IN_HOUSE mode and all information for the ball and Cornell robots, and the position only
for the opponent robots if the system is in competition mode.

Tracking Module

Network Data Dispersion

Packetize Data for
Transmission

Transmit Data Upon
Request from Client

Figure 26. Network Dispersion Breakdown
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The network connection is established by opening a
server port on the vision computer and servicing a request
for data. If the vision system is in IN_HOUSE mode, the
Brazil artificial intelligence computer connects on the
port BRAZIL_PORT and the Italy artificial intelligence
computer connects on the port ITALY_PORT. The
artificial intelligence computer when the system in
running in competition mode connects on the port
VISION_PORT. If a vision desplay client is running, the
client connects on the port DISPLAY_PORT. The port
numbers are defined in the file “defines.h”.

The packet structure contains the number of opponent
robots that are found on the field. This number
(oNumber) contains the amount of the opponent robot
information that is valid in the array. The number of the
team robots (fNumber) contains the validity of each of
the robot information that is in the array. Since the
friendly robots are ordered according to the physical
robot numbers that are assigned to them, the number of
the robot on the field is considered to be valid is the
corresponding bit in the 8-bit number is a ‘1’. If the bit is
a ‘0’ then the robot information is considered to be
invalid. This can result if the robot is not on the field, or
it the robot track has been dropped.

To service a network request for data, the vision system
thread waits for a request to come in from another
computer. This request is a single byte that is identified
as SUBMIT_REQUEST. Once this byte has been
received, the vision system sends the appropriate data to
the address that the request came from.
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The vision system is multi-threaded. One thread contains
all of the processing and the tracking proceedures. The
other threads are for servicing network requests and for
the user interface. Only the required number of threads
are built to reduce the amount of distributed processing.
The network service threads are assigned such that there
is one thread servicing each of the ports that are open on
the machine. Thus during IN_HOUSE mode, there are
two network service threads, and in competition mode
there is only one network thread. The network data
structures that are sent to the artificial intelligence
computers are global variables that are accessible to all of
the threads. To prevent sending data over the network,
and writing data to the data structures, a mutex is used for
mutual exclusion. There is one mutex for each network
data structure. Thus the mutexes are locked for the shortest amount of time, reducing the waiting time to
read the data and copy it onto the network.

typedef float pos_t;
typedef float vel_t;
typedef float ang_t;
typedef float rot_t;

struct ballTrack_net{
pos_t x;
pos_t y;
vel_t dx;
vel_t dy;

}; /* 128 bits */
/* 16 bytes */

struct oRobotTrack_net{
pos_t x;
pos_t y;
vel_t dx;
vel_t dy;
ang_t w;
rot_t dw;

}; /* 192 bits */
/* 24 bytes */

struct fRobotTrack_net{
pos_t x;
pos_t y;
vel_t dx;
vel_t dy;
ang_t w;
rot_t dw;

}; /* 192 bits */
/* 24 bytes */

typedef struct localNetworkStruct{
struct ballTrack_net ball;
struct fRobotTrack_net fRobot[5];
char fNumber;
struct oRobotTrack_net oRobot[5];
char oNumber;

} netdata_t; /* 2064 bits */
/* 258 bytes */

Code Segment 5. Network Data Structure
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These are the official rules for 1999 RoboCup F-180 League play (revised 20 January 1999).
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Surface

A table tennis table is the official surface for matches. The size and color of the table is defined as the
International Table Tennis Federation (ITTF) standard. ITTF regulations concerning the height of the table
surface above the floor do not apply. We will provide an appropriate height for the RoboCup competition,
which will be chosen to aid the global vision systems. Dimensions are 152.5cm by 274cm; the color is
matte green. Every effort shall be made to ensure that the table is flat, however, it is up to individual teams
to design their robots to cope with slight curvatures of the surface. (please refer to ITTF Regulations for
more details on the table).

Here is a picture of an older version of the field. Note that the goals are different now.

Walls

          Walls shall be placed all around the field, including behind the goals. The walls shall be painted
white and shall be 10cm high. Behind the goals walls will be 15cm high and painted one of the two
appropriate goal colors.
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          Four small panels are positioned in the corners to avoid balls getting stuck. As shown in the figure
below, they are located 3cm from the corner for each axis. Green stripes 1cm wide are painted on the
corners to aid robots in visual identification of the edge of the panel.

Goals

          The width of each goal is 50 cm, (approximately 1/3 of the width of the shorter end of the field). The
goal is 18 centimeters deep. The wall continues behind the goal but increases to a height of 15cm. There is
no safety net over the goal, nor is there a horizontal goal bar. Robots can not fall off the playing area
because of the wall. The wall and area behind the goal line will be painted either yellow or blue. It should
be noted that a robot may use the area behind the goal.

Defense Zone

          A defense zone is created around each of the goals. It extends from the front of the goal to 22.5cm
into the field. The zone is 100 cm wide. Only one robot from each team may enter this area. Brief passing
and accidental entry of other robots is permitted, but intentional entry and stay is prohibited.

          Once a defending robot (goal keeper) has hold of the ball or is facing and in contact with the ball
then all attacking robots must leave the area. The attacking robot can not interfere with the goal keeper.
Given the size of the defense zone a robot is said to be in the defense zone if any part of it is within the
area.

          Also, an attack robot can not intentionally interfere with the movement of the defenders robot in the
defense zone. A robot can not be used to block the movement of the goal keeper.

Table markings/colors

•  The field shall be dark green. ITTF's color regulation is flexible, there may be slight
differences in the color of the table. Robot designers should take this fact into
consideration.

•  Walls are white.
•  A 1 centimeter thick white line will be painted across the table (the center line), with

a center circle 25 centimeters in diameter placed at the center.
•  The border of the defense zone will be painted in white, with a width of 1cm.
•  The area behind the goal is either dark blue or yellow (one end is dark blue and the

other yellow).
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Area

          The total floor area occupied by a robot shall not exceed 180 square centimeters.

18cm rule

          The robot must fit inside an 18cm diameter cylinder. For rectangular robots the diagonal length
would be the constraint. Also note that some shapes, even though no dimension exceeds 18cm will not fit
within an 18cm cylinder (e.g. an 18cm x 18cm x 15cm triangle). 15cm by 9.9cm rectangular robots will fit.
15cm by 12cm rectangular robots are too big even though their area is 180cm^2.

          ONE TIME 1999 EXCEPTION: In RoboCup-99, robots that competed in RoboCup-98 will be
allowed to compete, even if they fail the 18cm rule, provided they cannot be easily modified to comply.
This exception will be eliminated in 2000.

Height

          If the team is using a global vision system robot height is restricted to 15 cm or less. Otherwise the
robot height must be 22.5 cm or less. Height restrictions do not apply to radio antennae and visual markers.

Marking/Colors
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          Coloring is a very sensitive issue, because it is very difficult to guarantee exactly which colors will
be used at the competition. Colors also change depending on lighting. Even though the organizers will
make a sincere effort to provide standard colors, the designers should design their robots to cope with
variations in color. Each team will be given certain amount of time to fine-tune their robot for the actual
fields and settings on a day before the competition.

          Markings for robots need to enable visibility from above (for global vision) and from the playing
field (for mobile vision). To support this, each robot will be marked using a single colored ping-pong ball
(provided by the RoboCup organization) mounted at the center of their top surface. Unless the shape or
drive mechanism of the robot does not allow it, the marker should be located at the center of rotation of the
robot. If this is not possible the relationship between the marker placement and the axis of
movement/rotation must be advertised before the competition.

          All of the robots defending the yellow goal will display a yellow ping pong ball. All of the robots
defending the blue goal will display a blue ping pong ball. Each team must be able to use either color as the
primary color.

          For mounting purposes, ping pong balls will be drilled with two small holes (2 mm in diameter)
through their axis to provide for mounting on a spindle. Each robot will be fitted with a spindle for holding
the balls. Note: the robot's antenna may be used for this purpose.

          Other than the official markers, no external colors of the robot, including the body may be goal-blue,
goal-yellow, field-green, or ball-orange. While it is not specifically required, black is the recommended
color for the body of the robot.

          Teams may use any additional markers they wish, provided:

•  The color of the marker is not goal-blue, goal-yellow, field-green or ball-orange.
Participants should strive to find colors as different as possible from these
"official" colors.

•  The marker does not cause the robot to exceed any of the horizontal dimension (area)
restrictions described above.

•  They provide multiple copies of their markers at the competition so other teams may
use them to calibrate their vision systems.

Inspection

          The robots will be examined by the referee before the game to ensure that they meet these
constraints. As one test for area compliance, the robots must fit into an 18cm diameter cylinder. Whilst
being inspected each robot must be at its maximum size; anything that protrudes from the robot must be
extended. Except as allowed under "conflict resolution" below, ANY VIOLATION OF DIMENSION OR
COLORING CRITERIA MAY DISQUALIFY THE ROBOT FROM COMPETITION.

Team

          A team shall consist of no more than 5 robots.
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     An orange golf ball provided by the RoboCup organization shall be used. An example of the official ball
will be sent to requesting teams.
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     Organizers will make every effort to provide the teams access to the competition area at least two hours
before the start of the competition. They will also strive to allow at least one hour of setup time before each
game. Participants should be aware, however, that conditions may arise where this much time cannot be
provided
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     The games consist of the first half, break, and the second half; each is 10 minutes. Each team will be
allowed some set up time at the start of the game. Before the beginning of the second half, teams will
switch sides (including their blue or yellow team markers). However, if both teams agree that switching
sides is not necessary, they will not be required to switch.
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     Each team will be allocated four five-minute timeouts at the beginning of the game. In case a team is not
ready to start at the scheduled time, they may use their timeouts to delay the game up to 20 minutes.

     During a game, timeouts will only be granted during a break in play.
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     In general, substitutions are only allowed for damaged robots during a break in play. However, if in the
opinion of the referee, a damaged robot is likely to cause serious harm to humans, other robots or itself the
referee will stop the game immediately and have the damaged robot removed. In this case, the game will be
restarted with a free kick for the opposing team (the team that did not have the damaged robot). If there is
no immediate danger however, the referee may allow the game to continue.

