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Noteon Terms

RoboCup (The World Cup Robot Soccer) is an attempt to promote Al and robotics
research by providing a common task for evaluation of various theories, algorithms, and
agent architectures. In order for the robot (physical robot and software agent) to play a
soccer game reasonably well, wide range of technologies need to be integrated and
numbers of technical breakthroughs must be accomplished. The range of technologies
spans both Al and robotics research, such as design principles of autonomous agents,
multi-agent collaboration, strategy acquisition, real-time processing and planning,
intelligent robotics, sensor fusion, and so forth. [6]
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Noteon Terms

Note on Terms

The following terms are used extensively throughout the document.

Blobs: The term blob refers to a region of the image where all of the pixels in that region are of a
homogeneous value. The surrounding area of the image is of a different value.

Blob Identifier Image: The blob identifier image is a binary image that contains blobs. The blob
analysis module can compute blob features on grayscale images but needs the binary image to locate the
regions on which to compute features.

Connected Components. Pixelsin an image that are neighboring and all contain the same pixel value. The
neighbors can be defined by using a 4 connected lattice or an 8 connected lattice. Two regions of equal
pixel values but separated by a different value are not considered to be of the same connected components.

Interesting Color: Colorsthat are being actively sought during the vision processing.
Oriented Team Marker: A team marker that has had an orientation marker registered to it.

Primary Color: One of the three colors that are used to locate everything on the playing field. The colors
are orange, blue, and yellow. Orange identifies the ball, and blue and yellow identify the robots and the
team that they belong to.

Robot Profile:  The current position, orientation, linear velocity, and rotational velocity for the robot in
guestion. These variables are the current values of the linear tracking filter and the information that is sent
to the artificial intelligence computers.

Robot State: The position and orientation of the robot in equation.

Secondary Color: Any other colors that are used for gathering information about the current state
of the robots. This includes information such as orientation. The secondary colors can be any color other
than the primary colors.

Team Marker: A marker that is placed on top of the robot to identify the team that the robot belongs to.
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Section 2 RoboCup: Robot Worid Cup
Initiative

The RoboCup competition is a program designed to promote robotics research through out the world by
defining a standard problem from which several issues can be addressed. The competition requires a cross-
discipline effort including aspects of Electrical Engineering and Mechanical Engineering as well as
Computer Science. To produce a competent team; the system requires mechanics, digital and analog
electronics, control theory, system theory, agorithms, artificia intelligence, and real-time sensory
processing. The goal of the RoboCup Initiative is to build a system that can play a game of soccer using
robots for the players based upon the rules stated in Appendix A.

Section 3 System Overview

The RoboCup system is designed to play a game of soccer in a way that resembles an actual soccer game
played by human players. The system is completely autonomous and free of human intervention during
game play. The system contains four main components:

* Thevision system

* Theartificia intelligence system

*  Thewireless communication to the robots
» Therobots

The artificial intelligence broadcasts commands over a wireless network to the robots, which in turn carry
out the commands. The vision system determines the current game state and sends the state to the Al
computers for further processing and determination of a strategy to be executed.

The system is designed to run at a rate of 60 Hz, and the robots are designed to achieve a maximum
velocity of 2 m/s and a maximum acceleration 2.94 m/s’. The system has been implemented and is
functional, yet runs at aframe rate of 40-45Hz.

Section 4 Vision System Overview

The vision system consists of everything from the lighting and the markers on top of the robots, through the
acquisition and processing of the visual data, to the transmission of the processed data to the artificial
intelligence computers. The vision system processes color images from a CCD camera to locate and track
the robots and the ball. It consists of segmenting the image, locating the objects that are considered to be
interesting, identifying, and tracking these objects. This information is then sent over the network
connection to the artificia intelligence system.

The field conforms to fairly stringent constraints to aid in the visual processing of data. It is uniformly
illuminated at levels between 700 — 1,000 lux, and the number of colors on the field islimited to afew.

The block diagram given in figure 1 describes the system. A camera is mounted above the field to perceive
the global state of the system. Each robot is marked with a team marker that is used to identify the team
that the robot is a member of. These colors are set forth in the RoboCup rules and are either yellow or blue.
The ball is an orange colored golf ball. Aside from the team markers other markers may be placed on top of
the robot, such as an orientation marker, or identification marker. Each frame is grabbed from the camera
and processed using a color segmentation algorithm to separate the colors that are deemed to be interesting.
The interesting colors are then processed according to the classification that each colored object on the field
can fall into. These colors are:
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e Orange signifying the ball

e Yellow signifying one team .
»  Bluesignifying the other team Lighting
* White signifying the walls, field lines, and the ¢
orientation of the robots
»  Green signifying the playing field Physical Playing Field
» Black signifying the physical robot covers ¢
Of these six colors only four are considered to be interesting. Camera
They are orange, yellow, blue, and white. The other color <
regions of the image are thrown away. The location of the ¢
ball, and the locations and orientation of the robots are
computed. The robots are identified and ordered to specify Image Acquisition and
which robot corresponds to which team marker. The ball and Digitization
robot states, composed of the position and orientation in the
case of the robots, is filtered using a tracking/prediction filter ¢
to reduce the amount of measurement error that is inherent in
the digitization of the image. The states of the ball and the Image Processing Module
robots are sent to the Al system over a UDP network
connection for strategy processing and review. Segment Image Based
The system hardware is comprised of: on Color
e« 1 Sony DXC-9000 3-CCD Color Camera with Zoom
Lens Locate All Interesting
e 1 Matrox Genesis Image Processing Board with 64 MB Objects
of SRAM and Grab and Display Modules
* 1 Century Optics Wide Angle Adapter ¢
The system software is comprised of: Tracking Module
* Image Segmentation
* BlobAnaysis Orient Robots
* Robot Orientation Determination
* Robot Identificqtion and Linear Filtering | dentify Robots <
e Network Functions to Transport Data Across UDP/IP
Connection
Filter Data Points
The system is built up of 3 separate programs. They are the
calibration program, the vision system proper, and the vision '
system display client. The calibration program alows for +
color thresholds to be determined in a graphical way. The Network Data Dispersion
vision system proper acquires and processes the digitized

frames and disperses the resulting data. The vision system
display client provides graphical visualization of the Figure 1.Vision System High Level
processed data from the vision system proper by acquiring Block Diagram

data from the network and plotting this data in a window.

The vision system display client requires no special hardware

or software.

There are several modes of operation for the vision system. The processed data can be sent to either one or
two artificial intelligence systems. It can also be sent optionally to an arbitrary number of vision display
clients. Two artificial intelligence systems provide the capability for two teams to compete with the use of a
single vision system. The system also allows for the use of difference images before segmentation to
eliminate field noise, and also allows for the optional use of filtering of tracked objects.
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Section 5 RoboCup Vision System

Requirements

The vision system must be able perceive the current game state. This means that it must identify the objects
on the field and track them in real-time with a minimal delay. It needs to separate the ball, two different
team markers, and any additional robot markings from the rest of the field in a reliable way. Each robot on
the Cornell team needs to be able to be identified uniquely in some manner, whether physically if the robots
are visually heterogeneous or in software if the robots are visually homogeneous. This data needs to be
transferred to the Al system. The vision system also needs to be implemented within the time frame given.
Thetime frameis 9 months.

Section 6 High Level Vision System

Functional Description and
Analysis

The vision system was analyzed and the requirements were determined by, and influenced the requirements
of the system as a whole. The camera was determined to be a single color camera, which can image the
entirefield at aheight of at least 2.5 meters. The coloring of the additional markers on top of the robots was
determined to be of a uniform color and the robots to be visually homogeneous. The vision frame rate was
determined to be 60 Hz processing an entire frame (both even and odd fields) of data. Each robot needs to
be able to have the orientation determined, and uniquely identified by the system. A separate workstation
was chosen to process al of the vision data and the information needs to be sent to a separate computer
over a network connection for al artificial intelligence processing. The operating system was chosen to be
Microsoft Windows NT. The vision system needs to be able to be calibrated as conditions change and
needs to have a user interface to allow for changing of the system state.

6.1 Global Vision Analysis

A global vision system was chosen to allow a suitable camera without size and processing constraints. The
robot requirements specify that on-board robot vision requires that the robot height must be within 22.5 cm.
An on-board vision system also requires either the camera data must be processed on the robot, or sent to a
central processing workstation over wireless communication. Processing vision data requires a large
amount of processing power and the processed data needs to be merged in some comprehensive way to
allow for an organized strategy to be determined by the artificial intelligence system. To eliminate these
problems, a single camerais used to resolve the state of the game. This eliminates both the need to process
vision data and merge this data into a unified game state, and the need to process the data on the robots
themselves. The implement so alows it to be completed and fully tested within the
time frame given. The use of & Aus required that the camera have a high enough resolution

Table 1. Spatial Error

Dmentions of the Held Length (meters) Wdth (meters)
274 1.525
Camera Resolution
Resolution Along FHeld| Resolution Along Feld Width
Height Width Length(nmeters) (meters)
200 200 0.01370000000 0.00762500000)
320 240 0.00856250000 0.00635416667}
512 512 0.00535156250 0.002978515634
640 480 0.00428125000 0.00317708333}
800 600 0.00342500000 0.00254166667}
1024 768 0.00267578125 0.00198567708]
14 | =R+G+B
| =R+G+B

|l =R+G+B
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and frame rate to locate the robots with minimal error. The error consists of two parts; spatial error and
temporal error. To resolve object locations within a centimeter of spatial error, the camera resolution needs
to at or greater than 320x240. Thisanalysisis given in Table 1. The frame rate of the camera and top speed
of the robots in intertwined. In order to increase temporal error that is inherent in the vision system the
frame rate of the camera needs to be fast enough that the maneuverable area of the field by the robots is
minimal, but yet still maintain a feasible frame rate. The maneuverable area is defined by the area that the
robot can cover within two consecutive frames. This area is inversely proportional to the frame rate. This

Table 2. Temporal Error

Area Covered Traveling, AreaCovered Traveling

CameraFrame Rate at 2m/s (meters?) at 4m/s (meters?)
PAL: 25Hz 0.020096 0.080384]

NTSC. 30Hz 0.013956 0.055822

60Hz 0.003489 0.013956

analysisis given in Table 2. The use of a single camera requires that the camera must be able to image the
entire field at aheight of at least 3 meters as specified by the RoboCup regulations. However, the RoboCup
lab requires that the camera be able to image the entire field at a height of 2.5 meters. This fixes the lower
bound on the lens field of view to be at 63.598°. This specifies that the camera lens must be a wide-angle
lens. The wide-angle lens will introduce a fair amount of barrel distortion that needs to be compensated
for.

6.2 Color Analysis

The RoboCup regulations specify all objects in terms of color. This and other RoboCup teams using color
vision systems motivated the selection of a color vision system for use. A grayscale system will flatten the
color information preserving the intensity information and eliminating the color information of the vision
data. Specifically, a very small distance in grayscale space separates the color orange (ball) and the color
green (field). Thus a grayscale system would be prone to segmentation errors due to noise in the color
values of either the ball or the field. The distance between the two colors on a 255-color scale is about 20
divisions. This is insufficient because this is the most important
differentiation that must be made. A typica image that may be
acquired during the game is presented to the right. The ball and the
field are not differentiable with a high degree of confidence. The
conversion from the RGB color space to the grayscale color spaceis
given by

| =R+G+B
This is a non-affine transformation. Colors that have been captured
with a grayscale camera cannot be recovered. 3 CCD color cameras
capture images based on the RGB color space. Upon converting
orange (RGB coordinates of [255, 0, 0]), green (RGB coordinates of
[0, 255,0]), and blue (RGB coordinates of [0, 0, 255]) to grayscale
using equation 1, the intensity value of all of these colorsis 85. Thus
differentiating these three colors in terms of intensity is not reliable ;
and highly prone to image noise. Grayscale images are also highly .'_'?'.!_.,' .======!
sensitive to lighting variations because this is the information that is = = I T
captured by a grayscale camera. The colors that are present in an %iﬁf.\‘===1
image of the field can be considered to be clusters in the used s/ < Wfiﬂ---‘
colorspace. In grayscale, these clusters are all located along asingle Wil === i 51 s s— ——
axis since grayscale is a linear colorspace. In RGB colorspace, the clusters are located in 3-space and thus
are spread about this three dimensional volume with more space between the colors. Since color cameras
capture in RGB space this separation is preserved through the digitization of the color image. The
conversion to grayscale does not preserve this information.
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6.3 Color Based Segmentation and Tracking

To identify the objects on the field that are marked as interesting, color segmentation is done to separate the
objects from the rest of the field and spurious objects that are located off of the field. The items of each
color deemed interesting are separately processed and tracked. The segmentation procedure is required be
robust to noise and lighting variations across the field. The tracking procedure is required to be invariant to
occasional spurious data points and measurement error inherent in the image processing procedure. The
tracking procedure is dependent upon the robot markings, and the identification of the robots. The tracking
procedure allows for ball and robot prediction into future frames to compensate for delaysin the system.

Table 3. Vision System Tasks

Image Resolution 640 480
Camera Frame Rate (s) 0.016667
Number of Channels 3
Number of Colors

Color Thresholds without Color Thresholds with

Difference Imeges Difference Images
Image Processing
Nunber of Difference Images
Nunber of Mask Generations
Nunber of Image Merges
Nunber of Color Thresholds 12 12
Nurrber of Logical Operations 4 4
Nunber of Blob Analysis 4 4
Tracking
Nunber of Ball to Track 1 1
Nunber of Cornell Robots to Track 5 5
Nurrber of Opponent Robots to Track 5 5
Nunber of Orientation Blobs to Track 5 5
Total Number of Objects to Track 16 16
6.4 Robot Marking

The vision system processes in linear time with respect to the number of colors that are determined to be
interesting. To decrease the vision processing time, any additional markers that are placed on top of the
robots are to be of a uniform color. This method also leaves enough separation in colorspace that the
primary colors can be reliably segmented. If each robot is marked with a separate color that uniquely
determines the robot, five new secondary colors are now searched in the colorspace decreasing the
distances between color clusters in the colorspace. For reliable and robust color separation, these distances
need to be maximized. The robots involved are not all bi-directional and capable of turns of arbitrary
radius. To determine the direction that the robot is facing, an orientation marker is placed on the top of the
robot that allows the vision system to realize the direction that the robot is facing. The use of the path that
the robot is traveling is not appropriate for orientation determination since the robot can change orientation
without traversing a path. The robot is also able to travel in both forward and backward directions. Since
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not all robots are bi-directional, the robots are required to have a specific direction at times during game
play. This direction cannot be determined from the forward and backward motion of the robots since the
single marker on the robot is a radially symmetric ping-pong ball placed on the top of the robot. A second
marker is used to eliminate the symmetry of the top of the robot and be able to determine the orientation of
the robot in question.

6.5 Robot Identification

Commands from the artificial intelligence system are broadcast to the robots and each robot receives a
command that is determined by that robot position on the field. In order to ensure that the commands are
sent to the correct robots on the field, each robot that is being tracked needs to be identified. A mapping is
required to be performed between the blobs that are located by the vision system to the numbers that the
robots have been programmed to respond to, and the ordered list that is stored in the Al program. The blobs
that are located by the image processing are unordered and initially arranged as they are found by raster
scan order.

6.6 Data Dispersion to Vision Clients

The vision system is separated from the artificial intelligence computers and is to be dispersed to the Al
computer and any other systems that processing the vision data. The possible use of multiple clients
necessitates a communication system that allows for multiple computers to access information from the
vision computer. A local area network is built from the vision and artificial intelligence computers to allow
for the efficient transmission of data to all clients. This system alows for multiple computers to be
physically connected to the vision system. The communication link from the vision system and clients
needs to be built on top of this physical layer. A serial or paralld line alows for only a single computer to
access the data from the vision computer, whereas the network does not contain this property. An Ethernet
link was decided based upon the high bandwidth and availability of device driver abstraction. The Matrox
libraries are compiled for both DOS and Windows NT, but Windows NT aso contains the networking
protocol suite for UDP/IP. Thus Windows NT was the operating system platform selected. The use of
Microsoft Windows NT also eliminates direct communication to the ports of the computer

Section 7 Hardware Determination and
Analysis

In order to capture images at an update rate of 60 Hz, the Sony DX C-9000 was chosen. This camera has a
resolution of 640x480 and updates at 60 frames per second, using a full frame transfer. The camera
transmits data using a VGA signal. While the VGA signal is analog, the data that is used to create the
analog signal is digital, thus the SNR is very small. The processing of the data is dependent on the amount
of datathat isto be analyzed. At the target frame rate, dedicated hardware was determined to be needed in
order to process at a high enough bandwidth. A frame rate of 60 Hz is fast enough that operating system
scheduling and efficient algorithm coding is a magjor concern when processing on a computer. To connect
the camera, the Matrox Genesis board was selected because a 60 Hz transfer rate has been tested and
verified with the Sony camera. An aternative DSP board, the Coreco Cobra/C6, was not able to verify the
compatibility of the board with the Sony camera running at the frame rate. The Matrox genesis board also
included an extensive library of image processing function calls. The hardware specifications are included
in Appendix B.

Section 8 Algorithmic Constraints Due to

Hardware Selection

The selection of the Matrox Genesis DSP board added a significant number of constraints to the
determination of the image processing algorithms. Each call to the Genesis board has an overhead of .5 ms.
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With this overhead, 32 calls to the DSP board will result in the entire processing window being wasted on
overhead. The result is that the number of calls to the image processing board must be minimized. The
speed and efficiency of the image processing functions are also dependent on the type of data that the
image buffer contains. Binary type buffers need to be used as often as possible to increase the speed of
processing. Also, any colorspace conversions, while attractive, cannot be computed on the board at the
specified frame rate. The price of the vision system hardware prohibited the purchase of a system for each
team. Thus the system must be able to accommodate visual processing for both teams. This includes the
dispersion of the data to two computers simultaneously.

Section 9 Algorithm and Network Protocol
Determination

The vision algorithms consist of an image processing module and a tracking module. The image processing
module is comprised of an image segmentation stage and a blob analysis stage. The tracking module is
comprised of blob orientation, identification, and filtering stages.

9.1 Image Segmentation

The image processing stage of the vision system answers the question of what is in the image, and where is
the object located in the image. The image processing a gorithms need to be devel oped with attention based
toward optimized speed and accuracy. Each frame of data contains 921,600 bytes of data. Thus the system
must be able to have a throughput of at least 52.7MB of data per second. A single pass through the image
requires a throughput of 105.4MB of data per second. Several image processing algorithms were examined
during the algorithm determination. Each algorithm was considered for speed on the Matrox Genesis board.
These include color histogram backprojection with blob aggregation, an distance classifier with
thresholding, and color thresholding. The color thresholding algorithm was selected for both feasibility and
execution speed.

9.1.1 Color Histogram Backprojection with Blob Aggregation

The color histogram backprojection algorithm is set forth by Michael Swain and Dana Ballard in [10]. This
algorithm is the equivalent to a correlation of the object model and the image in histogram space. This
algorithm identifies the objects that have a similar color histogram to the model images and then localizes
the blobs based upon the size of the blob of a certain color.

The algorithm consists of two parts: a ratio histogram is projected onto the image and then a box sum is
convolved across the entire image. Both the model (here images of the ping pong balls, and the golf ball)
and the image multidimensional histograms are computed. The histograms are computed in the rg-by-wb
color space.

Theratio histogram is defined to be:

g

where R, is the histogram ratio, i is the bin number, M; is the model histogram, and I; is the image
histogram. This ratio is indexed based on the number of bins in the histogram. This ratio histogram is then
backprojected onto the image by replacing the image value with the value of R; that the image point
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references. A box sum is then convolved across the image and the blob centers produce peaks in the image.
The algorithm is executed for four different models. They are the ball, the two team colors, and the
orientation color. After the computation of the box sum, we will be looking for the maximum value when
searching for the ball, 5 peaks when we are searching for any of the other target objects. The output from
the image processing algorithm will be the locations of the 16 blob centers that are found in the image.

The histogram backprojection algorithm is robust, yet computationally intensive. At a resolution of
640x480 the golf ball comprises a width of nine pixels of an area of approximately 68.55 pixels’. The sizes
of the ping pong ball in the image are of a small size ratio when compared to the rest of the image;
approximately 2.23175x10“. This means that the peaks that are determined by the algorithm are not
significantly above the noise floor that is produced by the rest of the image. Conversion of the captured
RGB space image to the rg-by-wb color space is prohibitively expensive and thus cannot be computed.
Maintaining the RGB color space implies that the backprojection of histogram ratios back onto the image
involve a three-dimensional look up table. The size of this table is 256° = 16777216 entries. Considering
the anticipated non-uniform lighting at the competition across the field, histogram backprojection will
possibly fail to locate robots in brighter of darker areas of the field. RGB space is highly sensitive to
lighting variations and thus the histograms of similarly colored objects on different portions of the field will
not coincide with the model histogram, evaluating to a low match value. The algorithm requires for each
color to localize:

*  One Histogram Mapping

e OnelmageDivision

e OneMinimum Calculation

e OneLUT mapping

e One Convolution (Box Sum)
*  One Peak Determination

9.1.2 Distance Classifier with Thresholding

A distance based classifier was considered for implementation to classify each pixel by the distance metric
to each of the expected values all the colors marked as interesting. The distance metric used is defined as

D=Z|P—T|

To eliminate the classification of uninteresting colors to those colors that are marked as interesting a
threshold isimplemented. The classifier isimplemented using the following equation

d = min(dist;) ,d <thresholdJ
d .
0 0 ,otherwise

The classifier involves three steps. First the distance of the pixel color to all target colors is computed. Then
the pixel is classified based on the target classthat it is closest to. If the distance is greater than a maximum
distance threshold, the pixel is thrown away. This classifier can be achieved using a radia bias or k-means
classifier for classification target vectors that vary through time. This algorithm requires:

»  Three Image Subtractions with Absolute Value for Each Color (One Subtraction for
Each Color Channel)

e One Triadic Image Addition for Each Color (One Addition for Each Color Channel)

*  OneMinimum Calculation

e OneBinary Thresholding

For the minimum of three colors that need to be localized this resultsin:
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* Nine Image Subtractions with Absolution Value
e Three Triadic Image Additions for Each Color
e Three Minimum Calculations

e Three Binary Thresholds

As can be noted, the algorithm runsin time O(n) in the number of colors that are classified. This algorithm
cannot be completed in the target amount of time.

9.1.3 Color Thresholding

A color thresholding algorithm was selected as the image processing algorithm for both execution speed
and feasibility. Each color channel isthresholded in RGB space and classified by whether or not the pixel is
contained within the cube that is delimited by the thresholds. This algorithm is well suited since the colors
delimited by the RoboCup federation are well separated in color space. This algorithm produces binary
type data buffers quickly to allow for increased processing speed further into processing. The algorithm
requires:

e ThreeBinary Thresholds for Each Color
e OneLogica Operation for Each Color

For the minimum of three colors that need to be localized this resultsin:

* NineBinary Thresholds
*  ThreeLogica Operations

The color thresholding segmentation procedure can be shown to

be equivalent to the distance based algorithm with a redefinition A
of the distance metric that is used. The contours of the original Contours of
distance based classifier produce a cube in the colorspace as Equal Distance

shown in figure 3, projected on to a plane for visual clarity. The
color thresholding procedure produces the same contour lines
rotated to align the sides of the cube to be parallel to the axes of ‘ >
the colorspace illustrated in figure 4. The original classifier
deviates from the norm 2 distance (Euclidean distance) by at
most 9.3%. The color thresholding classifier deviates from the
norm 2 distance by at most 44.2%. These deviations are located
at the points that radiate out from the center of the contour at 45°
from the axes. All of the colors that are defined by the RoboCup
Federation are located at corners of the RGB color cube (Figure

Figure 3. Contours for Norm 1

Classifier
5) and the shortest distances between any two colors are along
the color axes where this deviation is minimal. In the ideal case Contours of
of marker coloring the entire colorspace can be split into eight A Equal Distance

regions using a single segmentation along each axis. In the
segmentation of the colorspace into eight regions, each color
then occupies a volume that results from the splitting of the
plane with 3 planes. Thus each color band only needs to be
segmented a single time and the colors can be uniquely ‘ >
identified by the binary values given in Table 4. Each term refers
to whether the volume is in the positive of negative half of the
cube along the specified axis (Figure 6). The color thresholding
requires much less processing time than the other distance
classifier and due to the tight timing constraint fits into the time
window. While a maximum of nine thresholds are required,
severa thresholds can also be merged together to reduce the  Figure 4. Contours for Color
number of binary thresholds from nine to a much smaller Thresholding
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Figure 5. RGB Color Cube with RoboCup Colors

number, with a lower bound of three. This is dependent upon the actual coloring of the objects. To allow
for variations in the coloring of objects the thresholds are set during the calibration procedure and are
loaded into the vision program during runtime and only close thresholds are merged together allowing for
volume overlap. However algorithmic optimizations use all nine thresholds for the primary colors. This
also alows for not having to merge thresholds, and more robust calibration of the system, at the price of a

speed hit.

Table 4. RGB Binary Values

Binary Value FromGolor
Qolor Threshalding (RG B)
Black (000)
Blue (001
Green (010
Gyan (011)
Red (100
Magenta (101)
Yellow (110
White (111)
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Figure 6. Example of Binary Coding of Sub-volumes based on Single Band Thresholds

9.2 Blob Analysis

All regions that have been classified as belonging to a specified color result in binary blobs in the blob
identifier image for the colors that are considered interesting. Blob features are computed to enable further
processing of the binary identifier image. These features are center of gravity in both x and y coordinates,
blob area, and blob perimeter. The center of gravity for each blob identifies the location of the blob in
image coordinates, the area and perimeter allow for the computation of the compactness of each blob.
During blob analysis all pixels that evaluate to a binary one in the identifier image are connected to the
neighboring pixels, and the features are computed for these connected components.

9.3 Blob Size and Shape Filtering

Thelist of blobs that is the result of the image processing is filtered by both size and shape parameters. Due
to the fact that the markers for all objects on the field are of a specified size, any blobs that are not within
the size constraints are thrown away as noise. Every marker is also either circular or square in shape. To
further filter noise from the image processing step, the compactness of all the blobs are computed from the
perimeter and area features of each blob. The compactness of both a circle and a square of ideal shape is
approximately 1. Any blobs that differ significantly from this compactness are thrown away as spurious
data points. This step eliminates a significant portion of the noise in the image.
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9.4 Orientation Determination

A separate marker that is placed on top of the robots, eliminating the symmetry of the robot covers,
determines the orientation of each robot. Following blob analysis, each blob that is classified as an
orientation marker is registered to the blobs that are classified as team markers for the team that is being
tracked. The registration performs an exhaustive greedy search of all combinations of orientation and team
marker blob positions and any orientation marker that is within the specified distance to a team marker is
registered to the corresponding team marker, resulting in an unordered list of oriented robot blobs.

The relative locations of the team markers and the orientations of the markers determine the orientation of
the robot. In order to accurately determine the orientation of the robot, the team marker and the orientation
markers are to be spatially located as far from each other as possible within the bounds of the robot covers.
The position of the markers on the robots relative to the actual orientation of the robot is dependent upon
the shape of the robot covers that are used. The robot covers for
both teams are described in the figure to the right (Figure 7). The
orientation markers themselves are sheets of paper that are
placed on the covers of the robots. To change the color of the
orientation marker, a new sheet of the specified color must be
printed or purchased and cut to proper size. Ping pong balls,
those used for the team markers, are not used since the ping
pong balls would be required to be painted to match certain @ -
colors and the color of paper is easier to control. The use of
paper affects the robot orientation due to paralax error in the
images. The physical height of the paper on the robot colors and
the height of the robot marker are not in the same horizontal
plane and thus requires that the parallax error be corrected prior
to determination of robot orientation. Robots are oriented using
the formula

Robot Cover

Team Marker

Orientation Marker

Figure 7. Robot Cover Showing
Orientation

6 =tan™ ym—y(,%
Xn =%
The orientation is performed with respect to the positive x-axis in the image coordinates and is independent
of the placement of the markers on the robot covers. The corresponding robot dependent orientation is

resolved in the artificia intelligence system. The result of the orientation stage is to produce a list of robot
states

9.5 Robot Identification

Because al of the robots are visually homogeneous the individual robots need to be identified to ensure that
the correct commands are sent to the appropriate robots. The identification step uses the temporal
continuity that is inherent in the physical state of the system being tracked. The robots can only traverse a
small portion of the field between frame grabs and this information is exploited in the identification step.
The unordered list of team marker blobs is registered to an ordered list of team marker blobs that was
computed based on the information in the previous frame. This registration is performed using an
exhaustive greedy search algorithm, which attempts to register all team marker blobs with the identified
robots from the previous frame based on a distance measure. For each of the robots on the field, the
distance to al of the unidentified team marker blobs is computed and the blob with the minimum distance
is registered to the robot in question. The blob is considered to be identified and the robot state is updated
in the system. The difference between the robot position in the current frame and in the previous frame is
used to compute the robot linear and rotational velocity. Thisis stored in the ordered list of robot profiles.
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9.6 Linear Filtering and Prediction for Robot
Identification

Inherent in the image capture, digitization, and processing; noise in introduced into the system. This noise
is due to pixelation, sensor noise, and segmentation noise. The results of the processing can then be
modeled as X' (t) = x(t) + v(t), where v(t) is gaussian white noise. To eliminate this noise a linear tracking
filter is used to smooth the position and orientation information in both the ball and robot states. The
fundamental trade-off of this increased accuracy in the state information is the delay that is due to sudden
changes in the state information. As the standard deviation of the noise in the state information is reduced,
the lag in the tracking filter is increased. However, since a single pixel shift in the location of an orientation
blob produces a 10-15° shift in the orientation of the robot, the filter is necessary to provide accurate object
profile information to the artificial intelligence system. The filter selection for the ball was chosen to be a
linear prediction filter since the ball has constant velocity and no input forces when traveling freely across
the field. A Kalman filter was also considered for tracking of the robot states since the robots can travel in
non-linear patterns on the field and have input forces that are subject to the commands that they are given.
The Kalman filter was not selected due to increased complexity and computation required of the filter, time
to project completion, and speed of the tracking system. Kalman filtering requires approximately twice the
computation time of the linear filtering algorithms and the system tracking rate is fast enough that the
system position and velocity profiles are linearized about the current time in the system. The filtering
computes the position and velocity information and this is kept in the system as an object profile.

The linear tracking filter equations are

51 = i1+ (41 - yin-1)
yinl = yin-1 + g(X{n] - y{n-1])

The propagation of the filtering equations from the previous frame allows for a predicted robot location in
the current frame. Comparing all of the current robot states to the predicted robot profiles identifies the
robots. The match is based on the distance that the robot has traveled, and the change in velocity between
the two frames. Thus the robot identification is dependent on continuity in both robot position and robot
velocity. The current robot velocity is measured as the distance between the position of the robot in the
previous position and the current team marker blob that is being considered. The result of the identification
using the tracking filter is to keep a point on the field that from being identified as a robot while a robot
moves past that point. The distance that the point travels from one frame to the next is nearly zero and thus
would win in the greedy algorithm that only uses the position information from one frame to the next.

The identification stage of robot tracking is
sensitive to errors from the image processing. If a
team marker is not segmented in the image
processing module, due to such errors as severe
color distortion or improper calibration, The robot
profile for the current frame is interpolated from : : '
the previous robot profile. This alows for a o 01 02 01 o4 08 a8 07 o8 0@ A
reasonable approximation to the correct robot . e
profile since the robots are changing slowly with i e

respect to the frame rate of the vision system. X Y
During the next frame, the interpolated robot f,_-,-_. ......... E':..-__._._ ............. ..- ........ .
profile is used to search through the robot states to L e S e .
determine the identification. If an appropriate i i R
robot state is not found for five frames the robot e S L
profile is considered to be invalid, and the

tracking for that robot is dropped.

b &

Il prilveds (P o w4 (0]
i
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Robots that have been dropped from tracking are reacquired based on oriented robot states that do not
register to any robot states that are currently being tracked. Once all of the team states have been registered
and identified, any remaining robots that should be on the field but are not being tracked are assigned a
robot state, and the robot profile initialized to the current position of the team marker on the field. Since the
robots move with arbitrary motions about the field, there is no reliable way to assign the robot
identification to the robot state that is under consideration. Thus the identification of a robot number to the
robot state is done in an arbitrary way. Hence, if two separate robots are not segmented properly and have
been dropped from tracking, the reassignment of robot numbers to these robots is done by which robot
position is first in term of raster scan order of the field image. This is the main cause of robot
misidentification.

The linear filtering[2] of the robots reduces the amount of noise in the robot positions and orientation by
eliminating high frequency components of the change in data. Asthe position of the input to the linear filter
varies through time, the filter generates a value that represents an approximation based on the current and
all previous measurements of the position or data. The bandwidth of the filter determines the amount of
noise that is allowed to pass through the filter. The decrease in bandwidth, while reducing the variance of
the output, causes a lag in the estimated value for position or orientation. This is apparent in the phase
response of the filter. Thus, sharp changes in data are reflected in the output after a significant amount of
time. The fact that the filter is second order necessitates that the response of the filter contains dampening
that needs to be accounted for.

The filter performs without steady-state error for the case of constant-velocity of the tracked parameter.
While the ball has constant velocity for times when the ball freely rolling along the field, the robots do not
usually have constant velocity during game play. During game play, the velocity of the robots is constant
because of the frame rate that the vision system runs at. Expanding the position of the robot in one
dimension in terms of its Taylor Series produces

2

X(t) = x(t,) + TX(t,) + T2—|s<(tn) ‘.

The robots are designed to have maximum accelerations of around 3nV/s?. For the anticipated update rate of
60 Hz, this resultsin the acceleration term for the expansion being

T? (1/ 60
FR
This term is small enough that the acceleration of the robot is not necessary as one of the filter states. For

the case of a constant acceleration, the filtered position and orientation will lag behind the actual value of
the robot by a value of

(3 'y ) = 4.166666x10™*m

)
b = - X:] = -4.990x10°m

the result of the truncation of the acceleration termin the Taylor Series expansion.