     To replace a robot by substitute at other times the following conditions must be observed:

•  a substitution can only be made during a stoppage in play.
•  the referee is informed before the proposed substitution is made,
•  the substitute is placed on the field after the robot being replaced has been removed,
•  the substitute is placed on the field in the position on the field from which the

replaced robot was removed.
•  a substitution can only be made during a stoppage in play.
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     Robots can use wireless communication to computers or networks located off the field. Participants
shall notify the organizers of the method of wireless communication, power, and frequency by the 1st of
May. The tournament committee shall be notified of any change after that registration as soon as possible.

     In order to avoid interference, a team should be able to select from two carrier frequencies before the
match. The type wireless communication shall follow legal regulations of the country where the
competition is held.
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     The use of a global vision system or an external distributed vision systems are permitted, but not
required, to identify and track the position of robots and balls. This is achieved by using one or more
cameras.

     Cameras positioned above the field will be mounted on a beam suspended from the ceiling. The beam
will be positioned 3 meters above the table. If both teams agree, and the hosting facilities allow it, another
height may be used. Cameras may not protrude more than 15cm below the bottom of the beam. The
placement of cameras is performed on a game by game basis, and the teams choose camera positions by
tossing a coin to find which team places a camera first. The use of a global vision system shall be
advertised at the time of registration, and detailed arrangements shall be discussed with the RoboCup
organizing committee.
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     The local organizer will inform all participants of the camera attachments required to use the beam
provided.
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     A description of the lighting will be provided by the local organizer. The intent is to provide 700-1000
LUX uniform light.
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     Each team may designate one robot as a goal keeper. The goal keeper can hold and manipulate a ball for
up to 15 seconds within its penalty area. After releasing the ball the keeper must not recapture the ball until
it touches an opponent or a member of its own team outside the penalty area. If the ball is released by the
keeper and it reaches the half way line without touching any other robot, the opponent is given an indirect
free kick positioned anywhere along the half way line (borrowed from Futsal rule).

     Any of the robots may change roles with the goal keeper (and thus be permitted to manipulate the ball)
provided the referee is informed before the change and that the change is made during a stoppage in play.
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•  All time for stoppages will be added to the end of the half they occur in.
•  The ball has to go forwards at a kick-off or the kick-off will be restarted.
•  In general, movement of robots by humans is not acceptable. However, at kick-offs

and restarts one member of the team is allowed on the pitch to place robots. Gross
movement of robots is not allowed, except before kickoffs, to place the designated
kicker for a free kick or to ensure robots are in locations required for penalty and
free kicks. Humans are not allowed to free stuck robots except during a stoppage
in play, and then they should move the robots only far enough to free them.

•  The ball may be lifted during play. However, the height of the ball from the table
must not endanger spectators, the referees or human team members!! If the ball
crosses the goal line 15cm above the table, the goal is disallowed and a free kick
is awarded to the defending team.
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     Before a kickoff, or once play has been stopped for other reasons (e.g. a foul or penalty kick) robots
should cease movement until play is restarted by the umpire.

     For the start or restart of the game the umpire will call verbally, or by whistle, and the operator of the
team can send signals to robots. The signal can be entered through a keyboard attached to a server being
used on the side lines. No other information, such as strategy information may be sent. Also, the keyboard
operator my not send information during play. This paragraph only applies during play, strategy revision
during half time and timeouts is permitted.
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Kick-off

          All robots shall be in located on their side of the field.

Penalty Kick

          Only a goal keeper shall be in the defense zone, and the ball shall be located at the specified position
( 45cm from the goal along the lengthwise centerline of the field). All other robots shall be located at least
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15 cm behind the robot which kicks the ball. Robots other cannot move until the referee signals the
resumption of play (by whistle, etc.).

Free Kick

          Free kicks are taken after a foul or a stoppage in play. If the free kick is taken after a foul the ball is
placed at the point where the foul was committed. If the free kick is taken after a stoppage in play, the ball
remains in place. If the ball is within 15cm of a wall or the defense zone line, the ball will placed 15cm
from the wall or defense zone.

          All robots must be placed 15cm from the ball. If the kick was awarded as the result of a foul, a
human from the team awarded the kick may place one robot near the ball. None of the robots may move
until play is resumed by the referee.

Restart after a goal

          The non-scoring team will be awarded the kick-off. The restart after the goal shall adopt the same
formation as the kick-off.

          Robots may be moved to their starting positions by hand.

Throw-in

          When the ball departs the field, the ball will be returned immediately to the field, and located
approximately 5cm inside of the wall, in front of the closest robot of the team which did not push the ball
out of play to where the ball went out of bounds.

          During this period, the robots can continue to move, and the time counting continues.
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The following fouls are defined:

Lack of progress

          If it is deemed by the referee that the game has stopped then a free kick is awarded to the team which
last touched the ball. A game is considered stopped if the ball has not been touched by a robot for 20
seconds and it appears that no robots are likely to hit the ball.

Non-moving robots

          If the referee determines that a robot is not moving for a period of 20 seconds or longer, he will
remove it from play and give the robot a yellow card. Participants may repair the robot and ask that it be
put back in play if they desire. A second failure of the same robot to move for 20 seconds will result in a
red card and permanent removal from the same. Goal tenders and robots further than 20cm from the ball
will not be penalized.

Multiple Defense

          When more than one robot of the defending side enters the defense zone and substantially affects the
game a foul will be called, and a penalty kick will be declared.

Ball Holding

          A player cannot 'hold' a ball unless it is a goal keeper in its penalty area. Holding a ball means taking
a full control of the ball by removing its entire degrees of freedom; typically, fixing a ball to the body or
surrounding a ball using the body to prevent accesses by others. In general 80% of the ball should be
outside the a convex hull around the robot. This is up to the referee to judge whether a robot is holding the
ball. In general another robot should be able to remove the ball from another player. It a robot is deemed to
be holding the ball then a free kick will be declared. If this happens in the defense zone by the defense
team, a penalty kick will be declared.

Court Modification
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          Modification or damage to the court and the ball is forbidden. Should this occur, the game is
suspended and the appropriate restoration is done immediately before the game resumes.

Robot Halting

          All the players must be halted prior to kick-off or restarting of the game. The judges check or adjust
the placements of the players and declares the completion of adjustment 5 seconds before indicating a kick-
off or a restart action. During this 5 seconds, the players can not move.

Charging/Attacking

          Unless striving for a ball a player must not attack another. In case the umpire clearly observes such
an act, it is regarded as a violent action. Then the umpire presents a red card to the responsible player
ordering it to leave the game. The judgment is one based on an external appearance. In general, it is
unacceptable for multiple robots to charge a single robot, and it is also unacceptable to hit the back of a
robot even if it has the ball and it is unacceptable to push along the table another player. The exact
interpretation of what is acceptable is left to the referee.

          During play, if a player utilizes a device or an action which continuously exerts, or whose primary
purpose appears to be, serious damages to other robot's functions, the umpire can present a yellow card as a
warning to the responsible player, and order it to go outside the court and correct the problem. Once the
correction is made, the robot can resume to the game under an approval by the umpire. In case the problem
is repeated, the umpire presents a red card to the responsible player telling it to leave the game. This rule
could be invoked on a robot should it continuously charge a robot whilst attempting to tackle the other
robot.

Offside

          The offside rule is not adopted.

Fair play

          Aside from the above items, no regulations are placed against possible body contacts, charging,
dangerous plays, obstructions etc. However, it is expected that the aim of all teams is to play a fair and
clean game of football.
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     Resolution of dispute and interpretation of ambiguity of rules shall be made by three officials, who will
act as umpires, designated prior to the match. The umpires shall not have any conflict of interest to teams in
the match. The umpires may consult with the tournament officials of the RoboCup for resolving conflicts.
Ambiguities shall be resolved by referring to FIFA official regulations, where appropriate. Specific
modifications to the rules to allow for special problems and/or capabilities of a team's robots may be agreed
to at the time of of the competition, provided a majority of the contestants agree.
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•  Optical System: Pickup device ½-inch CCD, interline
transfer type

•  Effective Picture Elements: 659x494
•  Lens Mount: ½-inch bayonet type
•  
•  Signal Format: NTSC standard format
•  Scanning
•  525 lines, 2:1 interlace
•  VGA format
•  Scanning
•  640x480, 1/60 non-

interlace
•  Horizontal Resolution: Horizontal: 700 TV lines
•  Vertical: 480 TV lines
•  Sensitivity: 2,000 lux (F5.6, 3200K)
•  Signal-to-Noise Ratio: 58 dB
•  Gain Control: AGC and 0 to 18 dB in units of 1 dB
•  White Balance: Automatic
•  Manual: Red gain and green gain adjustable

individually
•  Electronic Shutter Speed: Step mode and variable mode
•  
•  Video Output Signals: Composite: 1.0Vp-p, 75 ohms
•  RGB: 1.0Vp-p, 75 ohms
•  Input/output Connectors: VIDEO OUT: BNC type, 75 ohms
•  DC IN/VBS: 12-pin
•  REMOTE: mini-DIN 8-pin
•  RGB /SYNC: D-sub 9-pin
•  LENS: 6-pin connector for 2/3-inch lens
•  
•  Power Supply: 12V DC
•  Dimensions (w/h/d): 79x72x145 mm
•  Mass: 790 g
•  Mounting Screw: U1/4”, 20 UNC
•  4.5 ± 0.2 mm (ISO standard)
•  0.197 inches (ASA standard)
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•  Focal Length: 7.5 mm to 105 mm
•  Iris: 1.4 to 16, and C
•  Field of View (at 1.1 m): W: 660 mm to 880 mm
•  T: 47 mm to 63 mm
•  Focus Range: ∞ to 1.1 m
•  Mount: Bayonet mount
•  Dimensions: 195x82.5x124 mm
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•  Weight: 1,120 g
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•  Processor: 1 Texas Instruments TM320C80 (‘C80) 32-
bit RISC master processor (MP) with
floating point unit. The ‘C80 contains four
parallel processors (PP) which are 32-bit
fixed point DSPs with 64-bit instruction
words

•  Texas Instruments ‘C80 Clock Rate: 50 MHz
•  Processor Memory Management: peak 400MB/s @ 50MHz for data transfer

between on-board and off-board memory
•  SRAM: 64MB
•  
•  Grab Module: included
•  Analog Interface: 4 software selectable video inputs
•  4 8-bit analog-to-digital converters
•  Sync Generator: Sync and timing FPGA provides control for

synchronization, triggering, exposure, and
inputs and outputs

•  Video Adjustment: Software programmable input gain, offset,
and references

•  Phase adjustment: 0°-270°, 90° increments
•  Fully configurable and configurable input

LUTs
•  Four 256 x 8-bit
•  Four 8K x 16-bit
•  
•  Display Module: included
•  Frame Buffers: Dual-screen mode available
•  220 MHz RAMDAC
•  
•  NOA (Neighborhood Operations ASIC): included
•  
•  Software: Matrox Genesis Native Library
•  Matrox Imaging Library Lite (MIL-Lite)
•  Matrox Active MIL
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•  Matrox Intellicam

•  
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This is the number of paramaters
25
This is the color thresholds for the image segmentation
Thy Ball
#Red_threshold_ball
174
#Green_threshold_ball
157
#Blue_threshold_ball
196
Thy Robots
#Red_threshold_y_robot
176
#Green_threshold_y_robot
116
#Blue_threshold_y_robot
184
Them Robots
#Red_threshold_b_robot
254
#Green_threshold_b_robot
254
#Blue_threshold_b_robot
165
This is the size and position of the child buffer
#X_start
4
#X_stop
316
#Y_start
42
#Y_stop
212
These are the field dimensions in pixels of the image
#Field_x_start
4
#Field_y_start
42
#Field_x_stop
318
#Field_y_stop
212
This is the number of friendly robots
#Number_of_fbots
1
#Number_of_obots
1
This is the physical paramaters of the field
#X_scale
.0101488999185
#Y_scale
-.0103457867208
#X_offset
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157.32
#Y_offset
85.7185
This is for parallax error correction (in meters)
#Camera_height
2.59
#Robot_height
0.15
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The ‘C80 allows for the explicit assignment of opcodes for logical and arithmetic functions. The procedure
for determining the opcode, or the 32-bit value that resides in register d0 of the PP for the instruction class
EALU||ROTATE, can be found discussed in great detail in the TMS320C80 (MVP) Parallel Processor
User’s Guide and briefly on page 65-66 in the Matrox Genesis Native Library User’s Guide. The opcode
derivation supports all 256 Boolean and arithmetic functions that are possible with 3 inputs. The
EALU||ROTATE allows for four input operations with a parallel rotate as illustrated below. The output
from the barrel rotator can optionally be written to a separate destination.

For logical functions the appropriate Karnaugh map must be constructed. For the function (A&~B&~C) the
Karnaugh map is:

From the map it can be seen the output should only be a logical ‘1’ when the input A is ‘1’ and all of the
other inputs are ‘0’. This function corresponds to the operation that will extract the orange sub-volume
from the RGB color cube.

Each entry in the table is then read off in the order {F7 F6 F5 F4 F3 F2 F1 F0} and left shifted by 19. Thus
the function is essentially:

(F0&(~A&~B&~C)  | F1&(A&~B~C) | F2&(~A&B&~C) | F3&(A&B&~C) |
F4&(~A&~B&C) | F5&(A&~B&C) | F6&(~A&B&C) | F7&(A&B&C))[+1|+cin]

For arithmetic functions the following functions can be formed

A&f1(B,C) + f2(B,C) [+1|+cin]

where the functions f1(B,C) and f2(B,C) are selected from the Table 1. The ALU opcode is determined by
f1 XOR f2 left shifted by 19.

F0
0

F2
0

F6
0

F4
0

F1
1

F3
0

F7
0

F5
0

00 01 11 10

BC

A

0

1

Figure 2. Karnaugh Map for (A&~B&~C)
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Table 1. Possible f1(B,C) or f2(B,C) Functions
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This document will help you estimate the expected performance of Genesis on a particular application, and
help you optimize your code so that you reach the expected performance. Although most of the general
advice given here is likely to remain valid, particular details of individual functions may change with each
release of the Genesis software, since improvements may be made, and/or new functions added. You should
always look for the most recent version of this document.

The first step in writing an efficient application is to pick the functions that can do the job as fast as
possible. To do this you need to know the execution time of individual functions. This is not as simple as it
sounds, because the execution time of each processing function varies with the size and data type of the
images processed, and can be affected by many other parameters. The execution time of some functions is
even dependent on the actual content of the image. To address these issues, several types of information are
provided:
•  Actual benchmarks for each function with common data types.
•  Simple rules for estimating the performance of cases not listed.
•  A more-detailed discussion of functions whose performance is more difficult to estimate.

There are also some general points, described below, that can be applied to all processing functions. These
will help you avoid some of the basic mistakes which can make your code inefficient.
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All functions have a fixed overhead, which means that they become less efficient when operating on small
images. The overhead is not exactly the same for all functions, and it may be reduced in the future, but it is
typically about 0.5 ms for each function call. This means that you cannot process an image in less time, no
matter how small the image is. (Note that this overhead applies to processing functions; simple control
functions have less overhead, and are discussed later.) This overhead has several implications:

When adjusting a known benchmark to a different image size, you cannot simply scale it according to the
number of pixels in the image. You should first subtract the overhead, then scale the benchmark, then add
the overhead again. For example, if a function with a 0.5 ms overhead takes a total of 2.5 ms for a 512x512
image, it will take 1.0 ms for a 256x256 image, and 8.5 ms for a 1024x1024 image.

When your application only requires that one or more regions of interest (ROIs) be processed, it might
actually turn out to be more efficient to process the whole image than to define and process several ROIs
separately. If your images themselves are quite small, you should consider packing several into a larger
buffer and processing them all at once.

Simple asynchronous control functions (such as imBufPutField()), and other functions that don’t operate on
images, have a lower overhead. It is typically 0.2 ms for these functions. However, synchronous functions
(such as imBufGetField() or imBufChild()) are slower, and take about 0.5 ms under Windows NT (they are
slightly faster under DOS).

You should try to avoid synchronous functions as much as possible within time-critical loops. Allocate all
buffers outside of loops unless you have no choice. When using synchronous functions to read back
processing results, use as few calls as possible. Sometimes you have the option of reading back results
individually using one function call each, or reading a whole group of results at once. The latter method
will be more efficient, and is particularly important for blob analysis and pattern matching where many
results are usually produced.
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When the particular case you need is supported by the library but not listed in the benchmark table, you can
usually estimate its performance using a few simple rules. This document does not describe how to estimate
the performance of functions that are not in the standard library, but that you might be interested in
implementing as a custom function if the performance justifies it. (To implement custom functions on the
C80 you need the Genesis Native Library Developer’s Toolkit (DTK), as well as the appropriate code
development tools from Texas Instruments. This is a fairly complex task, but can often provide a
significant performance increase if several standard library functions can be combined into a single custom
function.)

I/O bound functions
A function is I/O bound when performance is limited by the speed at which it can access data in memory.
The processors will be idle some of the time while they are waiting for data to be transferred on-chip. It is
useful here to know that processing functions using the PPs always work by transferring the image from
external memory into on-chip memory, a block at a time. Each block is processed in on-chip memory, then
the results are transferred back to external memory. Processing and I/O can be overlapped, so the PPs are
not kept waiting for data to process, unless they process faster than data can be transferred (then the
operation is said to be I/O bound).

If a function is described as I/O bound in the benchmark table, or if the I/O figure given is close to
300 MB/s which indicates that the function is I/O bound, it is simple to estimate benchmarks for cases not
listed explicitly. You should simply consider the total number of bytes of I/O per pixel (counting all source
and destination buffers), and scale the benchmark accordingly. For the most accurate estimate you should
also consider the function overhead. For example, consider the I/O bound operations of imIntDyadic().
Given the 8-bit case, let’s try to estimate the performance for the 16-bit case. The total I/O in the 8-bit case
is 3 bytes/pixel, and it is 6 bytes/pixel in the 16-bit case (exactly twice as much). The function overhead can
be calculated as 0.4 ms from the first two columns. The calculated performance for the 16-bit case is
therefore (3.0–0.4)×2 + 0.4 = 5.6 ms, which is in agreement with the measured value. If, say, the two
source buffers were 8-bit and the destination were 16-bit, the total I/O would be 4 bytes/pixel and you
would expect the performance to lie somewhere between the listed 8- and 16-bit cases. In fact it should be
(3.0–0.4)×4/3 + 0.4 = 3.9 ms.

Compute bound functions
Most compute bound functions are listed explicitly in the benchmark table, because you would need to
know how the operation is coded in PP assembly language in order to estimate the performance. However,
this doesn’t apply to some functions. In particular, neighborhood operations which support different sized
kernels (such as convolution or morphology) usually take a certain amount of time for each kernel element.
Therefore you should look up the benchmark for a kernel similar in size to yours, then scale the benchmark
according to the number of kernel values. For example, the C80 processing rate for a general 5x5 16-bit
convolution (25 kernel values) is quoted as 7.65 MPix/s. The estimated performance for a 7x7 convolution
(49 kernel values) would therefore be 7.65×25/49 = 3.90 MPix/s, which agrees very well with the measured
value. This rule normally works well, but beware of particular kernels that might be carried out with
optimized PP code and give quite different performance from the general case. For example, kernels whose
values are all the same (or where only the center value is different) are faster on the C80 than kernels with
completely arbitrary values. The situation with the NOA is similar but the rules are different. Pixel type (8-
or 16-bit), coefficient type (8- or 16-bit), and kernel symmetry (horizontal and/or vertical) all affect
performance considerably on any given size of kernel. This is discussed in more detail later.
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There are times when you could execute several operations in parallel, by sending the commands to
different threads, but this will not always reduce the total execution time. When you send commands to
different processing nodes, they will truly run in parallel and they will have no impact on each other as long
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as each node processes buffers allocated in its own memory. However, when only one node is involved,
things are more complicated.