The transient error of the resulting signal is the sum of all the lag errors for a step change in velocity given
by

= Z(yn -%,)

Thetotal error isthusthe error due to input noise and the filter lag and given by the cost function

25



Detailed Vision Documentation

Error =VAR(y,) +A(D, )

where the A is a Lagrange multiplier that determines the importance of each portion of the error. The
resulting filter gains are related by

9.7 Network Protocol and Model

For efficient transmission of data across the network connection with minimal delay, the UDP transmission
protocol was selected. UDP is a member of the TCP/IP network layer protocol suite and is widely available
and included in the Windows NT socket libraries. Opposed to the TCP/IP transmission protocol, the UDP
protocol does not provide for either guaranteed data delivery or acknowledgement of the data being
received at the destination socket. TCP/IP was not selected due to these features that provide for reliable
data transmission. For any data to be transmitted across a TCP connection the receiver is notified and an
acknowledgement is returned. Then the data is packetized and each packet is sent over the network in turn
once the reception of the previous packet is acknowledged. This form of reliable delivery is very slow and
does not fit our needs since the calls to transmit the data blocks all processing on the transmitting and
receiving machine. The vision and the artificial intelligence computers are connected together using a local
area network that can be disconnected from all other network traffic and computers. This eliminates a
significant amount to network noise, and completely eliminates all networking problems such as dropped
packets due to misrouting, maximum number of hops, and so forth. The UDP protocol is thus sufficient for
the transmission of data from one computer to an adjacent computer on the network.

The communication between the vision system and the artificial intelligence computers is performed using
a client server model, where the artificial intelligence computer places a request for data and the vision
system transmits the data to the address that requested the data. This method allows the artificial
intelligence system to obtain the most recent information that is available from the vision system. Other
problems such as network buffer backup are also eliminated using this model. The network buffer may be
backed up if the vision computer simply sends data without the artificial intelligence system being ready to
read the data from the buffer. This occurs when the artificial intelligence program is started after the vision
system and does not read data from the network buffer during the initialization.

Section 10 Detailed Algorithmic Analysis and
System Implementation

Image capture and processing is done on the Matrox Genesis DSP board. This includes the image capture,
image segmentation and blob analysis using the Genesis Native Libraries. The tracking is done on the host
processor. Data dispersion over the network is also done on the host computer. For each network
connection that the system is expecting, a separate thread is used to disperse the data.

The vision system uses four main structures to organize the data that is processed. These four main
structures are:
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e genesi sStruct: All devices, threads, and buffers that are used on the DSP board
for image processing.

* bl obAnal ysi sStruct: All threads, buffers, and result structures that are used
for blob analysis

e trackingStruct: All structures and arrays that are used for object tracking and
filtering

 calibrationDat a: All system parameters resulting from calibration. This holds
all constants that are dependent on the environment and which can change.

10.1 System Initialization

The system is calibrated on initialization using a calibration file that is loaded during system start up. The
file contains all of the necessary system calibration parameters. These include the color thresholds for the
ball and the two robot colors, the starting and stopping positions of the image window, the starting and
stopping positions of the field in the image, the number of robots on each team, the physical scale factor to
convert pixels to meters, the camera height in meters, and the robot height in meters. Many of these
parameters can be set once and do not need to be changed. The calibration file format can be found in
Appendix C. The remaining system parameters are computed using these values taken from the calibration
file.

To eliminate unnecessary processing time in the vision system loop, all buffers that are used for image
processing on the DSP board are alocated beforehand. Buffer allocations on the board are synchronous
function calls, and block system execution until the required memory has been allocated. The size and type
of these buffersis known and thus all buffers are allocated at system startup.

The blob analysis features are also declared in the system initialization. These features are added to the
blob analysis feature buffer. The structure used to transfer the data from the DSP board to the host
computer are declared in an array that is large enough to hold the amount of data that is ever expected to
result from the blob analysis stage. The blob analysis module is aso instructed to ignore run information
and to use 4-connected to connect neighboring pixels. A run is a horizontal sequence of blob pixels. The 4-
connected connection scheme defines pixels as being connected if neighboring blob pixels are to the top,
bottom, left, or right of the pixel in question. Blob pixels that are on the diagonal are not considered to be
connected.

The tracking information is initialized to zero initially and there are no objects that are currently being
tracked by the system. During system startup, the user is allowed to optionally select objects that are on a
single captured frame to initialize tracking information and assign initial robot identification numbers. If
this step in omitted, then the system assigns robot identification numbers based on the order in which the
objects are located in the image.

During system initialization, all network threads are allocated and started. The threads are used to service
network requests that are presented to the vision system and to perform data interpolation if necessary.

10.2 Image Capture and Preparation

The image capture of the frame from the camera is done in a double buffering fashion. This alows for a
frame to be captured into memory on the DSP board while processing takes place. Without double
buffering, the capture of aframe of data needs to be done after processing of the data is completed. As the
frameis captured into memory, processing of datais halted.
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The vision system uses a
circular buffer containing two
separate  buffers  for  the
acquisition of data. More buffers
can aso be used. After the
completion of processng a
buffer of data, the input buffer is
marked as free and the next
frame grab is initiated into the
free buffer. The second buffer
now contains new data and
marked as the working buffer,
and the processing moves to the
working buffer. Since the image
processing loop takes more time
to complete then the transfer of

Initiate Grab of Next
Frame into the Free
Buffer

Begin Processing
Previous Framein
the Working Buffer

Image Acquisition and
Digitization

_________________________

Figure 8. Image Acquisition and Digitization Breakdown

data from the camera to the board, the vision system does not need to wait for the completion of the frame
grab and immediately begins processing to new buffer of unprocessed data.

Since the field only takes up a portion of the image, the field portion of the captured frame is windowed
and used for processing. The location and dimensions of the window is located in the calibration
information that is read at system initialization. This windowed image is stored as a child buffer of the
origina image. Separate child buffers of the windowed child buffer provide access to each of the color
channels. Thisisillustrated in Figure 9. The child buffers allow for processing of image regions and bands
without needing to transfer image data to a separate buffer, increasing the system throughpuit.

R, G, and B Bands

] Original RGB Captured Image
L from the Camera with Separate

inint3Buf (Double-buffered)

Red Band of the Child Buffer
Window Representing the
Playing Field
rint1Buf (Double-buffered)

Green Band of the Child
Buffer Window Representing
the Playing Field
gint1Buf (Double-buffered)

Extracted Child Buffer
Window Representing the

Playing Field with Separate

R, G, and B Bands

winInt3Buf (Double-buffered)

Blue Band of the Child Buffer
Window Representing the
Playing Field
bint1Buf (Double-buffered)

Figure 9. Image Windowing and Band Extraction
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10.3 Color Based Segmentation
The color based
segmentation performs

segmentation  using  the
windowed buffer from the
capture buffer which has
been marked as the working
buffer in the acquisition
stage. The segmentation
alows for the optional
computation of a difference
image to mask the parts of
the field that are not the
objects that are attempting to
be tracked. An image of the
field without robots and
without the ball is captured
and stored in system
memory. The current frame
is then subtracted from this
objectless image and
absolute value is applied.
Regions of the difference
image that are large in any
of the color bands are
regions where there are high
color differences. This is a
good indication that the ball
or one of the robots is

Compute Difference
Image

Generate Mask
I mage from
Difference Image

Merge Source Image
into Zero Image
Extracting Robot and
Ball

Threshold Each
Color Band for Each
Class of Interesting
Objects

Apply Logical
Operation to Extract
Sub-volume from
RGB Colorspace
Generating Blob
Identifier Image

Image Acquisition and
Digitization

Image Processing Module

Segment Image Based
on Color

Locate All Interesting
Objects

Shaded Boxes Represent
Optional Processing Steps

present at that region. The
camera flicker typically will
not allow unchanged regions Figure 10. Segmentation Step Breakdown

of the image to have a

difference image value of zero. The difference image locates the positions of the ball and robots on the
field, but will not produce a constant color across the image. The colors of the objects that are in the
difference are dependent on both the color of the object and aso the color of the area in the reference
image. For example, an orange ball will produce an orange object when it is subtracted from the dark field,
but will produce a cyan colored object when it is subtracted from the white wall.

Field[79,83,96] - OrangeBall[ 255,74,73] = Orang€[176,9,23]
Wall[ 255,255,255] - OrangeBall[ 255,74,73] = Cyan[0,181182]

Thus the color constancy needs to be resolved to ensure that the colors will remain constant as the objects
move across the field. To resolve this issue, regions of the difference image which indicate objects are
replaced by the respective portions of the source image sing a binary mask generated from the difference
image. Once the difference image are formed, a binary image where the pixels that above a threshold are
set to 0x00 and those below are set to OxFF is generated from the difference image. The image that is
generated is a binary mask, which is color channel dependent. In order to generate a mask that is
independent of the color bands, these masks are merged together using an AND operator. This produces a
single band mask where at least one of the color bands differ from the reference image by at least the
threshold are set to OxFF. Values of 30 to 80 work well to eliminate most of the static image from the
difference image. Once the mask image is generated, the source image is merged with a constant image of
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value 0x00. This produces an image where
regions of the source image that contain color
differences from the robotless reference image
pass the source image, and the remainder of
the image is constant 0x00. This produces a
merged image such as shown in figure 11.The
result of the difference image is then used for
the color thresholding. If difference imaging is
not used, then the image processing begins
with the color thresholding. The color
thresholding process converts each of the
integer (8-hit) color band images into a binary
image based on the threshold for the color
band. The binary images alow for faster
processing of data due to the reduced data
throughput by a factor of eight. Each color that
isinteresting is segmented separately from the
other colors. The bands are also thresholded
using different values to allow for different
thresholds to be used for each color. The
resulting binary images designate the blobs in
the color band where the regions fall into the
threshold volumes on each band. The results
are shown in Figure 13 below.

Figure 11. Difference and Source Image Merge
Result

The colored regions can be extracted using a
simple logical operation that selects either the  Figure 12. Result of Logical Operation

positive or negative parts of the binary images

depending on the color. This is shown in Figure 12 to the above. The thresholding produces 12 binary
images, one for each color channel for each interesting color. To perform the logical operation for all the
interesting colors results in four logical operations, where the Boolean function to be performed is taken
from Table 4 in Section 9.1.3. The opcodes for the separate logical operations were derived to perform the
necessary function since the operations are not defined in the Genesis library. The Texas Instruments’ C80

Figure 13. Results of Binary Thresholding for the Ball
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processor allows for any logical operation to be performed by determining the proper opcode. This custom
opcode generation is described in the manual TMS320C80 (MVP) Parallel Processor User’s Guide and also
described in Appendix D. These opcodes are defined in the file “def i nes. h”. Due to the function call
overhead of the Genesis Native Library the thresholding is done such that the positive binary images for all
bands is produced for the color that is being separated. This resultsin the logical operation for al the colors
being an AND of al color bands. Since the Boolean function that the logical operation performs is the
same, all the buffers are processed at the same time with a single call to the DSP board, saving 1.5 msin
overhead time, and allowing all primary colorsto be segmented separately. The results from all color band
thresholding for a specific band is placed into a child buffer. Then the logical operation is performed on the
parent buffer, which performs the logical operation on all of the results at once. The child buffering is
illustrated in Figure 14. The result of the logical operation is a group of binary identifier images that are
passed to the blob analysis module. These images are arranged such that the blob analysis needs to process
only asingle buffer.

The processing times on the Matrox board are presented below in Table 5 where the times include the .5ms

Table 5. Image Segmentation Times

Operation Subsample Execution Time (ms)
Convert frominteger to Binary (1 operation) 1 2.79
Convert frominteger to Binary (1 operation) 2 0.836]
Logical Operation (all colors) 1 3334
Logical Operation (all colors) 2 1.52

overhead required for all processing function calls to the board. From the times, it is shown that the image
must be subsampled in order for the processing to be completed in close to the required amount of time.
This subsampling doubles the error in the blob position computation. After subsampling, each pixel
corresponds to 8.5625 mm. This increased error represents an error of .313% of the field length and .561%
of the field width. This error is smaller than the error that is introduced into the system during calibration.

Table 6. Image Segmentation Times

Operation Number of calls| Execution Time (ms)| Total Execution Time (Ms)
Dffernce Image Preprocessing

Cenerate Difference Imege 1 2.680 2.680]
CGenerate Binary Mask for All Bands 1 1.613 1.613
AND operation on Binary Masks 1 1.153 1.153
Merge Source Image and Mask 1 2579 2.579
Total Time 8.025
Color Thresholding and Segmentation

Conversion from8-bit to 1-bit 9 0.836 7.524
Logical operation on 1-bit 1 1.520 1.520)
Total Time 9.044]
Total Time for Image Segmentation 17.069

The list of times for the image segmentation procedure is given in Table 6. The image segmentation is
performed using the function cal “processFrane()”, and can be found in the file
“i magePr ocessi ng. c”. The function process frames using the Genesis Native Library cals:

e |ImntDyadic(): Generatethe Differencemage

e ImntBinarize(): Generate the Mask Image for All Bands

e ImntTriadic(): AND operation on Binary Masks

e ImntTriadic(): Merge Source Image and Mask

* | nBi nConvert () : Conversion from 8-bit to 1-bit binary. Color Thresholds
« I nBinTriadic(): Logica Operationto Extract Sub-volume
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Child Buffer to Hold Result
of Binary Thresholding for a
Single Band of a Single Color
Separators are
inserted into the
Parent Buffer to
Separate Blobs
Figure 14. lllustration of Buffer Management for Logical Operation
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. imintBinarize() Respective Color Merging
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Difference Imege Generate Mask B
Image
imintTriadic() <
Merge Source Imege
and Image Mask . . .
Optional Sep for Difference |mage Preprocessing
i I_ One Segmentation ProoajureEPer Interesting Color
Split Merged > | :
ImageintoR, G, B i ]
Bandsfor Color i A 4 '
Thresholding : imBinTriadic() | !
3 I— ] Binary |dentifier
. » Logical . I Image for Blob
e _I "] Opeationto |} Andysis
3 Extract Sub- | !
‘ volume
o f ;
g ]

imBinConvert()

Generate Binary Image
from Color Thresholds

Figure 15. Image Segmentation Block Diagram
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10.4 Blob Analysis

The blob analysis locates all of the
blobs that are the result of the sub-
volume extraction in the color
segmentation  step. The blob
analysis stage connects all of the

Segment Image Based

pixels that are a binary ‘1’ together
if they are neighboring each other.
Once all of the pixels are connected,
the requested features are computed

Compute Blob
Features

1
1
1
! on Color
1

Locate All Interesting

for each blob. These features are
area, perimeter, and center of
gravity. The blob anaysis is
performed on the single binary

Transfer Data from
DSP board to Host
Memory

Objects

image that is the result of the color

segmentation step. This allows for a
single cal to compute the blob
features. The child buffers for each

individual color are separated to
ensure that blobs are not connected

Figure 16. Blob Analysis Breakdown

which correspond to different sub-volumes. Once the blob analysis is completed, the results are transferred
to the host computer from the DSP board. The results are transferred in one step by transferring datainto a
structure that contains more features then those that are requested to be computed. These additional features
in the structure are invalid and subsequently ignored in the tracking module. The structure is of type
IM_BLOB_GROUPL_ST. It contains the fields that are described in Code Segment 1. The blob analysis
computes only the binary features of the blob analysis image. Other than binary features, it can also
compute grayscale features, however, the grayscale feature computation takes more processing time than
the binary features, and a grayscale image of the field in also not available. Than would require an
additional image processing step to perform the conversion to grayscale. The binary features also perform

well enough for the locating the blobs. The blob analysis
allows for sub-pixel results when computing the center of
gravity. This is due to the averaging that is used for the
computation.

Xi
center _of _gravity x=—"———
- -9 Y- blob area

z)ﬁ
center _of _gravity y=——"———
blob_area

The blob areais ssmply the number of pixelsthat comprise a
blob. The perimeter of the blob is the total number of edge
pixelsin a blob. The times for the blob analysis and transfer
are provided in Table 7. The times for the blob analysis are a
rough estimate; the times are data dependent and vary
depending on the number and size of the blobs. The blob
analysis is computed using the Genesis Native Library
function “i mBl obConmpute()” and the results are
retrieved using the “i nBl obGet Resul t s() "function.

/* Blob analysis results --- groupl */

typedef struct

{
unsigned short number_of _blobs;
unsigned short label_value;
unsigned long ares;
unsigned short box_x_min;
unsigned short box_y min;
unsigned short box_x_max;
unsigned short box_y max;
unsigned short number_of holes;
unsigned short number_of _runs;
float perimeter;
float length;
float breadth;
float center_of gravity x;
float center_of _gravity y;

} IM_BLOB_GROUP1_ST;

Structure

Code Segment 1. Blob Analysis Result
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Table 7. Blob Analysis Computation and Transfer Times

Time to Complete using Time to Complete without
Operation difference images(ms)| using difference images (ms)
imBlobCorrpute 2.636 16.999
imBlobGetResult 2102 6.695
Total Blob Analysis Time 4738 23.694
0.7565 T T T T T T 0.25
. 02}
07561 8
g g 0.15}
‘E’ 0.7555 .;(% o1k
g - 0.
g g 0.05f
® 0.755f <
5 &
3 g  of
['% o
07545} &
-0.05
0.754 L L L L L L 0.1 . . . . . . L
0.673 0.6735 0.674 0.6745 0.675 0.6755 0.676 0.6765 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
Position along x-axis (meters) Robot Path Along X-Axis (meters)
Figure 17. Position for a Stationary Object Figure 18. Position for a Moving Object

The blob analysis and transfer are performed in the function “anal yseBl obs() ” and is found in the file
“i magePr ocessi ng. c”

The error in the blob analysis is typical small. The variance for blob positions is 7.4988x10° meters along
the x-axis and 3.2395x10° meters aong the y-axis. X-y plots for the positions of a robot is shown above.
The model for the blob positions can be described as x (t) = x(t)+v(t) where v(t) is the measurement noise
with mean of 0 and variance as stated above.

10.5 Initial Blob Filtering and Preprocessing

Once the blob results have been transferred to the board, the list of blobs is initialy filtered and
preprocessed. The filtering consists of size and shape filtering, and the preprocessing consists of separating
the blobs that correspond to the different colors from each other. The buffer that contains the blob identifier
image contains four child buffers, one for each color. The blob analysis processes the parent buffer to
reduce the amount of overhead for the function call. To separate the blobs that correspond to the different
colors, each blob that is of the specified size and shape is then examined for its position in the blob analysis
identifier image. The size and shape of each blob is first examined to reduce the amount of time to compare
the blob location values. If the blab falls within a certain child buffer, then the blob is added to the list of
blobs for that color. Once a blob has been added to the list of blobs for a particular color, the offset from
the child window location in the blob identifier image is removed. This results in four separate lists of
blobs. The blob features are no longer needed, and only the center of gravity is used. Each blob is stored as
alist of points in the window using a structure of type point. The point :
structure contains only the x and y positions of the blob relative to the ~ €0de Segment 2. Point
upper left hand corner of the window and are in image coordinates. The Structure

initial filtering and blob preprocessing is found in the function | sruct Poi nt {
“preprocessBl obResul t s()” and is found in the file “t rack. ¢c” | // all values represent pixels
The filtering constants are defined in the file “defi nes. h”. These float x;

include the maximum and minimum size for blobs and the maximum float y;
compactness. The blob areas after filtering are between 5 and 35. The | };

lower bound allows for partial results from image segmentation, yet is

large enough to remove most of the noise from the blob identifier image.
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The upper bound allows for slightly larger blobs that can result from pixelation of the image and dilation
from setting the thresholds lower than necessary. Theideal blob areais 17.1399 pixels.

"E object _raduis g _ HB .02m g —17.1399pixels

ers_to_ pixel _conversion 00085625

The blob compactnessis close to one for the objects that are being located. The compactness is defined as:

perimeter >
(4rrx area)

A circle has the minimum compactness value of 1 and a square has a compactness value of 1.2732. To
allow for dightly irregular shapes to result from the segmentation process, all objects with a compactness
value of greater than 2 are discarded as noise. The filtering and preprocessing removes a significant amount
of noise from the system.

After the blobs have been filtered for size and shape, the barrel distortion and parallax error is removed
from the blob locations. The imaging distortion is removed after filtering to reduce computation for blobs
that are not possibly objects being sought.

The barrel distortion is removed using a third order polynomial fit to the distortion introduced in the lens.
The barrel distortion is a function of the lens itself and thus is independent of both the camera height and
the location of the field in the image.

The parallax error is a function of the camera height and the height of the object under consideration. The
parallax error is produced by the incident angle from the camerato the object on the field. The error is zero
at the point directly below the camera and increases as the object moves radially away from the camera and
as the height of the object increases. Figure 19 describes parallax error. Since different classes of objects
have different heights, the position obtained from the blob analysis is the product of the projection of the
object center onto the image plane. The difference in height of the object requires that all objects must be

Camera
Projection ] Projection of Projection
of Ball Field Orientation Marker of Team
Marker

Figure 19. Parallax Error
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projected onto the same plane and have the
differences in height accounted for. In particular,
the orientation markers and the team markers have
different heights and thus is subject to error if the
paralax error is not removed previous to the | <
orientation determination. The paralax error is
removed by undoing the projection of the objects.
The projection isremoved using the equation | L ______________>

True
Location of
Object

d'="xh=pP —

d' is the true radia distance from the center of the  Figure 20. Removal of Parallax Error

lens to the object . d is the radia distance from the

camera to the projection of the object. h is the distance from the camera lens to the field, and h’ is the
distance from the object to the camera. The transformation is a scalar and is identified below as P. The
origin of the distances needs to be with respect to the location of the center of the camera, thus the distances
need to be offset to place the origin under the camera. After removing the projection, the coordinates are
converted back to image coordinates. Thus with the coordinate transform, the equation becomes

(d - offset )P + offset

The transformation can be performed separately and thus removed the need to convert from rectangular
coordinatesto polar coordinates. After rearranging the above equation, the transformation becomes

d'=d [P +offset(1- P)

Both the offset and the scalar P can be computed beforehand. The scalar P is computed for each class of
objects; ball, team marker, and orientation marker. These scalars are computed during the system
initialization and are stored in the calibration information. The storage of the scalarsis in an array that is
indexed using the constants BALL, ROBOT, and ORIENT, which are defined in “defi nes. h”. The
parallax error removal isfound in “par al axCorrect ()" in“transf ormati on. c”.

Thelist of points from the filtering is then sent to the tracking module.

10.6 Object Tracking

The tracking module tracks all of the objects on the field. The position of the ball is determined and filtered

Orient Robots Tracking M odule

| Orient Robots

Filter Ball Position ; <
Identify Robots e ‘ Identify Robots ‘
Filter Robot Position | Filter Data Points |
and Orientation

|
A AN ‘
Network Data Dispersion !

Figure 21. Tracking Module Breakdown
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getAllObjectL ocations()
“track.c”

preProcessBlobResults()
“track.c”
In House Mode Competition Mode
traclg:lal Ifm:r“gno trackRobotPositions() trackRobotPositions() getRobotPositions()
- ’ Robot_filter.c” Robot_filter.c” “track.c”
Team Brazil and Team Italy Cornell University Opponents
(two calls to function) Team
orientBlobs() orientBlobs()
Filter “orientation.c” “orientation.c” Filter
Robot Robot
Mode Mode
Filter and identifyBlobs() identifyBlobs() Filter and
Identify Robots “identification.c” “identification.c” Identify Robots

Figure 22. Modes for Object Tracking

using a linear tracking filter. The robots are oriented, identified, and filtered also using a linear tracking
filter. Thelist of pointsthat represent the ball is sent directly to the tracking filter to have the position of the
ball estimated. The blobs that represent the robots and the orientation markers are first registered together,
then the oriented blobs are sent to the tracking filter to be identified and have the robot positions and
orientation estimated.

Object tracking is initiated with a call to “get Al | Cbj ect Posi ti ons()” in the file “t rack. c”
Subsequent function calls are handled dependent upon the different modes of object tracking available.

10.7 Robot Orientation

The orientation procedure registers orientation blobs to team marker blobs by using an exhaustive search.
For each team marker blob, every available orientation blob is examined for possible registration. The
registration consists of examining the Euclidean distance from a team marker blob to all orientation blobs.
If the distance is significantly larger than the physical distance from the orientation marker to the team
marker on the top of the robot, then the next orientation marker is considered. If an orientation marker is
found, then the angle between the team marker blob and the orientation marker blob is computed, the
results are placed into a state structure, and the orientation blob is removed from the list. The state structure
holds the position of the team marker blob and also the angle to the registered orientation marker. If an
orientation marker is not found, then the orientation for the team marker is set to NOT_ORIENTED. The
computation of the orientation of the robots uses the information already computed during the registration
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of the orientation and team marker Fmmmmmmmmmmmmmm—m—oo oo
blobs, allowing reduced | Tracking Module !
computational complexity. The Register Orientation : i
orientation  registration  has Blobs to Team Marker ! Orient Robots !
complexity of O(nm) where n is Blobs | !
the number of team marker blobs 3/ ———— L
found and m is the number of . - | dentify Robots P
orientation marker blobs. The Computation of T i
orientation of the robots contains Orientation Angle | " Filter Data Points ¢ |
significant amounts of error. The i | ierbaaraints i

variance for the orientation of the LT ;
robots is .0017 radians or
5.79.7402x10%°. These satisics Figure 23. Robot Orientation Breakdown

are for the orientation for a

stationary object. This error implies that the orientation of oo ~~. ,
the robot orientation should be filtered even if the  Team Rad|lu;o|f
position of the robots is not. To reduce the amount of / Marker \ P'?P())/:sibl ey
error in the orientation, the orientation markers are placed | j 77 Orientation
on the edge of the robot covers. This increases the \ hd O / // Placement
distance between the two markers. The orientation *\ R
determination can be modeled as o O:\I/Ie;tlftelron :" H

\\ dy //

= ot EYn 0+, 0) - (5, © + v, (t))% S
T O v ) (0 O v, 1) ©

The terms Vym(t), Vyo(t), Van(t), and vi(t) are the noise that ~ Figure 24. Registration of Orientation
is introduced into the system due to measurement and

pixelation. The noise terms are uncorrelated and have similar
distribution. The mean is zero and the variance is as stated above in ~ C0ode Segment 3. State

section 10.4. The equation can be separated into two parts. The part that Structure
represents the true orientation and a part that represents the noise inthe | struct state {
orientation. I positionisin pixels
float x;
float y;
0 =tan™ qy’“ ®-Y (t)) v, (1) E /I orientation isin radians
Hix, ® =%, ©)+ v, ® o o

The noise terms then have zero mean and variance that is twice the
variance given above in section 10.4. An approximation to the orientation error can be given by

-5
o =sn g A0 H 55010
03

Where 7.49x107° is the variance of the error in the position estimate and .03 is the distance between the two
markers. The variance is then 2.5x10° radians or .1430°.

The orientation procedure can be found in “or i ent Bl obs() " inthefile“ori entati on.c”
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10.8 Robot Identification with Linear Filtering

Propagate Filter to
Current Frame

i Tracking Module i
Determine Position . i
Error from Tracked ! Orient Robots i
Robot to All Robot . l
States
| dentify Robots

Determination of . .
Velocity Error from Filter Data Points
Tracked Robotto AIl | | o/ ____—______ ;
Robot States

Filter Datato Estimate
Current State of
Robots

Figure 25. Identification and Filtering Breakdown

The robot identification can be done optionally with the linear filtering to aid in the identification. With the
linear filtering, robot misidentification is less prominent. The filter alows for both the position and the
velocity of the robots to be continuous. At the beginning of the identification and filtering process, the
current filter state is updated to predict the robot location in the current frame. The equation for the update
of thefilter is

yin] = y[n=1+T Oy[n-1]

The units that are used for the filtering equations are pixels for the position of the robots and pixels per
frame for the velocity. Since the velocity information isin pixels per frame, the time scale T for the update
equations in one. This update of the filter state provides an estimate as to where the robots are expected to
be on the field and how quickly they are moving during the current frame. The robot identification registers
team marker blobs based on the closeness to this predicted state.

Each team marker blob that is located in the current frame is attempted to be registered with the robots that
are located and tracked from all of the previous frames. The registration is performed using an exhaustive
search of al the team markers that have been found. If the position difference between two successive
frames differs by more than the physicaly realizable distance, then the team marker blob is disregarded.
The registration is based upon the difference that is possible between the predicted robot location and
velocity and the position and velocity of objects that are observed in the current frame. The team marker
that has the minimal difference is accepted and registered as long as the position is physically realizable.
The difference measure that is used is the sum of the change in position and velocity between two frames.
The change is position from the current frame and the predicted position is computed and allows for the
change in position between the two frames. Since the filtering is working in pixels per frame for velocity,
these values are also the current velocity of the blob that is in question. The difference between this
velocity and the velocity of the predicted state is then computed. These are summed to get the error term
that is the metric for robot identification. The equations used for position error are;
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dx=x

current

-X

predict

dy = ycurrent - ypredict

Eposition = V dX2 + dy2

The equations that are used for velocity error are:

dv, = dX = dX e

dVy = dy - dypredi(:t

Evelocity = V de2 + C'Vyz

Thetotal error used for robot registration is

E

total position

=E +E

velocity

Once arobot isfound and registered to the ordered list of actual robots, the new robot position is filtered to
generate an estimated position and velocity that is sent to the artificial intelligence computers. The new

state is based upon the observed position in the current
frame and all previous observations with diminishing
weight given to the previous frames.

The identification procedure gives precedent to the states
that have orientation markers registered to them. The
oriented robot states are a good indication that a robot is
located at that location. Once all of the oriented robot states
are examined for robot identification, the unoriented robot
states are then examined. The information is then placed
into a profile structure. The profile structure contains the
position, orientation, and linear and rotational velocity of
the object. This information contains the current state of the
filter for that object. If any of the robots in the ordered list
are ill left to be currently located on the field, the
remaining robot profiles are then extrapolated. After
identification, the tracking state for a robot is marked as
either TRACKING or TRACKING_NO_ORIENT
if no orientation information is available but has
been located on the field. If the robot state is
extrapolated, the tracking state for the robot is set to
the number of frames that the profile has been
extrapolated. These states are defined in the file
“defines. h”.

The filtering alows for later extrapolation of the
robot profile into the future. The filtering operates
on both the robot position and the robot orientation.
The robot orientation filtering in complicated by the
fact that the robot orientation is angular. The
assumption made is that the robot can only rotate
about its axis at a rate of 102 radians per cycle.
Without this assumption the direction of rotation is

Robot Path Along Y-axis (meters)

Code Segment 4. Profile Structure

struct profile{

[l position isin pixels
float x;
float y;

Il orientationisin radians
float w;

Il linear velocity isin pixels per cycle
float dx;
float dy;

// rotational velocity isin radians per cycle
float dw;

¥

0.4

0.3r

0.2r

0.1r

0.1f

-0.21

-0.3}

-0.41

05}

-1 -0.5 0 0.5 1 15
Robot Path Along X-axis (meters)

Figure 26. Robot Path with Filtering
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impossible to determine from two discrete measurements. If the direction of the rotation is consistent with
the difference between the measured angle and the predicted angle and within 172 radians, then the
orientation information is filtered. If at any point the filtered orientation is outside the range -1t to 11, then
the orientation is recentered to fall into the range.

The filtering is found to reduce the amount of error. The variance of the errors has been essentially reduced
by a factor of two. The variance is 3.2429x10°° along the x-axis and 5.3253x10°® along the y-axis.

10.9 Network Implementation

Transmission of the data over the

network requires that the data be :TkM d _I """ i
formatted and placed into packets. Packetize Data for | racking viodule i
The packet structure contains all Transmission i !
of the relevant information about e :
the position and velocity of the T:

ball and all of the robots that are Transmit Data Upon A 4

on the field. The structure is found Request from Client Network Data Dispersion
to the { CODE}. All of the data is

given in Cartesian coordinates.
The data that is sent to the
artificial intelligence computers is
the data that is used for the tracking filters with the exception of the opponent robots, which are not filtered.
Theinclusion of the additional information in the opponent robot structure allows the same packet structure
to be used for the vision display client. The orientation and rotational velocity is considered to be invalid
for the opponent robots when the data is sent to the artificial intelligence.

Figure 26. Network Dispersion Breakdown

The data packetization is determined by the mode that the vision system is currently operating in. If the
vision systemisin IN_HOUSE mode, then the robot position, velocity, orientation, and rotational velocity
is computed for all of the robots on the field. All of the data for the Brazil robots and only the position of
the Italy robots is sent to the Brazil artificial intelligence computers. All of the data for the Italy robots and
only the position of the Brazil robots is sent to the Italy robots. Thus the artificial intelligence computers
are not given an additional advantage when they are competing against each other. The data that is sent to
the computersin IN_HOUSE mode is similar to what is to be expected during competition. These two sets
of packets are then sent to the artificial intelligence computers upon the request for new data. In
competition mode, only one set of data is packetized and sent to the artificial intelligence computers upon a
request for more data. If the vision display client is being run, then the all of the data that has been collected
for the ball, and the robots is packetized and sent to the vision display client upon a request for the data.
This data contains the position, velocity, orientation, and rotational velocity of al the robots on the field, if
the systemisin IN_HOUSE mode and al information for the ball and Cornell robots, and the position only
for the opponent robots if the system isin competition mode.
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The network connection is established by opening a
server port on the vision computer and servicing a request
for data. If the vision system isin IN_HOUSE mode, the
Brazil artificial intelligence computer connects on the
port BRAZIL_PORT and the Italy artificial intelligence
computer connects on the port ITALY_PORT. The
artificial intelligence computer when the system in
running in competition mode connects on the port
VISION_PORT. If avision desplay client is running, the
client connects on the port DISPLAY_PORT. The port
numbers are defined in the file “defines.h”.

The packet structure contains the number of opponent
robots that are found on the field. This number
(oNumber) contains the amount of the opponent robot
information that is valid in the array. The number of the
team robots (fNumber) contains the validity of each of
the robot information that is in the array. Since the
friendly robots are ordered according to the physica
robot numbers that are assigned to them, the number of
the robot on the field is considered to be valid is the
corresponding bit in the 8-bit number isa‘1’. If the bit is
a ‘0" then the robot information is considered to be
invalid. This can result if the robot is not on the field, or
it the robot track has been dropped.

To service a network request for data, the vision system
thread waits for a request to come in from another
computer. This request is a single byte that is identified
as SUBMIT_REQUEST. Once this byte has been
received, the vision system sends the appropriate data to
the address that the request came from.