First, to benefit from parallelism, each function must use different resources. For example, there is no point
in executing two functions at the same time if they both use the PPs. If both try to allocate all the PPs
(which is the default behavior) they will simply execute serially, since one function will have to wait for the
other to finish completely before it is granted access to the PPs. If you use imThrControl() to limit each
thread to, say, two PPs, both functions will run at the same time but each at only half speed (so there is no
net gain in performance). Note that this is true whether the functions are compute bound (so each runs at
half speed because it only has half of the processors) or I/O bound (where each runs at half speed because it
only gets access to memory half of the time).

If two functions use different resources (for example the PPs and MP, or PPs and NOA) there will still be
no advantage to executing them in parallel if both are I/O bound, since the available memory bandwidth is
the limiting factor. However, if one or both functions are not I/O bound, there should be an advantage to
running then in parallel. One common case involves processing an image while copying the previously-
processed image to the display. When this is done serially (i.e. processing and copy commands are send to
the same thread), the transfer time is simply added to the processing time. When this is done is parallel (i.e.
the copy command is sent to another thread, with the proper synchronization), the transfer begins as soon as
processing completes, but it does not prevent processing of the next image from starting. This way some or
all of the transfer time is hidden (depending on how I/O intensive the processing function is). For more
details on how to implement this, look at the Native Library examples.

It is also important to realize that using too many threads, and especially the extra synchronization
functions that more threads usually implies, can make your application less efficient. There are certainly
big performance gains to be had sometimes by using extra threads to exploit parallelism in your
application, but you should generally try to solve the problem using the smallest number of threads that
gives you the parallelism you need.
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Below is a table of actual benchmarks for 512x512 images, using a 50 MHz C80 with NOA . To keep the
table to a reasonable size, some cases have been omitted if they can easily be estimated from other cases
using the rules given elsewhere in this document. If a function has options that are not mentioned in the
table (e.g. replace vs. transparent overscan), assume that the option makes no significant difference to the
timing.

The table gives actual execution time (in milliseconds), processing rate (in MPixels/second), and the
memory bandwidth required (in MBytes/second). The latter figure is useful when considering the impact of
concurrent operations such as grabbing and transfers to display. If the operation is I/O bound, or nearly so,
it will be slowed down by other operations that also need access to memory. You should assume that the
sustainable bandwidth on processing memory (SDRAM) is 300 MB/s (the peak rate is 400 MB/s). Hence if
grabbing and other operations require, say, 30 MB/s, they will slow down an I/O bound processing function
by about 10% if executed in parallel. The effect on a compute bound function should be negligible. The
quoted I/O rates are approximate values taking into account any extra I/O that might be performed
internally to hold intermediate results etc.

Function overheads are included in the measured execution times, so you must take them into account
when scaling the numbers to a different image size (see the section on overheads for details). Overheads are
not included in the processing or I/O rates, so you can more easily scale these to different image sizes. The
difference between the measured execution time and the expected time calculated from the processing rate
and image size is the actual fixed overhead for that function.

Note that some of the numbers may change in future releases as improvements are made. You should
always look for the most recent version of these benchmarks. Entries marked with an asterisk (*) are further



References

61

explained after the table. Entries marked with † are data dependent, and performance will vary from image
to image.

Function and options Time (ms)
with overhead

Rate (MPix/s)
without overhead

I/O (MB/s)
without overhead

imBinConvert()
8-bit to/from binary
16-bit to/from binary
32-bit to/from binary

1.4
2.3
4.4

260
133

65

290
280
270

imBinMorphic()*
IM_ERODE/IM_DILATE

IM_3X3_RECT_1,  1 iteration
IM_3X3_RECT_1,  2 iterations
IM_3X3_RECT_1,  3 iterations

All operations except IM_MATCH
General 3x3
General 5x5
General 7x7
General 9x9
General 11x11

IM_MATCH
General 3x3
General 5x5
General 16x16
General 32x32

10.10.1.

1.0
1.3
1.7

2.2
4.1
6.8

10.4
14.7

17.8
25.8
70.7
288

10.10.1.

1.3
1.4
1.5

1.3
1.4
1.5
1.9
2.5

3.1
3.2
5.5

15.8

10.10.1.

470
290
210

170
76
43

27.6
19.2

15.2
10.4
3.78
0.92

10.10.1.

500
500
500

500
500
500
320
215

143
141

75.6
23.8

10.10.1.

120
72
53

42
19
11

7
5

17
12

4
2

10.10.1.

125
125
125

125
125
125

81
54

160
160

85
51

imBinTriadic()
No inputs
One input
Two inputs
Three inputs

0.6
0.8
1.0
1.2

980
580
420
320

120
140
160
160

imBlobCalculate()*†
8-bit, 9 blobs, total area 5% of image

Area only
Area + binary COG

 Area + gray COG
8-bit, 100 blobs, total area 25%

Area only
Area + binary COG
Area + gray COG

~2.7
~3.0
~3.6

~9
~12
~16

imBufClear()
Binary
8-bit
16-bit
32-bit

0.7
1.1
1.7
3.1

940
350
190

95

120
350
380
380

imBufCopy()
IM_PROC to IM_PROC (on same node)

Binary
8-bit
16-bit
32-bit

IM_PROC to IM_DISP (VIA driven)*

0.9
2.0
3.5
6.4

580
170

88
44

150
340
350
350
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8-bit, PCI write
8-bit, PCI read
8-bit, VM

IM_PROC to IM_HOST (VIA driven)*
8-bit

IM_HOST to IM_PROC (VIA driven)*
8-bit

3.6
4.6
3.1

3.6

3.3

86
66

118

86

99

86
66

118

86

99
imBufGet()*

8-bit 29.0 9.2 9.2
imBufPut()*

8-bit 5.1 61 61
imBufPack()†

8-bit, none tagged
8-bit, all tagged
8-bit, 35% tagged (circular mask)
16-bit, 35% tagged (circular mask)
32-bit, 35% tagged (circular mask)

0.6
2.7
1.4
2.2
3.5

1500
110
270
150

85

190
240
230
230
240

imFloatConvert()
8-bit to float
16-bit to float
32-bit to float
float to 32-bit

4.6
12.1

7.1
7.1

67.0
22.7
38.4
38.4

330
140
310
310

imFloatDyadic()
IM_ADD, IM_SUB
IM_SUB_ABS
IM_MIN, IM_MAX
IM_MULT
IM_DIV
IM_SQUARE_ADD
IM_ATAN2

12.4
15.7
27.5
10.5
40.7
19.0
900

21.7
17.1

9.6
25.8

6.5
14.0
0.29

260
200
110
310

78
170
3.5

imFloatMac1() 11.4 23.7 190
imFloatMac2() 19.0 14.0 170
imFloatMonadic()

IM_ADD, IM_SUB
IM_SUB_ABS, IM_SUB_NEG
IM_MIN, IM_MAX
IM_MULT, IM_DIV
IM_DIV_INTO

7.1
12.3
24.8

7.1
38.0

38.4
21.8
10.7
38.4

7.0

310
170

85
310

56
imFloatUnary()

IM_NEG
IM_ABS
IM_SQUARE
IM_SQRT
IM_CUBE
IM_LOG, IM_EXP, IM_SIN, IM_COS, 

IM_TAN, IM_ATAN
IM_CBRT

7.1
12.3

7.1
53.7
12.9

700 – 900

1700

38.4
21.8
38.4

4.9
20.7
~0.3

0.15

310
170
310

39
170

~2.5

1.2
imGenWarpLutMatrix()

IM_CTL_PRECISION = 0
IM_CTL_PRECISION > 0

63.5
74.0

4.2
3.6

17
14

imIntBinarize()
IM_IN_RANGE/ IM_OUT_RANGE

8-bit
16-bit
32-bit

2.1
3.9
7.4

148
75
37

300
220
190
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All other conditions
8-bit
16-bit
32-bit

1.9
2.7
4.3

173
114

67

340
340
340

imIntConnectMap()
8-bit to 8-bit
8-bit to 16-bit

7.0
7.3

40
38

80
110

imIntConvert()
8-bit to 16-bit
8-bit to 32-bit
16-bit to 32-bit
16-bit to 8-bit (truncate)
Unsigned 16-bit to 8-bit (IM_CLIP)
Signed 16-bit to 8-bit (IM_CLIP)
Signed 16-bit to 8-bit (IM_ABS_CLIP)
32-bit to 8-bit (IM_CLIP)
32-bit to 16-bit (IM_CLIP)

3.2
4.5
5.2
3.2
3.5
5.8
4.5
6.5
6.6

93
64
55
94
84
48
63
43
39

280
320
330
280
250
140
190
210
250

imIntConvertColor()
8-bit IM_RGB_TO_HSL
8-bit IM_HSL_TO_RGB
8-bit IM_RGB_TO_H
8-bit IM_RGB_TO_L
8-bit IM_RGB_TO_I
8-bit IM_L_TO_RGB
8-bit IM_MATRIX, 3x1 no clip
8-bit IM_MATRIX, 3x1 unsigned clip
8-bit IM_MATRIX, 3x1 signed clip
8-bit IM_MATRIX, 3x3 no clip
8-bit IM_MATRIX, 3x3 unsigned clip
8-bit IM_MATRIX, 3x3 signed clip

36.4
44.6
30.0

6.5
5.7
5.9
5.3
7.7
9.0

14.5
22.3
26.3

7.2
5.9
8.9
43
61
57
49
34
29

18.1
11.8
10.0

43
35
35

170
240
230
200
140
120
110

71
60

imIntConvolve()*
8-bit (see detailed description later)

IM_SMOOTH
IM_SHARPEN
IM_SHARPEN2
IM_HORIZ_EDGE
IM_VERT_EDGE
IM_SOBEL_EDGE
IM_PREWITT_EDGE
IM_LAPLACIAN_EDGE
IM_LAPLACIAN_EDGE2
IM_ROBERTS_EDGE

General kernel
3x3
5x5
7x7
9x9
11x11

Symmetric kernel
5x5
7x7
9x9
11x11

All 1’s kernel (16-bit output)

10.10.1.

9.7
8.6
9.4
7.3
4.7

11.3
11.3

8.6
9.5
3.0

9.7
26.0
44.9
69.4
99.2

26.0
44.9

10.10.1.

2.3
2.3
2.3
2.3
2.3

11.3
11.3

2.3
2.3
3.0

2.3
4.0
5.5
8.2

11.8

3.2
4.9

10.10.1.