10.10 Vision System
Threads

Code Segment 5. Network Data Structure

The vision system is multi-threaded. One thread contains
all of the processing and the tracking proceedures. The
other threads are for servicing network requests and for
the user interface. Only the required number of threads
are built to reduce the amount of distributed processing.
The network service threads are assigned such that there
is one thread servicing each of the ports that are open on
the machine. Thus during IN_HOUSE mode, there are
two network service threads, and in competition mode
there is only one network thread. The network data
structures that are sent to the artificia intelligence
computers are global variables that are accessible to all of
the threads. To prevent sending data over the network,
and writing data to the data structures, a mutex is used for
mutual exclusion. There is one mutex for each network

typedef float pos t;
typedef float vel_t;
typedef float ang_t;
typedef float rot_t;

struct ball Track_net{
pos_t x;
pos_ty;
vel tdx;
vel_tdy;

}; [* 128 bits*/
[* 16 bytes */

struct oRobotTrack_net{
pos_t x;
pos ty;
vel tdx;
vel tdy;
ang_tw;
rot_t dw;

}; /* 192 bits*/
[* 24 bytes */

struct fRobotTrack _net{
pos_t x;
pos tvy;
vel tdx;
vel tdy;
ang_tw;
rot_t dw;

}; [* 192 bits*/
[* 24 bytes*/

typedef struct local NetworkStruct{
struct ball Track_net ball;
struct fRobotTrack net fRobot[5];
char fNumber;
struct oRobotTrack_net oRobot[5];
char oNumber;
} netdata t; [* 2064 bits*/
* 258 bytes*/

data structure. Thus the mutexes are locked for the shortest amount of time, reducing the waiting time to

read the data and copy it onto the network.
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RoboCup Small Size League (F-180) Rules and

Regulations
These are the official rules for 1999 RoboCup F-180 League play (revised 20 January 1999).

A.1 Playing Field

Surface

A table tennis table is the official surface for matches. The size and color of the table is defined as the
International Table Tennis Federation (ITTF) standard. ITTF regulations concerning the height of the table
surface above the floor do not apply. We will provide an appropriate height for the RoboCup competition,
which will be chosen to aid the global vision systems. Dimensions are 152.5cm by 274cm; the color is
matte green. Every effort shall be made to ensure that the table is flat, however, it is up to individual teams
to design their robots to cope with dlight curvatures of the surface. (please refer to ITTF Regulations for
more details on the table).

2T74cm note: net to mcalsel

/ s ™
l0em high wall 15cm high wall
painted white peinted goal ccler (yellow ox blue)

Here is apicture of an older version of the field. Note that the goals are different now.
Walls

Walls shall be placed all around the field, including behind the goals. The walls shall be painted
white and shall be 10cm high. Behind the goals walls will be 15cm high and painted one of the two
appropriate goal colors.
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Four small panels are positioned in the corners to avoid balls getting stuck. As shown in the figure
below, they are located 3cm from the corner for each axis. Green stripes 1cm wide are painted on the
cornersto aid robots in visual identification of the edge of the panel.

Goals

The width of each goal is 50 cm, (approximately 1/3 of the width of the shorter end of the field). The
goal is 18 centimeters deep. The wall continues behind the goal but increases to a height of 15cm. There is
no safety net over the goal, nor is there a horizontal goal bar. Robots can not fall off the playing area
because of the wall. The wall and area behind the goal line will be painted either yellow or blue. It should
be noted that a robot may use the area behind the goal.

Defense Zone

A defense zone is created around each of the goals. It extends from the front of the goal to 22.5cm
into the field. The zone is 100 cm wide. Only one robot from each team may enter this area. Brief passing
and accidental entry of other robotsis permitted, but intentional entry and stay is prohibited.

Once a defending robot (goal keeper) has hold of the ball or is facing and in contact with the ball
then all attacking robots must leave the area. The attacking robot can not interfere with the goal keeper.
Given the size of the defense zone a robot is said to be in the defense zone if any part of it is within the
area.

Also, an attack robot can not intentionally interfere with the movement of the defenders robot in the
defense zone. A robot can not be used to block the movement of the goal keeper.

Table markings/colors

« Thefield shal be dark green. ITTF's color regulation is flexible, there may be dight
differences in the color of the table. Robot designers should take this fact into
consideration.

+  Wallsarewhite.

* A1 centimeter thick white line will be painted across the table (the center line), with
acenter circle 25 centimetersin diameter placed at the center.

*  Theborder of the defense zone will be painted in white, with awidth of 1cm.

* The area behind the goal is either dark blue or yellow (one end is dark blue and the
other yellow).

A. 2 Robots

Area
Thetotal floor area occupied by arobot shall not exceed 180 square centimeters.
18cmrule

The robot must fit inside an 18cm diameter cylinder. For rectangular robots the diagonal length
would be the constraint. Also note that some shapes, even though no dimension exceeds 18cm will not fit
within an 18cm cylinder (e.g. an 18cm x 18cm x 15cm triangle). 15cm by 9.9cm rectangular robots will fit.
15cm by 12cm rectangular robots are too big even though their areais 180cnm2.

ONE TIME 1999 EXCEPTION: In RoboCup-99, robots that competed in RoboCup-98 will be
allowed to compete, even if they fail the 18cm rule, provided they cannot be easily modified to comply.
This exception will be eliminated in 2000.

Height

If the team is using a global vision system robot height is restricted to 15 cm or less. Otherwise the
robot height must be 22.5 cm or less. Height restrictions do not apply to radio antennae and visual markers.

Marking/Colors
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Coloring is a very sensitive issue, because it is very difficult to guarantee exactly which colors will
be used at the competition. Colors also change depending on lighting. Even though the organizers will
make a sincere effort to provide standard colors, the designers should design their robots to cope with
variations in color. Each team will be given certain amount of time to fine-tune their robot for the actual
fields and settings on a day before the competition.

Markings for robots need to enable visibility from above (for global vision) and from the playing
field (for mobile vision). To support this, each robot will be marked using a single colored ping-pong ball
(provided by the RoboCup organization) mounted at the center of their top surface. Unless the shape or
drive mechanism of the robot does not allow it, the marker should be located at the center of rotation of the
robot. If this is not possible the relationship between the marker placement and the axis of
movement/rotation must be advertised before the competition.

All of the robots defending the yellow goal will display a yellow ping pong ball. All of the robots
defending the blue goal will display ablue ping pong ball. Each team must be able to use either color as the
primary color.

For mounting purposes, ping pong balls will be drilled with two small holes (2 mm in diameter)
through their axis to provide for mounting on a spindle. Each robot will be fitted with a spindle for holding
the balls. Note: the robot's antenna may be used for this purpose.

Other than the official markers, no external colors of the robot, including the body may be goal-blue,
goa-yellow, field-green, or ball-orange. While it is not specifically required, black is the recommended
color for the body of the robot.

Teams may use any additional markers they wish, provided:

e The color of the marker is not goal-blue, goal-yellow, field-green or ball-orange.
Participants should strive to find colors as different as possible from these
"official" colors.

e The marker does not cause the robot to exceed any of the horizontal dimension (area)
restrictions described above.

*  They provide multiple copies of their markers at the competition so other teams may
use them to calibrate their vision systems.

I nspection

The robots will be examined by the referee before the game to ensure that they meet these
congtraints. As one test for area compliance, the robots must fit into an 18cm diameter cylinder. Whilst
being inspected each robot must be at its maximum size; anything that protrudes from the robot must be
extended. Except as allowed under "conflict resolution” below, ANY VIOLATION OF DIMENSION OR
COLORING CRITERIA MAY DISQUALIFY THE ROBOT FROM COMPETITION.

Team

A team shall consist of no more than 5 robots.

A.3 Ball

An orange golf ball provided by the RoboCup organization shall be used. An example of the official ball
will be sent to requesting teams.

A.4 Pre-game setup

Organizers will make every effort to provide the teams access to the competition area at |east two hours
before the start of the competition. They will aso strive to alow at least one hour of setup time before each
game. Participants should be aware, however, that conditions may arise where this much time cannot be
provided
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A.5 Length of the game

The games consist of the first half, break, and the second half; each is 10 minutes. Each team will be
allowed some set up time at the start of the game. Before the beginning of the second half, teams will
switch sides (including their blue or yellow team markers). However, if both teams agree that switching
sidesis not necessary, they will not be required to switch.

A. 6 Timeouts/delay of game

Each team will be allocated four five-minute timeouts at the beginning of the game. In case ateam is not
ready to start at the scheduled time, they may use their timeouts to delay the game up to 20 minutes.

During a game, timeouts will only be granted during a break in play.

A.7 Substition and removal of damaged robots

In general, substitutions are only allowed for damaged robots during a break in play. However, if in the
opinion of the referee, a damaged robot is likely to cause serious harm to humans, other robots or itself the
referee will stop the game immediately and have the damaged robot removed. In this case, the game will be
restarted with a free kick for the opposing team (the team that did not have the damaged robot). If there is
no immediate danger however, the referee may allow the game to continue.

To replace arobot by substitute at other times the following conditions must be observed:

» asubgtitution can only be made during a stoppage in play.

» therefereeisinformed before the proposed substitution is made,

» thesubgtitute is placed on the field after the robot being replaced has been removed,

» the substitute is placed on the field in the position on the field from which the
replaced robot was removed.

e asubstitution can only be made during a stoppage in play.

A. 8 Wireless Communication

Robots can use wireless communication to computers or networks located off the field. Participants
shall notify the organizers of the method of wireless communication, power, and frequency by the 1st of
May. The tournament committee shall be notified of any change after that registration as soon as possible.

In order to avoid interference, a team should be able to select from two carrier frequencies before the
match. The type wireless communication shall follow legal regulations of the country where the
competition is held.

A.9 Global Vision System / External Distributed
Vision System

The use of a global vision system or an external distributed vision systems are permitted, but not
required, to identify and track the position of robots and balls. This is achieved by using one or more
cameras.

Cameras positioned above the field will be mounted on a beam suspended from the ceiling. The beam
will be positioned 3 meters above the table. If both teams agree, and the hosting facilities alow it, another
height may be used. Cameras may not protrude more than 15cm below the bottom of the beam. The
placement of cameras is performed on a game by game basis, and the teams choose camera positions by
tossing a coin to find which team places a camera first. The use of a global vision system shall be
advertised at the time of registration, and detailed arrangements shall be discussed with the RoboCup
organizing committee.
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The local organizer will inform al participants of the camera attachments required to use the beam
provided.

A. 10 Lighting

A description of the lighting will be provided by the local organizer. The intent is to provide 700-1000
LUX uniform light.

A. 11 Goal Keepers

Each team may designate one robot as a goal keeper. The goal keeper can hold and manipulate a ball for
up to 15 seconds within its penalty area. After releasing the ball the keeper must not recapture the ball until
it touches an opponent or a member of its own team outside the penalty area. If the ball is released by the
keeper and it reaches the half way line without touching any other robot, the opponent is given an indirect
free kick positioned anywhere along the half way line (borrowed from Futsal rule).

Any of the robots may change roles with the goal keeper (and thus be permitted to manipulate the ball)
provided the referee isinformed before the change and that the change is made during a stoppage in play.

A.12 During play

« All timefor stoppages will be added to the end of the half they occur in.

e Theball hasto go forwards at a kick-off or the kick-off will be restarted.

* In general, movement of robots by humans is not acceptable. However, at kick-offs
and restarts one member of the team is allowed on the pitch to place robots. Gross
movement of robotsis not allowed, except before kickoffs, to place the designated
kicker for a free kick or to ensure robots are in locations required for penalty and
free kicks. Humans are not allowed to free stuck robots except during a stoppage
in play, and then they should move the robots only far enough to free them.

e The ball may be lifted during play. However, the height of the ball from the table
must not endanger spectators, the referees or human team members!! If the ball
crosses the goal line 15cm above the table, the goal is disallowed and a free kick
is awarded to the defending team.

A. 13 Kick-off /Restart/Stop

Before a kickoff, or once play has been stopped for other reasons (e.g. a foul or penalty kick) robots
should cease movement until play is restarted by the umpire.

For the start or restart of the game the umpire will call verbally, or by whistle, and the operator of the
team can send signals to robots. The signal can be entered through a keyboard attached to a server being
used on the side lines. No other information, such as strategy information may be sent. Also, the keyboard
operator my not send information during play. This paragraph only applies during play, strategy revision
during half time and timeouts is permitted.

A. 14 Robot positions at kick-off/Restart
Kick-off
All robots shall be in located on their side of the field.

Penalty Kick

Only a goal keeper shall be in the defense zone, and the ball shall be located at the specified position
( 45cm from the goal along the lengthwise centerline of the field). All other robots shall be located at least
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15 cm behind the robot which kicks the ball. Robots other cannot move until the referee signals the
resumption of play (by whistle, etc.).

FreeKick

Free kicks are taken after afoul or a stoppage in play. If the free kick is taken after a foul the ball is
placed at the point where the foul was committed. If the free kick is taken after a stoppage in play, the ball
remains in place. If the ball is within 15cm of a wall or the defense zone line, the ball will placed 15cm
from the wall or defense zone.

All robots must be placed 15cm from the ball. If the kick was awarded as the result of a foul, a
human from the team awarded the kick may place one robot near the ball. None of the robots may move
until play isresumed by the referee.

Restart after a goal

The non-scoring team will be awarded the kick-off. The restart after the goal shall adopt the same
formation as the kick-off.

Robots may be moved to their starting positions by hand.
Throw-in

When the ball departs the field, the ball will be returned immediately to the field, and located
approximately 5cm inside of the wall, in front of the closest robot of the team which did not push the ball
out of play to where the ball went out of bounds.

During this period, the robots can continue to move, and the time counting continues.

A. 15 Fouls

The following fouls are defined:
Lack of progress

If it is deemed by the referee that the game has stopped then a free kick is awarded to the team which
last touched the ball. A game is considered stopped if the ball has not been touched by a robot for 20
seconds and it appears that no robots are likely to hit the ball.

Non-moving robots

If the referee determines that a robot is not moving for a period of 20 seconds or longer, he will
remove it from play and give the robot a yellow card. Participants may repair the robot and ask that it be
put back in play if they desire. A second failure of the same robot to move for 20 seconds will result in a
red card and permanent removal from the same. Goal tenders and robots further than 20cm from the ball
will not be penalized.

Multiple Defense

When more than one robot of the defending side enters the defense zone and substantially affects the
game afoul will be called, and a penalty kick will be declared.

Ball Holding

A player cannot 'hold' aball unlessit isagoal keeper in its penalty area. Holding a ball means taking
afull control of the ball by removing its entire degrees of freedom; typically, fixing a ball to the body or
surrounding a ball using the body to prevent accesses by others. In general 80% of the ball should be
outside the a convex hull around the robot. Thisis up to the referee to judge whether a robot is holding the
ball. In general another robot should be able to remove the ball from another player. It arobot is deemed to
be holding the ball then a free kick will be declared. If this happens in the defense zone by the defense
team, a penalty kick will be declared.

Court Modification
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Modification or damage to the court and the ball is forbidden. Should this occur, the game is
suspended and the appropriate restoration is done immediately before the game resumes.

Robot Halting

All the players must be halted prior to kick-off or restarting of the game. The judges check or adjust
the placements of the players and declares the completion of adjustment 5 seconds before indicating a kick-
off or arestart action. During this 5 seconds, the players can not move.

Charging/Attacking

Unless striving for a ball a player must not attack another. In case the umpire clearly observes such
an act, it is regarded as a violent action. Then the umpire presents a red card to the responsible player
ordering it to leave the game. The judgment is one based on an external appearance. In genera, it is
unacceptable for multiple robots to charge a single robot, and it is also unacceptable to hit the back of a
robot even if it has the ball and it is unacceptable to push along the table ancther player. The exact
interpretation of what is acceptable is |eft to the referee.

During play, if a player utilizes a device or an action which continuously exerts, or whose primary
purpose appears to be, serious damages to other robot's functions, the umpire can present a yellow card as a
warning to the responsible player, and order it to go outside the court and correct the problem. Once the
correction is made, the robot can resume to the game under an approval by the umpire. In case the problem
is repeated, the umpire presents a red card to the responsible player telling it to leave the game. This rule
could be invoked on a robot should it continuously charge a robot whilst attempting to tackle the other
robot.

Offside
The offside rule is not adopted.
Fair play

Aside from the above items, no regulations are placed against possible body contacts, charging,
dangerous plays, obstructions etc. However, it is expected that the aim of all teams is to play a fair and
clean game of football.

A. 16 Conflict Resolution

Resolution of dispute and interpretation of ambiguity of rules shall be made by three officials, who will
act as umpires, designated prior to the match. The umpires shall not have any conflict of interest to teamsin
the match. The umpires may consult with the tournament officials of the RoboCup for resolving conflicts.
Ambiguities shall be resolved by referring to FIFA official regulations, where appropriate. Specific
modificationsto the rulesto allow for specia problems and/or capabilities of ateam'’s robots may be agreed
to at the time of of the competition, provided a mgjority of the contestants agree.
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Appendix B Hardware Specifications
B.1 Sony DXC-9000 3CCD Color Video
Camera

e Optical System: Pickup device Y»-inch CCD, interline
transfer type

» Effective Picture Elements: 659x494

e« LensMount: Y4-inch bayonet type

e Signal Format: NTSC standard format

. Scanning

. 525 lines, 2:1 interlace

. VGA format

. Scanning

. 640x480, 1/60  non-
interlace

* Horizontal Resolution: Horizontal: 700 TV lines

. Vertical: 480 TV lines

e Senditivity: 2,000 lux (F5.6, 3200K)

e Signal-to-Noise Ratio: 58 dB

e Gain Control: AGC and 0to 18 dB in unitsof 1 dB

*  WhiteBalance: Automatic

. Manual: Red gain and green gain adjustable
individually

» Electronic Shutter Speed: Step mode and variable mode

e Video Output Signals: Composite: 1.0Vp-p, 75 ohms

. RGB: 1.0V p-p, 75 ohms

e Input/output Connectors: VIDEO OUT: BNC type, 75 ohms

. DCIN/VBS: 12-pin

. REMOTE: mini-DIN 8-pin

. RGB /SYNC: D-sub 9-pin

. LENS: 6-pin connector for 2/3-inch lens

*  Power Supply: 12v DC

* Dimensions (w/h/d): 79x72x145 mm

e Mass 790 g

 Mounting Screw: u1/4”, 20 UNC

. 4.5+ 0.2 mm (1SO standard)

. 0.197 inches (ASA standard)

B.2 Sony VCL-714BXEA Zoom Lens

* Focal Length: 7.5 mmto 105 mm

o lris 14t016,and C

* Field of View (at 1.1 m): W: 660 mm to 880 mm

. T: 47 mm to 63 mm

* FocusRange: cotol.1lm

e Mount: Bayonet mount

* Dimensions: 195x82.5x124 mm
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Weight: 1,120¢g
B.3 Matrox Genesis
* Processor: 1 Texas Instruments TM320C80 (‘ C80) 32-

52

Texas Instruments‘C80 Clock Rate:
Processor M emory Management:

SRAM:

Grab Module:
Analog Interface:

Sync Generator:

Video Adjustment:

bit RISC master processor (MP) with
floating point unit. The ‘C80 contains four
paralel processors (PP) which are 32-hit
fixed point DSPs with 64-bit instruction
words

50 MHz

peak 400MB/s @ 50MHz for data transfer
between on-board and off-board memory
64MB

included
4 software selectable video inputs
4 8-hit analog-to-digital converters
Sync and timing FPGA provides control for
synchronization, triggering, exposure, and
inputs and outputs
Software programmable input gain, offset,
and references
Phase adjustment: 0°-270°, 90° increments
Fully configurable and configurable input
LUTs

Four 256 x 8-bit

Four 8K x 16-bit

Display Module: included

Frame Buffers: Dual-screen mode available
220 MHz RAMDAC

NOA (Neighborhood Operations ASIC): included

Softwar e

Matrox Genesis Native Library
Matrox Imaging Library Lite (MIL-Lite)
Matrox Active MIL
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Appendix C Sample Calibration File

Thisisthe number of paramaters
25

Thisisthe color thresholds for the image segmentation
Thy Ball

#Red_threshold_ball

174

#Green_threshold_ball

157

#Blue_threshold_ball

196

Thy Robots

#Red threshold_y_robot

176

#Green_threshold_y_robot

116

#Blue_threshold_y robot

184

Them Robots

#Red threshold b_robot

254

#Green_threshold_b_robot

254

#Blue_threshold_b_robot

165

Thisisthe size and position of the child buffer
#X_start

4

#X_stop

316

#Y _dtart

42

#Y_stop

212

These are the field dimensions in pixels of the image
#Field_x_start

4

#Field_y start

42

#Field_x_stop

318

#Field_y stop

212

Thisisthe number of friendly robots
#Number_of fbots

1

#Number_of obots

1

Thisisthe physical paramaters of the field
#X_scale

.0101488999185

#Y scae

-.0103457867208

#X_offset



157.32

#Y _offset

85.7185

Thisisfor parallax error correction (in meters)
#Camera_height

2.59

#Robot_height

0.15

References
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Appendix D PP Guide for Determining
ALU Opcodes for Triadic Functions

The ‘C80 allows for the explicit assignment of opcodes for logical and arithmetic functions. The procedure
for determining the opcode, or the 32-bit value that resides in register dO of the PP for the instruction class
EALUJ|IROTATE, can be found discussed in great detail in the TMS320C80 (MVP) Parallel Processor
User’s Guide and briefly on page 65-66 in the Matrox Genesis Native Library User’s Guide. The opcode
derivation supports all 256 Boolean and arithmetic functions that are possible with 3 inputs. The
EALUJ|IROTATE dlows for four input operations with a parallel rotate as illustrated below. The output
from the barrel rotator can optionally be written to a separate destination.

dst2 grc2 srcl acd srcd dst1
L3

Barral
Rotator

AW RpoW o
Thraa-Input ALL
iq PR
C.MAVME m

For logical functions the appropriate Karnaugh map must be constructed. For the function (A&~B&~C) the
Karnaugh map is:

BC
00 01 1 10
A
0 FO F2 F6 F4
0 0 0 0
1 F1 F3 F7 F5
1 0 0 0

Figure 2. Karnaugh Map for (A&~B&~C)

From the map it can be seen the output should only be alogical ‘1’ when the input A is ‘1’ and all of the
other inputs are ‘0’. This function corresponds to the operation that will extract the orange sub-volume
from the RGB color cube.

Each entry in the table is then read off in the order { F7 F6 F5 F4 F3 F2 F1 FO} and left shifted by 19. Thus
the function is essentially:

(FO& (~A&~B&~C) |F1&(A&~B~C) | F2&(~A&B&~C) | F3& (A&B&~C) |
F4& (~A&~B&C) | F5& (A&~B& C) | F6& (~A&B&C) | F7& (A&B&C))[+1}+cin]

For arithmetic functions the following functions can be formed
A&f1(B,C) + f2(B,C) [+1|+cin]

where the functions f1(B,C) and f2(B,C) are selected from the Table 1. The ALU opcode is determined by
f1 XOR f2 |eft shifted by 19.
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Table 1. Possible f1(B,C) or f2(B,C) Functions

C::I- Cin?:h Subfunction Common Use
a0 0o o Zeros one of th terms
AR FF all 15 =-1 All 15 or -1
HE co B B
22 33 =B-1 Negala B
AD Fil C c
oA aF =G Negala C
a0 co B&C Force bits in B o O whera Cis 0
24 aF —(B&C) -1 Forca bits in B to 0 whare C s 0 and negate
AR FC BIC Force bits in B o 1 whera Cis 1
a2 03 =(BIC)-1 Ferce bits in B to 1 where © s 1 and negate
fi=] o= B&-C Forca bilts in B 1o O whara C is 1
A2 Fa —(B&~C)-1 Force bits in B to 0 where C is 1 and negate
8A CF BI-C Force bils in B o 1 whara G is 0
20 0 —(Bl-Cp-1 Force bits in B 1o 1 where C is 0 and negate
28 Ic (B&-CH I -B-1)80C) Chocse B C=aldsand -BIfC =all1s
a2 c3 (BEC){{(—-B-1)&-C) Choose BifC=all 1sand -Bif C = all Os
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Appendix E Optimizing Genesis Native
Library Applications (Version 1.3)

This document will help you estimate the expected performance of Genesis on a particular application, and
help you optimize your code so that you reach the expected performance. Although most of the general
advice given hereislikely to remain valid, particular details of individual functions may change with each
release of the Genesis software, since improvements may be made, and/or new functions added. You should
always look for the most recent version of this document.

Thefirst step in writing an efficient application isto pick the functions that can do the job asfast as
possible. To do this you need to know the execution time of individual functions. Thisis not assimple asiit
sounds, because the execution time of each processing function varies with the size and data type of the
images processed, and can be affected by many other parameters. The execution time of some functionsis
even dependent on the actual content of the image. To address these issues, severa types of information are
provided:

e Actua benchmarks for each function with common data types.

» Simplerulesfor estimating the performance of cases not listed.

* A more-detailed discussion of functions whose performance is more difficult to estimate.

There are al'so some general points, described below, that can be applied to all processing functions. These
will help you avoid some of the basic mistakes which can make your code inefficient.

E.1 Overheads

All functions have a fixed overhead, which means that they become less efficient when operating on small
images. The overhead is not exactly the same for all functions, and it may be reduced in the future, but it is
typically about 0.5 msfor each function call. This means that you cannot process an image in less time, no
matter how small the image is. (Note that this overhead applies to processing functions; simple control
functions have less overhead, and are discussed later.) This overhead has several implications:

When adjusting a known benchmark to a different image size, you cannot simply scale it according to the
number of pixelsin theimage. Y ou should first subtract the overhead, then scale the benchmark, then add
the overhead again. For example, if afunction with a 0.5 ms overhead takes atotal of 2.5 msfor a512x512
image, it will take 1.0 ms for a 256x256 image, and 8.5 ms for a 1024x1024 image.

When your application only requires that one or more regions of interest (ROIs) be processed, it might
actually turn out to be more efficient to process the whole image than to define and process several ROIs
separately. If your images themselves are quite small, you should consider packing several into alarger
buffer and processing them all at once.

Simple asynchronous control functions (such as imBufPutField()), and other functions that don’t operate on
images, have alower overhead. It istypically 0.2 msfor these functions. However, synchronous functions
(such as imBufGetField() or imBufChild()) are slower, and take about 0.5 ms under Windows NT (they are
dightly faster under DOS).

Y ou should try to avoid synchronous functions as much as possible within time-critical loops. Allocate all
buffers outside of loops unless you have no choice. When using synchronous functions to read back
processing results, use as few calls as possible. Sometimes you have the option of reading back results
individually using one function call each, or reading a whole group of results at once. The latter method
will be more efficient, and is particularly important for blob analysis and pattern matching where many
results are usually produced.
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E.2 Estimating Missing Benchmarks

When the particular case you need is supported by the library but not listed in the benchmark table, you can
usually estimate its performance using a few simple rules. This document does not describe how to estimate
the performance of functions that are not in the standard library, but that you might be interested in
implementing as a custom function if the performance justifiesit. (To implement custom functions on the
C80 you need the Genesis Native Library Developer’s Toolkit (DTK), as well as the appropriate code
development tools from Texas Instruments. Thisisafairly complex task, but can often provide a
significant performance increase if several standard library functions can be combined into a single custom
function.)

I/0 bound functions

A function is I/O bound when performanceis limited by the speed at which it can access datain memory.
The processors will be idle some of the time while they are waiting for datato be transferred on-chip. Itis
useful here to know that processing functions using the PPs always work by transferring the image from
external memory into on-chip memory, ablock at atime. Each block is processed in on-chip memory, then
the results are transferred back to external memory. Processing and 1/0 can be overlapped, so the PPs are
not kept waiting for data to process, unless they process faster than data can be transferred (then the
operation is said to be I/O bound).

If afunction is described as I/0 bound in the benchmark table, or if the I/O figure givenis close to

300 MB/s which indicates that the function is 1/O bound, it is simple to estimate benchmarks for cases not
listed explicitly. You should simply consider the total number of bytes of 1/0O per pixel (counting all source
and destination buffers), and scale the benchmark accordingly. For the most accurate estimate you should
also consider the function overhead. For example, consider the 1/0 bound operations of imintDyadic().
Given the 8-bit case, let’stry to estimate the performance for the 16-bit case. The total I/O in the 8-bit case
is 3 byteg/pixel, and it is 6 bytes/pixel in the 16-bit case (exactly twice as much). The function overhead can
be calculated as 0.4 ms from the first two columns. The calculated performance for the 16-bit caseis
therefore (3.0-0.4)x2 + 0.4 = 5.6 ms, which isin agreement with the measured value. If, say, the two
source buffers were 8-bit and the destination were 16-bit, the total 1/0 would be 4 bytes/pixel and you
would expect the performance to lie somewhere between the listed 8- and 16-bit cases. In fact it should be
(3.0-0.4)x4/3+0.4=3.9ms.

Compute bound functions

Most compute bound functions are listed explicitly in the benchmark table, because you would need to
know how the operation is coded in PP assembly language in order to estimate the performance. However,
this doesn't apply to some functions. In particular, neighborhood operations which support different sized
kernels (such as convol ution or morphology) usually take a certain amount of time for each kernel element.
Therefore you should look up the benchmark for akernel similar in size to yours, then scal e the benchmark
according to the number of kernel values. For example, the C80 processing rate for a general 5x5 16-hit
convolution (25 kernel values) is quoted as 7.65 MPix/s. The estimated performance for a 7x7 convolution
(49 kernel values) would therefore be 7.65x25/49 = 3.90 MPix/s, which agrees very well with the measured
value. This rule normally works well, but beware of particular kernels that might be carried out with
optimized PP code and give quite different performance from the general case. For example, kernels whose
values are all the same (or where only the center valueis different) are faster on the C80 than kernels with
completely arbitrary values. The situation with the NOA is similar but the rules are different. Pixel type (8-
or 16-hit), coefficient type (8- or 16-bit), and kernel symmetry (horizontal and/or vertical) all affect
performance considerably on any given size of kernel. Thisisdiscussed in more detail |ater.

E.3 Parallelism

There are times when you could execute several operationsin parallel, by sending the commands to
different threads, but this will not always reduce the total execution time. When you send commands to
different processing nodes, they will truly runin parallel and they will have no impact on each other aslong
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as each node processes buffers allocated in its own memory. However, when only one node isinvolved,
things are more complicated.

First, to benefit from parallelism, each function must use different resources. For example, thereis no point
in executing two functions at the same time if they both use the PPs. If both try to allocate al the PPs
(which isthe default behavior) they will simply execute serially, since one function will have to wait for the
other to finish completely before it is granted access to the PPs. If you use imThrControl() to limit each
thread to, say, two PPs, both functions will run at the same time but each at only half speed (so thereis no
net gain in performance). Note that thisistrue whether the functions are compute bound (so each runs at
half speed because it only has half of the processors) or I/O bound (where each runs at half speed because it
only gets access to memory half of the time).

If two functions use different resources (for example the PPs and MP, or PPs and NOA) there will still be
no advantage to executing them in parallel if both are I/O bound, since the available memory bandwidth is
the limiting factor. However, if one or both functions are not 1/0 bound, there should be an advantage to
running then in parallel. One common case involves processing an image while copying the previously-
processed image to the display. When thisis done serially (i.e. processing and copy commands are send to
the same thread), the transfer time is simply added to the processing time. When thisis done is paralléel (i.e.
the copy command is sent to another thread, with the proper synchronization), the transfer begins as soon as
processing completes, but it does not prevent processing of the next image from starting. This way some or
all of the transfer time is hidden (depending on how I/O intensive the processing function is). For more
details on how to implement this, ook at the Native Library examples.

It is also important to realize that using too many threads, and especially the extra synchronization
functions that more threads usually implies, can make your application less efficient. There are certainly
big performance gains to be had sometimes by using extra threads to exploit parallelism in your
application, but you should generally try to solve the problem using the smallest number of threads that
gives you the parallelism you need.

E.4 Benchmarks

Below isatable of actual benchmarks for 512x512 images, using a 50 MHz C80 with NOA . To keep the
table to areasonable size, some cases have been omitted if they can easily be estimated from other cases
using the rules given elsewhere in this document. If afunction has options that are not mentioned in the
table (e.g. replace vs. transparent overscan), assume that the option makes no significant difference to the
timing.

The table gives actual execution time (in milliseconds), processing rate (in MPixels/second), and the
memory bandwidth required (in MBytes/second). The latter figure is useful when considering the impact of
concurrent operations such as grabbing and transfers to display. If the operation is I/O bound, or nearly so,
it will be dlowed down by other operations that also need access to memory. Y ou should assume that the
sustai nable bandwidth on processing memory (SDRAM) is 300 MB/s (the peak rate is 400 MB/s). Hence if
grabbing and other operations require, say, 30 MB/s, they will slow down an /O bound processing function
by about 10% if executed in parallel. The effect on a compute bound function should be negligible. The
quoted 1/O rates are approximate val ues taking into account any extra 1/O that might be performed
internally to hold intermediate results etc.

Function overheads are included in the measured execution times, so you must take them into account
when scaling the numbers to a different image size (see the section on overheads for details). Overheads are
not included in the processing or /O rates, so you can more easily scale these to different image sizes. The
difference between the measured execution time and the expected time calculated from the processing rate
and image size is the actual fixed overhead for that function.

Note that some of the numbers may change in future releases as improvements are made. You should
always look for the most recent version of these benchmarks. Entries marked with an asterisk (*) are further
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explained after the table. Entries marked with T are data dependent, and performance will vary from image

to image.