28.8
32.3
29.8
38.3
62.2
24.2
24.2
32.3
29.7
101

28.8
10.4
5.96
3.84
2.68

10.4
5.96

10.10.1.

160
160
160
160
160

24.2
24.2
160
160
101

160
80
55
35
24

107
62

10.10.1.

58
65
60
77

120
48
48
65
60

200

58
21
12

7.7
5.4

21
12

10.10.1.

320
320
320
320
320

48
48

320
320
200

320
160
110

70
48

215
125
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5x5
11x11

Effect of normalization options:
No Shift (16-bit output)
Clip/Absolute

imIntConvolve()*
16-bit (see detailed description later)

IM_SMOOTH
IM_SHARPEN
IM_SHARPEN2
IM_HORIZ_EDGE
IM_VERT_EDGE
IM_SOBEL_EDGE
IM_PREWITT_EDGE
IM_LAPLACIAN_EDGE
IM_LAPLACIAN_EDGE2
IM_ROBERTS_EDGE

General kernel
3x3
5x5
7x7
9x9
11x11

Symmetric kernel
5x5
7x7
9x9
11x11

All 1’s kernel
5x5
11x11

Effect of normalization options:
Shift
Clip/Absolute

69.4
99.2

5.7
8.5

–2.1
+0.7

10.10.1.

13.3
8.8

16.1
7.5
7.6

11.6
11.6

8.8
16.1

5.4

13.3
35.2
68.3

112.8
168.6

35.2
68.3

112.8
168.6

11.2
18.3

+0.0

10.10.1.

5.8
6.8

3.2
6.8

+0.0
+0.0

10.10.1.

4.2
4.2
4.2
4.2
4.2

11.6
11.6

4.2
4.2
5.4

4.2
9.0

17.0
27.6
40.8

4.8
6.3
9.4

13.0

4.8
9.0

+0.0

10.10.1.

3.84
2.68

52
35

10.10.1.1

20.9
31.6
16.9
37.2
36.5
23.6
23.6
31.6
16.9
52.4

20.9
7.65
3.91
2.36
1.57

7.65
3.91
2.36
1.57

24.7
15.1

10.10.1.1

52
44

107
44

NOA
74
74
74
74
74

23.6
23.6

74
74

52.4

74
32

16.1
9.8
6.6

65
47
30
22

65
32

7.7
5.4

156
105

C80
84

130
68

150
140

94
94

130
68

210

84
31
16

9.4
6.3

31
16

9.4
6.3

99
60

105
87

315
130

NOA
300
300
300
300
300

94
94

300
300
210

300
125

65
39
26

260
190
120

87

260
130

imIntCorrelate()
8x8 model, STEP = 1
8x8 model, STEP = 2
16x16 model, STEP = 1
16x16 model, STEP = 2

305
227

1090
307

0.86
0.24
1.16
0.85

2.6
0.7
3.5
2.6

imIntCountDifference()
8-bit
16-bit

2.0
3.7

160
79

320
320
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32-bit 6.9 40 320
imIntDistance()

IM_CITY_BLOCK
8-bit
8-bit to 16-bit

All other cases

12.4
14.6
19.2

21.9
18.6
13.9

88
130

98
imIntDyadic()

IM_DIV
8-bit
16-bit
32-bit

IM_DIV_FRAC
8-bit to 16-bit
16-bit to 32-bit

IM_MULT_MSB
32-bit

All other operations (I/O bound)
8-bit
16-bit
32-bit

18.6
29.1
47.3

32.3
52.7

13.0

3.0
5.6

10.7

14.4
9.1
5.6

8.2
5.0

21

102
51
26

43
55
67

33
40

250

310
310
310

imIntErodeDilate()*
Unsigned 8-bit

Kernel IM_3X3_RECT_0
Kernel all zero

5x5
7x7
9x9
11x11

General kernel (not all zero)
3x3
5x5
7x7
9x9
11x11

Unsigned 16-bit
Kernel IM_3X3_RECT_0
Kernel all zero

5x5
7x7
9x9
11x11

General kernel (not all zero)
3x3
5x5
7x7
9x9
11x11

Overhead for signed data (all cases)

10.10.1.

4.7

23.7
44.7
69.4
105

19.2
50.7
97.8
161
240

7.9

47.3
88.1
141
207

19.5
51.0
98.3
161
240

+0.9

10.10.1.

2.2

2.5
3.5
4.8
6.7

2.2
4.7
8.7

14.0
20.6

4.0

4.6
6.1
7.5
8.9

4.1
4.8
8.8

14.2
20.8

+0.0

C80

62

11.4
6.0
3.8
2.5

14.1
5.2
2.7
1.6
1.1

35

5.5
3.0
1.9
1.3

13.9
5.2
2.7
1.6
1.1

NOA

160

132
91
62
44

160
64
32

19.6
13.2

75

64
48
38
32

75
62
32

19.3
13.0

C80

120

23
12

7.7
5.1

28
11

5.4
3.3
2.2

140

23
12

8
5

56
21
11

6.5
4.4

NOA

320

265
180
125

87

320
130

64
39
26

300

260
190
150
130

300
250
130

77
52

imIntFindExtreme()
IM_MIN or IM_MAX (only one)
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Unsigned 8-bit
Unsigned 16-bit
32-bit

IM_MIN and IM_MAX (both)
Unsigned 8-bit
Unsigned 16-bit
32-bit

1.2
2.0
3.6

1.8
3.1
4.5

310
160

80

190
96
64

310
320
320

190
190
250

imIntFFT()
2-d (forward or reverse)
1-d (i.e. horizontal pass only on 512 lines)

240
105

1.1
2.5

imIntFlip()
Flip or 180 degree rotate

8-bit
16-bit
32-bit

90 or 270 degree rotate
8-bit
16-bit
32-bit

2.1
3.5
6.7

2.7
5.6

12.3

150
83
41

110
49
22

300
330
330

220
200
170

imIntGainOffset()
8-bit

No clip or offset
Clip but no offset
Clip and offset

16-bit
No clip or offset
Clip but no offset
Clip and offset

2.9
3.1
5.8

5.5
5.5
6.9

102
97
49

51
51
40

310
290
200

310
310
320

imIntHistogram()*
8-bit
10-bit, short table
10-bit, long table
12-bit, short table

2.7
4.0
8.9

10.2

123
89
33
33

120
180

65
66

imIntLabel()
Few blobs (fastest)
Many blobs (slower)

9.2
≥15

31
≤17

180
≤100

imIntLocateEvent()†
100 events

Number only
With X, Y positions

10000 events
Number only
With X, Y positions

2.0
2.7

6.2
11.5

172
146

46
25

170
150

46
25

imIntLutMap()*
Default method

8-bit to 8-bit
8-bit to 16-bit
8-bit to 32-bit
14-bit to 8-bit (16 KB table)
13-bit to 16-bit (16 KB table)
12-bit to 32-bit (16 KB table)
16-bit to 8-bit†

16-bit to 16-bit†

16-bit to 32-bit†

Method with work buffer

2.1
2.7
4.3
4.2
4.3
7.0

~26
~35
~43

150
114

67
73
68
41

~10
~7
~6

300
340
340
220
270
250
~30
~30
~30
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16-bit to 8-bit
16-bit to 16-bit
16-bit to 32-bit†

21
24

~50

12.4
11.0

~5

110
130
~90

imIntMac1()
8-bit to 8-bit
8-bit to 16-bit
16-bit to 16-bit

3.1
3.2
3.6

96
92
82

190
280
330

imIntMac2()
8-bit to 8-bit
8- and 16-bit to16-bit
16-bit to 16-bit

3.2
4.8
5.5

95
60
52

280
300
310

imIntMonadic()
IM_DIV

8-bit
16-bit
32-bit

IM_DIV_FRAC
8-bit to 16-bit
16-bit to 32-bit

IM_MULT_MSB
32-bit

All other operations (I/O bound)
8-bit
16-bit
32-bit

15.1
25.8
47.2

27.2
49.9

12.6

2.0
3.6
6.8

17.9
10.3

5.6

9.8
5.3

21

163
82
41

35
41
45

29
32

170

330
330
330

imIntProject()
0.0 degrees

8-bit to 32-bit
16-bit to 32-bit
32-bit to 32-bit

90.0 degrees
8-bit to 32-bit
16-bit to 32-bit
32-bit to 32-bit

2.1
2.6
3.9

1.8
2.4
4.3

147
117

75

184
126

67

150
230
300

180
250
270

imIntRank()
IM_3X3_RECT

8-bit median
16-bit median

IM_3X3_CROSS
8-bit median
16-bit median

IM_3X3_X
8-bit median
16-bit median

IM_1X5
8-bit median
16-bit median

IM_5X1
8-bit median
16-bit median

11.1
24.3

8.4
20.3

6.5
12.5

6.4
11.9

8.8
14.5

24.6
11.0

32.8
13.2

43.2
21.6

44.2
22.8

31.1
18.6

49
43

66
53

86
86

88
91

62
74

imIntRecFilter()
8-bit to 16-bit (no Dst2)
8-bit to 16-bit (with Dst2)
16-bit to 16-bit (no Dst2)
16-bit to 16-bit (with Dst2)

5.5
6.2
6.1
7.5

52
46
46
37

260
270
280
260
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imIntScale()
IM_INTERPOLATE

8-bit 2×2
8-bit 4×4
8-bit 8×8
8-bit arbitrary factor
16-bit arbitrary factor

IM_NO_INTERPOLATE
8-bit arbitrary factor
16-bit arbitrary factor

3.8
3.0
2.9
6.6
7.8

3.7
5.1

82
108
112

42
36

81
56

103
115
115

imIntSubsample()*
IM_INTERPOLATE

8-bit (any supported factor)
16-bit (any supported factor)

IM_NO_INTERPOLATE
8-bit 2×2
8-bit 4×4
16-bit 2×2
16-bit 4×4

10.10.1.

2.3
3.4

1.1
0.7
1.9
1.1

10.10.1.