Function and options Time (Ms) Rate (M Pix/s) /0 (MBI/s)
with overhead without overhead | without overhead
imBinConvert()
8-bit to/from binary 14 260 290
16-bit to/from binary 2.3 133 280
32-bit to/from binary 4.4 65 270
imBinMorphic()*
IM_ERODE/IM_DILATE 10.10.1} 10.10.1} 10.10.1f 10.10.1{ 10.10.1{ 10.10.1]
IM_3X3 RECT_1, literation
IM_3X3 RECT_1, 2iterations
IM_3X3 RECT _1, 3iterations
Al operations except IM_MATCH 10| 13| 40| s00| 120 | 125
General 5x5 13 1.4 290 500 72 125
General 7x7 1.7 15 210 500 53 125
gggg{ N 22| 13| 10| 00| 42 | 125
IM MATCH 4.1 14 76 500 19 125
“General 3x3 6.8 15 43 500 11 125
General 5x5 10.4 1.9 27.6 320 7 81
General 16x16 14.7 25 19.2 215 5 54
General 32x32 178 | 31| 152| 143| 17 | 160
25.8 32 104 141 12 160
70.7 5.5 3.78 75.6 4 85
288 15.8 0.92 23.8 2 51
imBinTriadic()
No inputs 0.6 980 120
Oneinput 0.8 580 140
Two inputs 1.0 420 160
Three inputs 1.2 320 160
imBlobCalculate()* t
8-hit, 9 blobs, total area 5% of image
Areaonly ~2.7
Area+ binary COG ~3.0
Area+ gray COG ~3.6
8-bit, 100 blobs, total area 25%
Areaonly ~9
Area + binary COG ~12
Area + gray COG ~16
imBufClear()
Binary 0.7 940 120
8-hit 11 350 350
16-hit 17 190 380
32-hit 3.1 95 380
imBufCopy()
IM_PROC to IM_PROC (on same node)
Binary 0.9 580 150
8-hit 2.0 170 340
16-hit 35 88 350
32-hit 6.4 44 350

IM_PROC to IM_DISP (VIA driven)*
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8-bit, PCI write 3.6 86 86
8-bit, PCl read 4.6 66 66
8-bit, VM 31 118 118
IM_PROC to IM_HOST (VIA driven)*
8-hit 3.6 86 86
IM_HOST to IM_PROC (VIA driven)*
8-hit 33 99 99
imBufGet()*
8-hit 29.0 9.2 9.2
imBufPut()*
8-hit 5.1 61 61
imBufPack() T
8-hit, none tagged 0.6 1500 190
8-hit, all tagged 2.7 110 240
8-bit, 35% tagged (circular mask) 14 270 230
16-bit, 35% tagged (circular mask) 2.2 150 230
32-hit, 35% tagged (circular mask) 3.5 85 240
imFloatConvert()
8-bit to float 4.6 67.0 330
16-hit to float 12.1 22.7 140
32-hit to float 7.1 384 310
float to 32-bit 7.1 38.4 310
imFloatDyadic()
IM_ADD, IM_SUB 12.4 21.7 260
IM_SUB_ABS 15.7 17.1 200
IM_MIN, IM_MAX 275 9.6 110
IM_MULT 10.5 2538 310
IM_DIV 40.7 6.5 78
IM_SQUARE_ADD 19.0 14.0 170
IM_ATAN2 900 0.29 35
imFloatMac1() 114 23.7 190
imFloatMac2() 19.0 14.0 170
imFloatMonadic()
IM_ADD, IM_SUB 7.1 384 310
IM_SUB_ABS, IM_SUB_NEG 12.3 21.8 170
IM_MIN, IM_MAX 24.8 10.7 85
IM_MULT, IM_DIV 7.1 384 310
IM_DIV_INTO 38.0 7.0 56
imFloatUnary()
IM_NEG 7.1 384 310
IM_ABS 12.3 21.8 170
IM_SQUARE 7.1 384 310
IM_SQRT 53.7 4.9 39
IM_CUBE 12.9 20.7 170
IM_LOG, IM_EXP, IM_SIN, IM_COS, 700—-900 ~0.3 ~2.5
IM_TAN, IM_ATAN
IM_CBRT 1700 0.15 1.2
imGenWarpLutMatrix()
IM_CTL_PRECISION =0 63.5 4.2 17
IM_CTL_PRECISION >0 74.0 3.6 14
imlntBinarize()
IM_IN_RANGE/ IM_OUT_RANGE
8-hit 2.1 148 300
16-hit 39 75 220
32-hit 7.4 37 190
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All other conditions

8-bit 1.9 173 340
16-bit 2.7 114 340
32-hit 4.3 67 340
iml ntConnectMap()
8-bit to 8-bit 7.0 40 80
8-bit to 16-bit 7.3 38 110
iml ntConvert()
8-bit to 16-bit 3.2 93 280
8-bit to 32-bit 45 64 320
16-hit to 32-bit 52 55 330
16-hit to 8-bit (truncate) 3.2 94 280
Unsigned 16-bit to 8-bit (IM_CLIP) 35 84 250
Signed 16-bit to 8-bit (IM_CLIP) 5.8 48 140
Signed 16-bit to 8-bit (IM_ABS _CLIP) 45 63 190
32-bit to 8-bit (IM_CLIP) 6.5 43 210
32-bit to 16-bit (IM_CLIP) 6.6 39 250
iml ntConvertColor()
8-bit IM_RGB_TO HSL 36.4 7.2 43
8-bit IM_HSL_TO RGB 44.6 5.9 35
8-bit IM_RGB_TO H 30.0 8.9 35
8-bit IM_RGB_TO L 6.5 43 170
8-bit IM_RGB_TO | 5.7 61 240
8-bitIM_L_TO RGB 5.9 57 230
8-bit IM_MATRIX, 3x1 no clip 5.3 49 200
8-bit IM_MATRIX, 3x1 unsigned clip 7.7 34 140
8-bit IM_MATRIX, 3x1 signed clip 9.0 29 120
8-bit IM_MATRIX, 3x3 no clip 14.5 18.1 110
8-bit IM_MATRIX, 3x3 unsigned clip 22.3 11.8 71
8-bit IM_MATRIX, 3x3 signed clip 26.3 10.0 60
iml ntConvolve()*
8-bit (see detailed description later)
IM_SMOOTH 10.10.1} 10.10.1{ 10.10.1} 10.10.1{ 10.10.1} 10.10.1
IM_SHARPEN
IM_SHARPEN2
:M—CSS'TZ—EED%%E 9.7 23| 288 160 58 320
- - 8.6 23| 323 160 65 320
IM_SOBEL_EDGE 9.4 53 0.8 160 60 320
IM_PREWITT_EDGE 7'3 2'3 38.3 160 77 320
IM_LAPLACIAN_EDGE 4'7 2'3 62.2 160 120 320
IM_LAPLACIAN_EDGE2 : . : 48 48
IM_ ROBERTS EDGE 11.3 11.3 24.2 24.2
- - 113 | 113 | 242 | 242 g?, 3‘212
8.6 2.3 32.3 160
General ';irge' 95 23| 207 | 160 288 ggg
5x5 3.0 3.0 101 101
7
%311 9.7 23| 288| 160| 58 | 320
: 26.0 40 | 104 80 21 160
Symmetrgc 'geme' 44.9 55 | 59 55| 12 | 110
g 69.4 82 | 384 35 Z)Z Zg
9x9 99.2 11.8 2.68 24 -
11x11 21 215
, . 26.0 3.2 10.4 107
All 1’skernel (16-bit output) 44.9 29 5.06 62 12 125
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5x5 69.4 5.8 3.84 52 7.7 105
11x11 99.2 6.8 2.68 14 54 87
Effect of normalization options:
No Shift (16-bit output) 5.7 3.2 52 107 156 315
Clip/Absolute 85 6.8 35 44 105 130
iml ntConvolve()* 2.1 +0.0
16-bit (see detailed description later) +0.7 +0.0
IM_SMOOTH
IM_SHARPEN
IM_SHARPEN2 NOA C80 | NOA
IM_HORIZ_EDGE 10.10.1} 10.10.1{ 10.10.1. 74 84 300
IM_VERT_EDGE 74 130 300
IM_SOBEL_EDGE 74 68 300
IM_PREWITT_EDGE 13.3 4.2 209 74 150 300
IM_LAPLACIAN_EDGE 8.8 4‘ 5 31.6 74 140 300
IM_LAPLACIAN_EDGE2 16.1 4‘ 5 16.9 23.6 94 94
IM_ROBERTS EDGE 75 4‘ 5 37.2 23.6 94 94
76 4‘2 36.5 74 130 300
General kernel 11.6 1 1‘ 6 23.6 74 68 300
3x3 11.6 1 1‘ 6 23.6 524 210 210
5x5 8.8 4'2 31.6
X7 16.1 4'2 16.9
9x9 54 5' 4 524 74 84 300
11x11 . 32 31 125
Symmetric kernel 16.1 16 65
5x5 13.3 4.2 20.9 9.8 9.4 39
X7 35.2 9' 0 7.65 6.6 6.3 26
i)](_g 68.3 17.0 3.91
x11 112.8 276 2.36 65 31 260
All 1’skernel 168.6 40' 8 1.57 47 16 190
5x5 : 30 9.4 120
11x11 35.2 48 7.65 22 6.3 87
Effect of normalization options: 68.3 6. 3 391
Shift 112.8 9'4 2.36 65 99 260
Clip/Absolute 168.6 13'0 157 32 60 130
11.2 48 i;‘rz
18.3 9.0 )
0.0 1 400
10.10.1 10.10.1 10.10.1.
imlntCorrelate()
8x8 model, STEP =1 305 0.86 2.6
8x8 model, STEP =2 227 0.24 0.7
16x16 model, STEP =1 1090 1.16 35
16x16 model, STEP = 2 307 0.85 2.6
iml ntCountDifference()
8-bit 2.0 160 320
16-bit 3.7 79 320
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32-bit 6.9 40 320
iml ntDistance()
IM_CITY_BLOCK
8-bit 12.4 21.9 88
8-bit to 16-bit 14.6 186 130
All other cases 19.2 13.9 98
iml ntDyadic()
IM_DIV
8-bit 186 14.4 43
16-bit 20.1 9.1 55
32-bit 47.3 5.6 67
IM_DIV_FRAC
8-bit to 16-bit 32.3 8.2 33
16-bit to 32-bit 52.7 5.0 40
IM_MULT_MSB
32-bit 13.0 21 250
All other operations (1/0 bound)
8-bit 30 102 310
16-bit 5.6 51 310
32-bit 10.7 26 310
iml ntErodeDilate()* C80 | NOA C80 NOA
Unsigned 8-bit 10.10.1] 10.10.1
Kernel IM_3X3 _RECT 0 62| 160 120 320
Kernel al zero
5%5 14| 132 23 265
7x7 6.0 91 12 180
9%9 4.7 2.2 38 62 77 125
11x11 25 44 5.1 87
General kernel (not all zero) 237 25
3x3 44.7 351 141|160 28| 320
5x5 69.4 4.8 5.2 64 11 130
7x7 105 6.7 27 32 5.4 64
9x9 16| 196 33 39
19.2 22
11x11 g o 11| 132 22 26
Unsigned 16-bit 978 | 8.4
Kernel IM_3X3_RECT 0 161 | 14.0 35 75 140 | 300
Kerndl al zero 240 206
5%5 55 64 23 260
7x7 3.0 48 12 190
9x9 7.9 4.0 1.9 38 8 150
11x11 13 32 5 130
General kernel (not all zero) 47.3 4.6
3x3 88.1 611 139 75 56 | 300
5x5 141 75 5.2 62 21 250
7x7 207 8.9 27 32 11| 130
%9 16| 193 6.5 77
195 41
11x11 tio 5 11| 130 44 52
. 98.3 8.8
Overhead for signed data (all cases) 161 149
240 | 208
+09 | +00
iml ntFindExtreme()
IM MIN or IM MAX (only one)
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Unsigned 8-hit 1.2 310 310
Unsigned 16-hit 2.0 160 320
32-hit 3.6 80 320
IM_MIN and IM_MAX (both)
Unsigned 8-bit 1.8 190 190
Unsigned 16-bit 31 96 190
32-hit 4.5 64 250
imIntFFT()
2-d (forward or reverse) 240 11
1-d (i.e. horizontal passonly on 512 lines) 105 25
imIntFlip()
Flip or 180 degree rotate
8-bit 21 150 300
16-bit 35 83 330
32-hit 6.7 41 330
90 or 270 degree rotate
8-bit 2.7 110 220
16-bit 5.6 49 200
32-bit 12.3 22 170
iml ntGainOffset()
8-bit
No clip or offset 29 102 310
Clip but no offset 31 97 290
Clip and offset 5.8 49 200
16-bit
No clip or offset 55 51 310
Clip but no offset 55 51 310
Clip and offset 6.9 40 320
iml ntHistogram()*
8-bit 2.7 123 120
10-bit, short table 4.0 89 180
10-bit, long table 8.9 33 65
12-bit, short table 10.2 33 66
iml ntLabel ()
Few blobs (fastest) 9.2 31 180
Many blobs (sower) >15 <17 <100
iml ntLocateEvent() T
100 events
Number only 2.0 172 170
With X, Y positions 2.7 146 150
10000 events
Number only 6.2 46 46
With X, Y positions 115 25 25
iml ntLutMap()*
Default method
8-bit to 8-bit 21 150 300
8-bit to 16-hit 2.7 114 340
8-bit to 32-hit 4.3 67 340
14-bit to 8-bit (16 KB table) 4.2 73 220
13-bit to 16-hit (16 KB table) 4.3 68 270
12-bit to 32-bit (16 KB table) 7.0 41 250
16-bit to 8-bit" ~26 ~10 ~30
16-bit to 16-bit" ~35 ~7 ~30
16-bit to 32-bit" ~43 ~6 ~30

Method with work buffer
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16-hit to 8-hit 21 12.4 110
16-bit to 16-bit 24 11.0 130
16-hit to 32-bit" ~50 ~5 ~90
imlntMacl()
8-hit to 8-bit 31 96 190
8-hit to 16-bit 3.2 92 280
16-bit to 16-bit 3.6 82 330
imlntMac2()
8-hit to 8-bit 3.2 95 280
8- and 16-hit to16-bit 4.8 60 300
16-bit to 16-bit 5.5 52 310
imlntMonadic()
IM_DIV
8-hit 15.1 17.9 35
16-bit 25.8 10.3 41
32-hit 47.2 5.6 45
IM_DIV_FRAC
8-bit to 16-bit 27.2 9.8 29
16-bit to 32-bit 499 53 32
IM_MULT_MSB
32-hit 12.6 21 170
All other operations (1/0 bound)
8-hit 2.0 163 330
16-hit 36 82 330
32-hit 6.8 41 330
iml ntProject()
0.0 degrees
8-bit to 32-bit 2.1 147 150
16-bit to 32-bit 2.6 117 230
32-hit to 32-hit 39 75 300
90.0 degrees
8-bit to 32-bit 1.8 184 180
16-bit to 32-bit 2.4 126 250
32-hit to 32-hit 4.3 67 270
iml ntRank()
IM_3X3 RECT
8-bit median 111 24.6 49
16-bit median 24.3 11.0 43
IM_3X3_CROSS
8-bit median 84 32.8 66
16-bit median 20.3 13.2 53
IM_3X3 X
8-bit median 6.5 43.2 86
16-bit median 125 21.6 86
IM_1X5
8-bit median 6.4 442 88
16-bit median 119 22.8 91
IM_5X1
8-bit median 8.8 311 62
16-bit median 14.5 18.6 74
iml ntRecFilter()
8-hit to 16-hit (no Dst2) 55 52 260
8-bit to 16-bit (with Dst2) 6.2 46 270
16-bit to 16-bit (no Dst2) 6.1 46 280
16-bit to 16-bit (with Dst2) 7.5 37 260
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imlntScale()
IM_INTERPOLATE
8-bit 2x2 3.8 82 103
8-bit 4x4 3.0 108 115
8-bit 8x8 29 112 115
8-bit arbitrary factor 6.6 42
16-bit arbitrary factor 7.8 36
IM_NO_INTERPOLATE
8-hit arbitrary factor 37 8l
16-hit arbitrary factor 5.1 56
iml ntSubsample()* NOA C80 NOA
IM_INTERPOLATE 10.10.1} 10.10.1{ 10.10.1.
8-bit (any supported factor) 235
16-bit (any supported factor) 117
IM_NO_INTERPOLATE
8-bit 2x2 23 21 140 470 260 340
8-bit 4x4 34 3' 2 86 220
16-bit 4x4 11 11 350 240
0.7 = | 6%
170
| 8|
imlntThickThin()
8-hit
Single 3x3 kernel 21.2 12.8 25
8-band 3x3 kernel 154 1.73 27
16-bit
Single 3x3 kernel 41.7 6.4 25
8-band 3x3 kernel 308 0.86 27
imIntTriadic()
All operations are I/0-bound
2 bytes of 1/O per pixel 1.9 170 340
3 bytes of 1/O per pixel 2.7 110 340
4 bytes of 1/0 per pixel 37 80 320
5 bytes of 1/O per pixel 4.6 63 310
6 bytes of 1/O per pixel 5.6 51 310
iml ntWarpL ut()*
Nearest neighbor
8-hit ~10 ~27 ~160
16-bit ~11 ~25 ~200
32-hit ~13 ~20 ~240
Bilinear interpolation
8-hit ~21 ~12 ~80
16-hit ~22 ~12 ~100
iml ntWarpPolynomial ()*
Nearest neighbor
8-hit ~8 ~39 ~80
16-hit ~10 ~30 ~120
32-hit ~18 ~15 ~120
Bilinear interpolation
8-hit ~20 ~14 ~30
16-hit ~29 ~9 ~40
Bicubic interpolation
8-hit ~70 ~3.8 ~8
16-bit ~92 ~2.9 ~12
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iml ntZoom()* C80 C80 | NOA C80 | NOA
IM_INTERPOLATE 10.10.1
8-bi t (any supported factor) 6.5 44 180
16-bit (any supported factor) 6.7 42 120
IM_NO_INTERPOLATE
8-bi t ax4 2.0 3‘ > 170 275 180 310
20
3.0
2.6
imJpegDecode() T* C80 NOA Cc80 NOA
8-bit lossless 10.10.1} 10.10.1} -~11 ~45 ~17 ~70
8-bit lossy ~18
=23 | 68
~14
imJpegEncode() t* C80 NOA C80 NOA
8-bit lossless 10.10.1{ 10.10.1} ~14 ~100 | ~21 | -~150
8-hit lossy ~16
-19 1 33
~16
imPatFindModel ()t
Speed IM_HIGH, accuracy IM_MEDIUM
32x32 model ~26
64x64 model ~12
128x128 model ~8
256x256 model ~14
Speed IM_MEDIUM, accuracy IM_HIGH
32x32 model ~26
64x64 model ~12
128x128 model ~12
256x256 model ~25

* Means that the function is discussed further below.
T Means that the performance is data dependent.