2.1
3.2

1.1

1.8

10.10.1.1

140
86

350
690
170
380

NOA

235
117

470

200

C80

260
220
260
240

NOA

340

300

imIntThickThin()
8-bit

Single 3x3 kernel
8-band 3x3 kernel

16-bit
Single 3x3 kernel
8-band 3x3 kernel

21.2
154

41.7
308

12.8
1.73

6.4
0.86

25
27

25
27

imIntTriadic()
All operations are I/O-bound

2 bytes of I/O per pixel
3 bytes of I/O per pixel
4 bytes of I/O per pixel
5 bytes of I/O per pixel
6 bytes of I/O per pixel

1.9
2.7
3.7
4.6
5.6

170
110

80
63
51

340
340
320
310
310

imIntWarpLut()*
Nearest neighbor

8-bit
16-bit
32-bit

Bilinear interpolation
8-bit
16-bit

~10
~11
~13

~21
~22

~27
~25
~20

~12
~12

~160
~200
~240

~80
~100

imIntWarpPolynomial()*
Nearest neighbor

8-bit
16-bit
32-bit

Bilinear interpolation
8-bit
16-bit

Bicubic interpolation
8-bit
16-bit

~8
~10
~18

~20
~29

~70
~92

~39
~30
~15

~14
~9

~3.8
~2.9

~80
~120
~120

~30
~40

~8
~12
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imIntZoom()*
IM_INTERPOLATE

8-bit (any supported factor)
16-bit (any supported factor)

IM_NO_INTERPOLATE
8-bit 2x2
8-bit 4x4
16-bit 2x2
16-bit 4x4

C80

6.5
6.7

2.2
2.0
3.0
3.6

10.10.1.

2.5
3.2

2.2
2.0
3.0
2.6

C80

44
42

150
170
105
125

NOA

180
120

220
275
135
160

C80

190
180
130
130

NOA

270
310
340
350

imJpegDecode()†*
8-bit lossless
8-bit lossy

10.10.1.

~23
~14

10.10.1.

~6.8

C80
~11
~18

NOA
~45

C80
~17

NOA
~70

imJpegEncode()†*
8-bit lossless
8-bit lossy

10.10.1.

~19
~16

10.10.1.

~3.3

C80
~14
~16

NOA
~100

C80
~21

NOA
~150

imPatFindModel()†
Speed IM_HIGH, accuracy IM_MEDIUM

32x32 model
64x64 model
128x128 model
256x256 model

Speed IM_MEDIUM, accuracy IM_HIGH
32x32 model
64x64 model
128x128 model
256x256 model

~26
~12

~8
~14

~26
~12
~12
~25

* Means that the function is discussed further below.
† Means that the performance is data dependent.

=-# ����
�
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The behavior of some functions is more complicated that the benchmark table indicates, and they need to
be discussed individually.

imBinMorphic()
The pre-defined kernel IM_3X3_RECT_1 has been specially optimized for the C80, and there is a
particularly large performance gain when multiple iterations are required. Therefore, with the C80 you
should decompose large erosions or dilations into multiple iterations of IM_3X3_RECT_1 whenever
possible. However, with the NOA it is just as good to define large kernels directly and use only one
iteration. In general, binary morphology is so fast with the NOA that the function overhead is very
important on small images, and it might sometimes be faster to disable the NOA and use the C80 instead.
However, there is a way to reduce the NOA setup overhead for the second and subsequent passes with a
given kernel (see the documentation for the control fields supported by the function).

imBlobCalculate()
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Performance here is data dependent, and the more blobs are present the longer it takes. If your images are
noisy, so that after thresholding many spurious blobs are present, it is usually best to clean up the
thresholded image with morphology before doing blob analysis. To make sure this cleaning stage runs as
fast as possible, threshold your original image into a 1-bit binary buffer.

The benchmarks in the table were obtained with the saving of run information disabled (i.e. after calling
imBlobControl() with IM_BLOB_SAVE_RUNS set to IM_DISABLE). If you save runs (which is the
default behavior) processing time will be slightly longer.

Another important point in blob analysis it to read back as many results as you can at once. This means
making use of the data structures, IM_BLOB_GROUP1_ST etc.,  that hold a whole group of blob results.
See the example program BLOB.C for usage.

imBufCopy()
Performance of PCI transfers between the host and Genesis are dependent on the host PCI chipset, so you
should do your own tests to measure the performance on your system. See also the following discussion on
imBufGet() and imBufPut(). Note that VM performance depends on the VM channel clock speed. This can
be set to 25 or 33 MHz in the GENESIS.INI file.

The performance of both PCI and VM transfers varies somewhat with the width of the image being
transferred.

imBufGet()/imBufPut()
In these functions the data transfer is driven by the host CPU. Writes to Genesis memory are much faster
than reads, although actual figures are dependent on the host PCI chipset. imBufGet() is normally adequate
for small amounts of data such as a histogram result (which is typically a few Kbytes), but for whole
images it is much faster to allocate a host buffer and use imBufCopy(). On some systems imBufPut() might
be the fastest way to get even large amounts of data from the host to the Genesis, but it ties up the host
CPU. imBufCopy() should provide comparable speed and does not tie up the host CPU.

imIntConvolve()
The main point about convolution is that the 8-bit case runs considerably faster than the 16-bit case. For the
C80 the 8-bit case requires that the source buffer be 8-bit unsigned, and that the kernel values all lie in the
8-bit signed range [–128, +127]. (Note that the type of the kernel buffer itself is irrelevant; the actual kernel
values will be tested to see if the 8-bit convolution can be used.) Another requirement for the 8-bit case on
the C80 is that it must be possible to use a 16-bit signed accumulator without causing possible overflows.
This means that the sum of the positive kernel values must not exceed 128, and the sum of the negative
kernel values must not exceed –128. If not all of the 8-bit requirements are met, the 16-bit benchmarks will
apply.

Note that many predefined kernels use specially optimized C80 code, and execute faster than the equivalent
kernel that you define yourself. Always use a predefined kernel if you can.

On the NOA the 8-bit case is not so restricted. Any 8-bit type (for image or kernel) is handled at the same
speed, and there is no limit on the sum of kernel values. If you have 16-bit data with an 8-bit kernel, or 8-
bit data with a 16-bit kernel, the speed will be somewhere between the listed 8- and 16-bit benchmarks. The
slowest case of all is that of 16-bit data and a 16-bit kernel (and this is what is used for the listed 16-bit
NOA benchmarks). Note that the NOA 8-bit benchmarks were made in exact mode (the computation
control field, IM_CTL_COMPUTATION, was set to IM_EXACT so that no approximations were made).
Some symmetric kernels will show a slight improvement in fast mode (where the computation control field
is set to IM_FAST). The NOA 16-bit benchmarks for symmetric kernels were made in fast mode.
However, if your data is 14-bit or less, you will get the same performance in exact mode as long as you
specify the number of input bits.

You will see that the NOA takes advantage of symmetric kernels (positive or negative symmetry, in either
the horizontal or vertical direction). The symmetric benchmarks listed assume both horizontal and vertical
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symmetry (which is quite common for real convolution kernels). The C80 cannot take advantage of  kernel
symmetry, but it does have specially optimized code for kernels whose values are all 1. Furthermore, the
time for an all 1’s kernel is only weakly dependent on the kernel size. Kernels whose values are some other
constant (optionally with a different center value) are only slightly slower on the C80 than the same-sized
all 1’s kernel. The NOA does not handle constant kernels as a special case, but they are faster than general
kernels because of their symmetry.

The number of special cases is simply too large to describe here. If convolution is a time critical operation
for you, you should benchmark your particular kernel to see how fast it runs. When using the NOA, you
should also consider using fast mode. This significantly improves the speed of some cases with only a
slight loss of precision. Note also that there is a way to reduce the NOA setup overhead for the second and
subsequent passes with a given kernel (see the documentation for the control fields supported by the
function).

imIntErodeDilate()
With the NOA any symmetric kernel will run at the same speed as the all-zero case. With the C80 there is
no advantage to symmetric kernels (only the all-zero case has been optimized). As you can see, large all-
zero kernels are better implemented as multiple passes with IM_3X3_RECT_0 on the C80 (assuming they
can be decomposed this way), but this is not true for the NOA. Note also that there is a way to reduce the
NOA setup overhead for the second and subsequent passes with a given kernel (see the documentation for
the control fields supported by the function).

imIntHistogram()
Performance here is very dependent on the type of the input data (i.e. the size of the histogram result
buffer). For 12-bit or larger data, you should consider not using every pixel in the histogram calculation
(see the control fields which enable subsampling). You might also consider shifting the data down to 8 or
10 bits before performing the histogram (see the control field which specifies the number of bits you want
to use).

imIntLutMap()
Here the performance is very good when the lookup table is no bigger than 16KB, because then the table
fits entirely into the C80’s internal RAM (assuming all four PPs are used, otherwise the table must be
proportionally smaller). Performance with very large LUTs is also data dependent, so you may need to try
both the available methods to see which performs best in your case. If you have 16-bit data, you should
consider using an interpolated LUT mapping (which uses a smaller table).

imIntSubsample()
The quoted processing rates are in terms of input pixels/second. Since the output image is smaller, the
processing rate will be lower in terms of output pixels/seconds. Note that the NOA can be used only for
subsampling factors of 1 or 2, but there is only a significant speedup on images larger than about 512x512.
This is because the higher processing rate of the NOA is offset by a bigger overhead. On small images it
might be better to disable the NOA.

imIntWarpLut()
All figures for this function are approximate since performance is weakly dependent on the actual
transformation (i.e. the values in the Xlut and Ylut buffers).

imIntWarpPolynomial()
All figures for this function are approximate since performance is weakly dependent on the actual
transformation. Replace overscan may also be slightly faster than transparent overscan since in the former
case some parts of the output buffer can simply be replaced with a constant value (if that region originated
outside the source buffer).

imIntZoom()



Detailed Vision Documentation

72

The quoted processing rates are in terms of output pixels/second. The NOA can be used only for zoom
factors of 1, 2 or 4. The processing rate is higher for the NOA but the overhead is also higher. Hence on
small images it might be better to disable the NOA.

imJpegEncode()/imJpegDecode()
The times are slightly data dependent, and in the lossy case are also affected by the Q factor (higher
compression produces slightly faster times). You can also improve performance a little by increasing the
restart interval (increase the value of IM_JPEG_RESTART_ROWS from its default of 32). When you also
need to transfer the compressed image on or off the board, you should also consider the time taken by
imJpegReadBuf()/imJpegWriteBuf(). However, these functions can be overlapped with the actual encoding
or decoding by running them in another thread. In this case they add very little extra time.
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Header File: track.h

int trackBallPosition (struct trackingStruct* track, struct calibrationData* calibData)

Description: Filters the ball position and linear velocity in image coordinates. The barrel distortion and
parallax error are also removed. If the ball is not found the data is extrapolated from the previous frames.
The position is clipped if the filter overshoots the image size.

Inputs: struct trackingStruct* track

Contains all of the information necessary for tracking.

struct calibrationData* calibData

Contains all of the calibration information including the size of the window and
the field in terms of image coordinates.

Return Value: The number of ball blobs that were found. This is either zero or one.

*-� �������

�-�
Header File: distortion.h

void brlDistCorrect(struct point* pointIn, int number, struct calibrationData* calibData)

Description: Removes the barrel distortion. The distortion is a function of the lens and the distance
that the pixel is radially from the center pixel in the image.

Inputs: struct point* pointIn

The list of points that are to be corrected in terms of image coordinates.

int number

The number of points that are to be corrected.

struct calibrationData* calibData

Contains all of the calibration information including the polynomial that is used
to remove the barrel distortion.

Return Value: void

*-� ���
����
��-�
Header Files: calibration.h

struct calibrationData* readCalibrationFile(struct calibrationData* calibData, char* filename)

Description: Reads a calibration file and computes the other necessary parameters from the file. This
function allows for reading of either the old or the new calibration file format. If a valid  structure is not
passed as an input to the function, it will allocate a new structure on the heap. Otherwise, the data will be
overwritten using the values read from the file.
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Inputs: struct calibrationData* calibData

Contains all calibration information.

char* filename

The name of the file that is to be read for calibration information.

Return Value: The address of the structure that contains the valid information.

*-! �
��)�''
�'-�
Header File: vision.h

struct fileLogStruct* initializeLogFile(struct fileLogStruct* log, char* filename)

Description: Initializes the log file struct. Opens the appropriate file and writes the header information
in a format such that Matlab will regard the header as comments. If a valid structure is not passed as an
input to the function, it will allocate a new structure on the heap. Otherwise, it will reinitialize everything,
and reopen the file.

Inputs: struct fileLogStruct* log

Contains the pointer to the open file and the current date.

char* filename

The name of the file to open for writing vision data.

Return Value: The address of the structure that contains the valid information.

void outputPositions (struct fileLogStruct* log, struct trackingStruct* track)

Description: Writes the appropriate information about the objects that are being tracked into the file.
The data for each frame appears as a single line on the output. The first four entries correspond to the ball.
The next six entries correspond to either the Brazil or Cornell robots. The remaining six entries correspond
to either the Italy or opposing robots.

Inputs: struct fileLogStruct* log

Contains the pointer to the open file that the data is being written to.

struct trackingStruct* track

Contains the tracking information for all objects that can be in the field.

Return Value: void

void freeLogFile (struct fileLogStruct* log)

Description: Closes the file that is being written to and frees the allocated memory for the structure on
the heap.

Inputs: struct fileLogStruct* log

Contains the pointer to the file log structure.

Return Value: void
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Header File: identification.h

void identifyBlobs (struct profile* orderedRobots, struct profile* oldRobots, int numRobots, struct
state* newRobots, int numNew, int trackingRobot[])

Description: Identifies the robot blobs based on the current position of the blobs and where the robots
were located in the previous frame. This function only identifies the robots, but does not do any filtering on
the data. The velocity of the robots is not taken into account, only the position.

Inputs: struct profile* orderedRobots

The profiles for the ordered list of robots that correspond to the initial ordering
of robot positions. This is the new data that has been ordered.

struct profile* oldRobots

The old data referring to the locations of the robots in the previous frame.

int numRobots

The number of elements that are in the array pointed to by oldRobots.

struct state* newRobots

The new blobs that map to the team marker color and are candidates for robot
identification. These blobs are oriented and contain position information in
terms of image coordinates and orientation in terms of radians.

int numNew

The number of elements that are in the array pointed to by newRobots.

int trackingRobot[]

An array of type int that stores the current state of tracking for the robots from
the previous frame. Updates to this array are done in place.

Return Value: void

*-% 
	�'�5����


�'-�
Header File: vision.h

void processFrame(struct genesisStruct* genesis, struct calibrationData* calibData, struct
timingStruct* timing, int num);

void processFrame(struct genesisStruct* genesis, struct calibrationData* calibData, int num);

Description: Performs the color segmentation algorithm. The algorithm can optionally perform
difference imaging to clean the image. The function can also perform timing on all of the genesis function
calls.

Inputs: struct genesisStruct* genesis

Contains all buffers and pointers necessary to perform color segmentation on the
genesis board.

struct calibrationData* calibData

Contains all calibration information including the color threshold values.
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struct timingStruct* timing

Contains the timing statistics for all processing functions that take place on the
DSP board.

int num

The current buffer index that is marked as processing in the circular grab buffer.

Return Value: void

void analyseBlobs(struct genesisStruct* genesis, struct blobAnalysisStruct* blobAnalysis, struct
timingStruct* timing);

void analyseBlobs(struct genesisStruct* genesis, struct blobAnalysisStruct* blobAnalysis);

Description: Performs the blob analysis and transfers the results back to the host computer. The
function can also perform timing on all of the genesis function calls.

Inputs: struct genesisStruct* genesis

Contains the results of the color thresholding.

struct blobAnalysisStruct* blobAnalysis

Contains all of the buffers, threads, and the result buffer in host memory to
perform the blob analysis.

struct timingStruct* timing

Contains the timing statistics for the processing functions that perform blob
analysis.

Return Value: void

*-2 
�
�
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Header File: vision.h

struct trackingStruct* initializeTrackingStruct (struct trackingStruct* track)

Description: Initializes the tracking structure. If a valid structure is not passed as an input to the
function, it will allocate a new structure on the heap. Otherwise, it will reinitialize the variables. All
tracking profiles are initialized to zero and all tracking states are set to NOT_TRACKING.

Inputs: struct trackingStruct* track

The structure that is to be initialized.

Return Value: The address of the structure that contains the valid information.

struct genesisStruct* initializeGenesisBoard(struct genesisStruct* genesis, struct calibrationData*
calibData)

Description: Allocates all the threads, the camera, the genesis board, and buffers that are to be used for
the image processing. The buffers and allocated and the child buffers are assigned. If a valid structure is not
passed as an input to the function, it will allocate a new structure on the heap. Otherwise, the variables in
the structure are overwritten and reallocated.

Inputs: struct genesisStruct* genesis
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The structure that is to be initialized.

struct calibrationData* calibData

Contains the calibration information including the image buffer sizes and the
window sizes and position.

Return Value: The address of the structure that contains the valid information.

struct blobAnalysisStruct* initializeBlobAnalysis (struct genesisStruct* genesis, struct
blobAnalysisStruct* blobAnalysis)

Description: Allocates the blob analysis buffers, and threads. The child buffers are assigned. If a valid
structure is not passed as an input to the function, it will allocate a new structure on the heap. Otherwise,
the variables in the structure are overwritten and reallocated.

Inputs: struct genesisStruct* genesis

Contains the address of the genesis device

struct blobAnalysisStruct* blobAnalysis

The structure that is to be initialized.

Return Value: The address of the structure that contains the valid information.

struct timingStruct* initializeTiming(struct timingStruct* timing)

Description: Initializes the timing variables to zero. If a valid structure is not passed as an input to the
function, it will allocate a new structure on the heap. Otherwise, the timing variables are all set to zero.

Input: struct timingStruct* timing

Contains all of the timing information.

Return Value: The address of the structure that contains the valid information.

struct statisticsStruct* initializeStatistics(struct statisticsStruct* statistics)

Description: Initializes the vision system statistics to zero. If a valid structure is not passed as an input
to the function, it will allocate a new structure on the heap. Otherwise, the statistics are overwritten.

Input: struct statisticsStruct* statistics

Contains all of the vision system statistics.

Return Value: The address of the structure that contains the valid information.

void specifyInitialPositions (struct genesisStruct* genesis, struct trackingStruct* track)

Description: Allows for the specification of the initial ball and robot positions. It also assigns each
robot on the field a number, which corresponds to the robot ID number. The robots and ball positions are
assigned based on a single frame that is captured at the beginning of the game.

Inputs: struct genesisStruct* genesis

Contains the buffers for color segmentation and the grab buffers.

struct trackingStruct* track

Contains the tracking information for the robots and the ball.

Return Value: void
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void initializeSingleProfile(struct profile* p, int number)

Description: Initializes an array of profile structures to be all zero.

Inputs: struct profile* p

Array containing profile structures to be initialized

int number

The number of elements in the array p

Return Value: void

void freeBlobAnalysis(struct blobAnalysisStruct* blobAnalysis)

Description: Frees all of the memory that is allocated for the blob analysis. These are the buffers and
the threads. The entire blobAnalysis structure is then freed.

Inputs: struct blobAnalysisStruct* blobAnalysis

The structure that is to be deallocated.

Return Value: void

void freeGenesisBoard(struct genesisStruct* genesis)

Description: Frees all of the memory that is allocated for the genesis board. These are the buffers, the
device, camera, and the threads. The entire genesis structure is then freed.

Inputs: struct genesisStruct* genesis

The structure that is to be deallocated.

Return Value: void

void freeAllStructures(struct genesisStruct* genesis, struct blobAnalysisStruct* blobAnalysis,
struct trackingStruct* track,  struct timingStruct* timing,  struct statisticsStruct* statistics,  struct
calibrationData* calibData)

Description: Frees all of the dynamically allocated structures and the respective dynamically allocated
pointers inside those structures.

Inputs: struct genesisStruct* genesis

Contains the genesis board device, camera, threads, and buffers.

struct blobAnalysisStruct* blobAnalysis

Contains the blob analysis buffers.

struct trackingStruct* tracking

Contains the tracking information.

struct timingStruct* timing

Contains the timing information.

struct statisticsStruct* statistics

Contains the vision system statistics.

struct calibrationData* calibData
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Contains the calibration information.

Return Value: void

*-3 ��� ��0*����
��
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Header File: udp_network.h

int sendData (struct netData* nds, struct localNetworkStruct* lns, int length)

Description: Sends the tracking information over the UDP network.

Inputs: struct netData* nds

Contains all the information relating to the port that is opened including the
address and port number to send the information to.

struct localNetworkStruct* lns

The structure that will be sent across the network.

int length

Length of the network packet.

Return Value: The amount of data that could actually be transmitted.

int recvData (struct netData* nds, struct localNetworkStruct* lns, int length)

Description: Receives tracking data over the network. This function blocks until the data has been
received and read from the buffer.

Inputs: struct netData* nds

Contains all the information relating to the port that is opened including the
sending address and port number.

struct localNetworkStruct* lns

The structure that the tracking data will be read into.

int length

Length of the network packet that is to be received.

Return Value: The amount of data that could actually be received.

int recvRequest (struct netData* nds, char* buffer, int length)

Description: Wait for and read a request for the transmission of data over the network. This will block
until the request comes in. If the data does not correspond to SUBMIT_REQUEST then the request is not
serviced and an error is returned.

Inputs: struct netData* nds

Contains all the information relating to the port that is opened including the
sending address and port number.

char* buffer

The piece of memory that the request will be read into.
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int length

Length of the network packet that is to be received.

Return Value: The amount of data that could actually be received.

int sendRequest (struct netData* nds, char* buffer, int length)

Description: Send a request over the network for the transmission of new tracking data.

Inputs: struct netData* nds

Contains all the information relating to the port that is opened including the
address and port number to send the information to.

char* buffer

The piece of memory that will be sent across the network.

int length

Length of the network packet to be transmitted.

Return Value: The amount of data that could actually be transmitted.

struct netData* initializeNetworkClient(struct netData* sns, unsigned short port)

Description: Initialize the network client data structure. This is the structure that contains all of the
information that is needed for the artificial intelligence computers to use the local network. If a valid
structure is not passed as an input to the function, it will allocate a new structure on the heap. Otherwise, it
reinitializes the existing structure.

Inputs: struct netData* sns

Contains the addresses and port numbers that indicate where to get the data
from.

unsigned short port

The port that the connection has to be made to on the vision computer.

Return Value: The address of the structure that contains the valid information.

struct netData* initializeNetworkServer(struct netData* cns, unsigned short port)

Description: Initializes the network server data structure. This is the structure that contains all of the
information that is needed for the vision system to process and service requests over the local network. If a
valid structure is not passed as an input to the function, it will allocate a new structure on the heap.
Otherwise, it reinitializes the existing structure.

Inputs: struct netData* cns

Contains the address and port numbers that the request for information had come
from.

unsigned short port

The port number that the socket binds to for waiting on requests.

Return Value: The address of the structure that contains the valid information.

void destroyNetwork(struct netData* cns)
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Description: This closes the network port and frees the memory that was allocated during the
initialization.

Inputs: struct netData* cns

Contains all the information for network communication.

Return Value: void

*-4 ��
�����
��-�
Header File: orientation.h

int orientBlobs (struct state* tRobotProfile, struct point* robot, int numRobot, struct point* orient,
int numOrient)

Description: Registers orientation and team marker blobs together and computes the orientation angle
between the two of them. If an orientation blob is not registered, then the orientation angle is set to
NOT_ORIENTED. All orientation angles are in radians.

Inputs: struct state* tRobotProfile

The state of the supposed robot. This is the position and orientation.

struct point* robot

The array of team marker blobs.

int numRobot

The number of elements in the array robot.

struct point* orient

The array of orientation blobs.

int numOrient

The number of elements in the array orient.

Return Value: The number of team marker blobs that have orientation markers registered to them.

*-�8 ������-�
Header File: vision.h

void debugOutput (struct trackingStruct* track, struct calibrationData* calibData)

Description: Print the tracking information and profile for all of the objects currently being tracked to
the console window.

Inputs: struct trackingStruct* track

Contains the tracking information and filter.

struct calibrationData* calibData

Contains the calibration information including how many robots should be on
the field.

Return Value: void
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void screenOutput (struct genesisStruct* genesis, struct trackingStruct* track, struct
calibrationData* calibData, int bufferNumber)

Description: Outputs the current blobs which fall into each sub-volume that is being looked for to the
genesis display section and can be viewed on the monitor.

Inputs: struct genesisStruct* genesis

Contains the buffers that correspond to the display section.

struct trackingStruct* track

Contains the tracking information that we wish to look at and the locations of
the objects so the labels may be placed appropriately.

struct calibrationData* calibData

Contains the calibration information including the number of robots to be
expected on the field.

int bufferNumber

The current buffer index that is marked as processing in the circular grab buffer.

Return Value: void

void imageCapture(struct genesisStruct* genesis, int mode)

Description: Captures a frame from the display section and saves it to disk as a TIFF image. Hitting
the ‘9’ key on the number pad captures the image.

Inputs: struct genesisStruct* genesis

Contains the buffers that are to be captured to disk.

int mode

Whether the capture is done during the initialization or the processing stage.

Return Value: void

*-�� ���0��
7�-�
Header File: vision.h

void packetizeData (struct trackingStruct* track, struct calibrationData* calibData, struct
localNetworkStruct* lns, HANDLE* mutex, int* dirty, int mode)

Description: Places the data that results from the tracking into the appropriate structure for
transmission to the artificial intelligence computers. The type of data that is sent is dependent on the mode
variable and the type of vision system build.

Inputs: struct trackingStruct* track

Contains the information that needs to be packetized.

struct calibrationData* calibData

Contains the calibration information including the number of robots to be
expected on the field.
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struct localNetworkStruct* lns

The structure that will be sent across the network.

HANDLE* mutex

The mutual exclusion lock that prevents the data from being read while new data
is being written.

int* dirty

Flag that states whether the data in the localNetworkStruct is dirty of if it is new
data.

int mode

The type of computer that the packet will be transmitted to.

Return Values: void

*-�� �����C�
����-�
Header File: track.h

int trackRobotPositions (struct trackingStruct* track, int mode, struct calibrationData* calibData);

Description: Orient, identify, filter, and track the robot positions in image coordinates. Also filters the
linear and rotational velocity. The barrel distortion and parallax error are also removed. If a robot is not
located but is physically in the field, then the data is extrapolated from the previous frames. The position is
clipped if the filter overshoots the frame size.

Inputs: struct trackingStruct* track

Contains all of the data for tracking, and filtering.

int mode

Specifies the data that needs to be tracked.

struct calibrationData* calibData

Contains all of the calibration information including the filter constants.

Return Value: Returns a ‘0’ always.

*-�� ����0-�
Header File: track.h

void getAllObjectPositions(struct trackingStruct* track, struct blobAnalysisStruct* blobAnalysis,
struct calibrationData* calibData)

Description: Wrapper that performs all of the function calls for object tracking.

Inputs: struct trackingStruct* track

Contains all of the data for tracking and filtering.

struct blobAnalysisStruct* blobAnalysis

Contains the results of the blob analysis.

struct calibrationData* calibData
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Contains the calibration information including the size if the windows and the
minimum and maximum that a blob can be.

Return Value: void

void preprocessBlobResults(struct trackingStruct* track, IM_BLOB_GROUP1_ST* results, int
sizeX)

Description: Size and shape filtering of the blobs to eliminate any spurious data points that may result
in the image processing. The blobs are then processed from the common list of all blob features. The blobs
are separated based on color.

Inputs: struct trackingStruct* track

Contains all of the data for tracking and filtering.

IM_BLOB_GROUP1_ST* results

The buffer that the results of the blob analysis will be copied into.

int sizeX

The width of the windowed grab buffer that only contains the field.

Return Value: void

void getRobotPositions(struct trackingStruct* track, struct calibrationData* calibData)

Description: Copies the locations of the opponent robots into the tracking structure until no more blobs
are found or until there are not supposed to be more players on the field.

Inputs: struct trackingStruct* track

Contains the tracking information.

struct calibrationData* calibData

Contains the calibration information including the number of robots to be
expected on the field.

Return Value: void

*-�! ����
���	-�
Header File: transformation.h

struct profile transformCoord (struct profile inPoint, struct calibrationData* calibData)

Description: Transforms the coordinates from image coordinates to field coordinates.

Inputs: struct profile inPoint

The profile that is to be converted from image to field coordinates.

struct calibrationData* calibData

Contains the calibration information including the transformation from image to
field coordinates.

Return Value: The profile in field coordinates.
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void paralaxCorrect (struct point* inPoint, int object, int number, struct calibrationData* calibData)

Description: Removes the parallax error that results from objects of different heights. The error
removal is dependent on the classification of the object in question.

Inputs: struct point* inPoint

Array of point structures that need the parallax error removed.

int object

Type of object in question.

int number

Number of elements in the array inPoint.

struct calibrationData* calibData

Contains the calibration information including the parallax scalar and offset.

Return Value: void

*-�# �


��-�
Header File: vision.h

void main(int argc, char **argv)

Description: Entry point into the vision system code. This function calls all of the other functions and
has the main vision processing loop.

Inputs: int argc

The number of elements in the array argv.

char** argv

Array of the arguments to the executable.

Return Value: The exit status of the program.

void errHandler(void *success)

Description: Error handler for the genesis function calls. Exits the program upon error in the genesis
native library calls. Outputs the error to the console window.

Inputs: void* success

Flag to mark whether or not there was en error in the processing loop.

Return Value: void

void commThread(void)

Description: The thread that services tracking data requests over the network in competition mode.

Inputs: void

Return Value: void
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void commBrazilThread(void)

Description: The thread that will service all requests for data from the Brazil artificial intelligence
computer.

Inputs: void

Return Value: void

void commItalyThread(void)

Description: The thread that will service all requests for data from the Italy artificial intelligence
computer.

Inputs: void

Return Value: void

void commDisplayThread(void)

Description: The thread that will service all requests for data from the display client computer(s).

Inputs: void

Return Value: void

void uiThread(void)

Description: The thread that services all user interface commands to the processing thread.

Inputs: void

Return Value: void
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