E.5 Specific Functions

The behavior of some functions is more complicated that the benchmark table indicates, and they need to
be discussed individually.

imBinMorphic()

The pre-defined kernel IM_3X3 RECT _1 has been specially optimized for the C80, and thereisa
particularly large performance gain when multiple iterations are required. Therefore, with the C80 you
should decompose large erosions or dilationsinto multiple iterations of IM_3X3 RECT _1 whenever
possible. However, with the NOA it isjust as good to define large kernels directly and use only one
iteration. In general, binary morphology is so fast with the NOA that the function overhead is very
important on small images, and it might sometimes be faster to disable the NOA and use the C80 instead.
However, there is away to reduce the NOA setup overhead for the second and subsequent passes with a
given kernel (see the documentation for the control fields supported by the function).

imBlobCalculate()
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Performance here is data dependent, and the more blobs are present the longer it takes. If your images are
noisy, so that after thresholding many spurious blobs are present, it is usually best to clean up the
thresholded image with morphology before doing blob analysis. To make sure this cleaning stage runs as
fast as possible, threshold your original image into a 1-bit binary buffer.

The benchmarks in the table were obtained with the saving of run information disabled (i.e. after calling
imBlobControl() with IM_BLOB_SAVE_RUNS set to IM_DISABLE). If you save runs (which isthe
default behavior) processing time will be dightly longer.

Another important point in blob analysisit to read back as many results as you can at once. This means
making use of the data structures, IM_BLOB_GROUPL_ST etc., that hold a whole group of blob results.
See the example program BLOB.C for usage.

imBufCopy()

Performance of PCI transfers between the host and Genesis are dependent on the host PCI chipset, so you
should do your own tests to measure the performance on your system. See also the following discussion on
imBufGet() and imBufPut(). Note that VM performance depends on the VM channel clock speed. This can
be set to 25 or 33 MHz in the GENESIS.INI file.

The performance of both PCI and VM transfers varies somewhat with the width of the image being
transferred.

imBufGet()/imBufPut()

In these functions the data transfer is driven by the host CPU. Writes to Genesis memory are much faster
than reads, although actual figures are dependent on the host PCI chipset. imBufGet() is normally adequate
for small amounts of data such as a histogram result (which istypically a few Kbytes), but for whole
imagesit is much faster to allocate a host buffer and use imBufCopy(). On some systems imBufPut() might
be the fastest way to get even large amounts of data from the host to the Genesis, but it ties up the host
CPU. imBufCopy() should provide comparable speed and does not tie up the host CPU.

iml ntConvolve()

The main point about convolution is that the 8-bit case runs considerably faster than the 16-bit case. For the
C80 the 8-hit case requires that the source buffer be 8-bit unsigned, and that the kernel valuesall liein the
8-bit signed range [-128, +127]. (Note that the type of the kernel buffer itself isirrelevant; the actual kernel
values will be tested to see if the 8-bit convolution can be used.) Another requirement for the 8-bit case on
the C80 is that it must be possible to use a 16-hit signed accumulator without causing possible overflows.
This means that the sum of the positive kernel values must not exceed 128, and the sum of the negative
kernel values must not exceed —128. If not all of the 8-bit requirements are met, the 16-bit benchmarks will

apply.

Note that many predefined kernels use specially optimized C80 code, and execute faster than the equivalent
kernel that you define yourself. Always use a predefined kernel if you can.

On the NOA the 8-bit caseis not so restricted. Any 8-bit type (for image or kernel) is handled at the same
speed, and thereis no limit on the sum of kernel values. If you have 16-bit data with an 8-bit kernel, or 8-
bit data with a 16-bit kernel, the speed will be somewhere between the listed 8- and 16-bit benchmarks. The
slowest case of all isthat of 16-bit dataand a 16-bit kernel (and thisiswhat is used for the listed 16-bit
NOA benchmarks). Note that the NOA 8-bit benchmarks were made in exact mode (the computation
control field, IM_CTL_COMPUTATION, was set to IM_EXACT so that no approximations were made).
Some symmetric kernels will show a slight improvement in fast mode (where the computation control field
issetto IM_FAST). The NOA 16-bit benchmarks for symmetric kernels were made in fast mode.

However, if your datais 14-bit or less, you will get the same performance in exact mode as long as you
specify the number of input bits.

Y ou will seethat the NOA takes advantage of symmetric kernels (positive or negative symmetry, in either
the horizontal or vertical direction). The symmetric benchmarks listed assume both horizontal and vertical
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symmetry (which is quite common for real convolution kernels). The C80 cannot take advantage of kernel
symmetry, but it does have specially optimized code for kernels whose values are all 1. Furthermore, the
timefor anal 1'skernel isonly weakly dependent on the kernel size. Kernels whose val ues are some other
congtant (optionally with a different center value) are only slightly slower on the C80 than the same-sized
all 1'skernel. The NOA does not handle constant kernels as a special case, but they are faster than general
kernels because of their symmetry.

The number of special casesis simply too large to describe here. If convolution isatime critical operation
for you, you should benchmark your particular kernel to see how fast it runs. When using the NOA, you
should also consider using fast mode. This significantly improves the speed of some cases with only a
dlight loss of precision. Note also that there is away to reduce the NOA setup overhead for the second and
subsequent passes with a given kernel (see the documentation for the control fields supported by the
function).

iml ntErodeDilate()

With the NOA any symmetric kernel will run at the same speed as the all-zero case. With the C80 thereis
no advantage to symmetric kernels (only the all-zero case has been optimized). As you can see, large all-
zero kernels are better implemented as multiple passes with IM_3X3 RECT_0 on the C80 (assuming they
can be decomposed this way), but thisis not true for the NOA. Note also that there is a way to reduce the
NOA setup overhead for the second and subsequent passes with a given kernel (see the documentation for
the control fields supported by the function).

iml ntHistogram()

Performance here is very dependent on the type of the input data (i.e. the size of the histogram result
buffer). For 12-bit or larger data, you should consider not using every pixel in the histogram calculation
(see the control fields which enable subsampling). Y ou might also consider shifting the data down to 8 or
10 bits before performing the histogram (see the control field which specifies the number of bits you want
to use).

iml ntLutMap()

Here the performance is very good when the lookup table is no bigger than 16K B, because then the table
fits entirely into the C80’sinternal RAM (assuming all four PPs are used, otherwise the table must be
proportionally smaller). Performance with very large LUTs is aso data dependent, so you may need to try
both the available methods to see which performs best in your case. If you have 16-bit data, you should
consider using an interpolated LUT mapping (which uses a smaller table).

iml ntSubsampl &()

The quoted processing rates are in terms of input pixels/second. Since the output image is smaller, the
processing rate will be lower in terms of output pixels/seconds. Note that the NOA can be used only for
subsampling factors of 1 or 2, but there is only a significant speedup on images larger than about 512x512.
Thisis because the higher processing rate of the NOA is offset by a bigger overhead. On small images it
might be better to disable the NOA.

iml ntWarpL ut()
All figures for this function are approximate since performance is weakly dependent on the actual
transformation (i.e. the valuesin the Xlut and Y lut buffers).

iml ntWarpPolynomial ()

All figures for this function are approximate since performance is weakly dependent on the actua
transformation. Replace overscan may also be dlightly faster than transparent overscan since in the former
case some parts of the output buffer can simply be replaced with a constant value (if that region originated
outside the source buffer).

iml ntZoom()
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The quoted processing rates are in terms of output pixels/second. The NOA can be used only for zoom
factorsof 1, 2 or 4. The processing rate is higher for the NOA but the overhead is also higher. Hence on
small images it might be better to disable the NOA.

imJpegEncode()/imJpegDecode()

Thetimes are dightly data dependent, and in the lossy case are also affected by the Q factor (higher
compression produces slightly faster times). Y ou can also improve performance alittle by increasing the
restart interval (increase the value of IM_JPEG_RESTART_ROWS from its default of 32). When you also
need to transfer the compressed image on or off the board, you should also consider the time taken by
imJpegReadBuf()/imIpegWriteBuf(). However, these functions can be overlapped with the actual encoding
or decoding by running them in another thread. In this case they add very little extratime.
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Appendix F Vision Code Structure

F.1 ball_filter.c

Header File: track.h

int trackBallPosition (struct trackingStruct* track, struct calibrationData* calibData)

Description: Filtersthe ball position and linear velocity inimage coordinates. The barrel distortion and
paralax error are aso removed. If the ball is not found the data is extrapolated from the previous frames.
The position is clipped if the filter overshoots the image size.

Inputs: struct trackingStruct* track
Contains all of the information necessary for tracking.
struct calibrationData* calibData

Contains al of the calibration information including the size of the window and
the field in terms of image coordinates.

Return Value: The number of ball blobs that were found. Thisis either zero or one.

F.2 barreldist.c

Header File: distortion.h

void brIDistCorrect(struct point* pointln, int number, struct calibrationData* calibData)

Description: Removes the barrel distortion. The distortion is a function of the lens and the distance
that the pixel isradially from the center pixel in the image.

Inputs: struct point* pointln
Thelist of pointsthat are to be corrected in terms of image coordinates.
int number
The number of points that are to be corrected.
struct calibrationData* calibData

Contains al of the calibration information including the polynomial that is used
to remove the barrel distortion.

Return Value: void

F.3 calibration.c

Header Files: cdlibration.h

struct calibrationData* readCalibrationFile(struct calibrationData* calibData, char* filename)

Description: Reads a calibration file and computes the other necessary parameters from the file. This
function allows for reading of either the old or the new calibration file format. If a valid structure is not
passed as an input to the function, it will allocate a new structure on the heap. Otherwise, the data will be
overwritten using the values read from the file.

73



Detailed Vision Documentation

Inputs: struct calibrationData* calibData
Contains all calibration information.
char* filename
The name of the file that is to be read for calibration information.
Return Value: The address of the structure that contains the valid information.

F.4 fileLogging.c

Header File: vision.h

struct fileL ogStruct* initializeL ogFile(struct fileL ogStruct* log, char* filename)

Description: Initializes the log file struct. Opens the appropriate file and writes the header information
in a format such that Matlab will regard the header as comments. If a valid structure is not passed as an
input to the function, it will allocate a new structure on the heap. Otherwise, it will reinitialize everything,
and reopen thefile.

Inputs: struct fileLogStruct* log
Contains the pointer to the open file and the current date.
char* filename
The name of the file to open for writing vision data.

Return Value: The address of the structure that contains the valid information.

void outputPositions (struct fileL ogStruct* log, struct trackingStruct* track)

Description: Writes the appropriate information about the objects that are being tracked into the file.
The data for each frame appears as a single line on the output. The first four entries correspond to the ball.
The next six entries correspond to either the Brazil or Cornell robots. The remaining six entries correspond
to either the Italy or opposing robots.

Inputs: struct fileLogStruct* log
Contains the pointer to the open file that the datais being written to.
struct trackingStruct* track
Contains the tracking information for all objectsthat can bein the field.

Return Value: void

void freel ogFile (struct fileL ogStruct* log)

Description: Closes the file that is being written to and frees the allocated memory for the structure on
the heap.

Inputs: struct fileLogStruct* log
Contains the pointer to the file log structure.

Return Value: void
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F.5 identification.c

Header File: identification.h

void identifyBlobs (struct profile* orderedRabots, struct profile* oldRobots, int humRaobots, struct
state* newRobots, int numNew, int trackingRobot[])

Description: Identifies the robot blobs based on the current position of the blobs and where the robots
were located in the previous frame. This function only identifies the robots, but does not do any filtering on
the data. The velocity of the robotsis not taken into account, only the position.

Inputs: struct profile* orderedRobots

The profiles for the ordered list of robots that correspond to the initial ordering
of robot positions. Thisisthe new data that has been ordered.

struct profile* oldRobots

The old data referring to the locations of the robots in the previous frame.
int numRobots

The number of elements that are in the array pointed to by oldRobots.
struct state* newRobots

The new blobs that map to the team marker color and are candidates for robot
identification. These blobs are oriented and contain position information in
terms of image coordinates and orientation in terms of radians.

int numNew
The number of elements that are in the array pointed to by newRobots.
int trackingRobot[]

An array of type int that stores the current state of tracking for the robots from
the previous frame. Updates to this array are done in place.

Return Value: void

F.6 imageProcessing.c
Header File: vison.h

void processFrame(struct genesisStruct* genesis, struct calibrationData* calibData, struct
timingStruct* timing, int num);

void processFrame(struct genesisStruct* genesis, struct calibrationData* calibData, int num);

Description: Performs the color segmentation algorithm. The agorithm can optionally perform
difference imaging to clean the image. The function can also perform timing on all of the genesis function
cals.

Inputs: struct genesisStruct* genesis

Contains all buffers and pointers necessary to perform color segmentation on the
genesis board.

struct calibrationData* calibData

Contains all calibration information including the color threshold val ues.
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struct timingStruct* timing

Contains the timing statistics for all processing functions that take place on the
DSP board.

int num
The current buffer index that is marked as processing in the circular grab buffer.

Return Value: void

void analyseBlobs(struct genesisStruct* genesis, struct blobAnalysisStruct* blobAnalysis, struct
timingStruct* timing);

void analyseBlobs(struct genesisStruct* genesis, struct blobAnalysisStruct* blobAnalysis);

Description: Performs the blob analysis and transfers the results back to the host computer. The
function can also perform timing on all of the genesis function calls.

Inputs: struct genesisStruct* genesis
Contains the results of the color thresholding.
struct blobAnalysisStruct* blobAnalysis

Contains al of the buffers, threads, and the result buffer in host memory to
perform the blob analysis.

struct timingStruct* timing

Contains the timing statistics for the processing functions that perform blob
analysis.

Return Value: void

F.7 initialization.c

Header File: vision.h

struct trackingStruct* initializeTrackingStruct (struct trackingStruct* track)

Description: Initializes the tracking structure. If a valid structure is not passed as an input to the
function, it will allocate a new structure on the heap. Otherwise, it will reinitialize the variables. All
tracking profiles areinitialized to zero and all tracking states are set to NOT_TRACKING.

Inputs: struct trackingStruct* track
The structure that isto beinitialized.
Return Value: The address of the structure that contains the valid information.

struct genesisStruct* initializeGenesisBoard(struct genesisStruct* genesis, struct calibrationData*
calibData)

Description: Allocates all the threads, the camera, the genesis board, and buffers that are to be used for
the image processing. The buffers and allocated and the child buffers are assigned. If avalid structure is not
passed as an input to the function, it will alocate a new structure on the heap. Otherwise, the variables in
the structure are overwritten and reall ocated.

Inputs: struct genesisStruct* genesis
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The structure that isto beinitialized.
struct calibrationData* calibData

Contains the calibration information including the image buffer sizes and the
window sizes and position.

Return Value: The address of the structure that contains the valid information.

struct  blobAnalysisStruct*  initializeBlobAnalysis  (struct genesisStruct*  genesis, struct
blobAnalysisStruct* blobAnalysis)

Description: Allocates the blob analysis buffers, and threads. The child buffers are assigned. If a valid
structure is not passed as an input to the function, it will allocate a new structure on the heap. Otherwise,
the variables in the structure are overwritten and reallocated.

Inputs: struct genesisStruct* genesis
Contains the address of the genesis device
struct blobAnalysisStruct* blobAnalysis
The structure that is to be initialized.
Return Value: The address of the structure that contains the valid information.

struct timingStruct* initializeTiming(struct timingStruct* timing)

Description: Initializes the timing variables to zero. If avalid structure is not passed as an input to the
function, it will allocate a new structure on the heap. Otherwise, the timing variables are all set to zero.

Input: struct timingStruct* timing
Contains all of the timing information.

Return Value: The address of the structure that contains the valid information.

struct statisticsStruct* initializeStatistics(struct statisticsStruct* statistics)

Description: Initializes the vision system statistics to zero. If avalid structure is not passed as an input
to the function, it will allocate a new structure on the heap. Otherwise, the statistics are overwritten.

Input: struct statisticsStruct* statistics
Contains all of the vision system statistics.
Return Value: The address of the structure that contains the valid information.

void specifylnitial Positions (struct genesisStruct* genesis, struct trackingStruct* track)

Description: Allows for the specification of the initial ball and robot positions. It also assigns each
robot on the field a number, which corresponds to the robot ID number. The robots and ball positions are
assigned based on asingle frame that is captured at the beginning of the game.

Inputs: struct genesisStruct* genesis
Contains the buffers for color segmentation and the grab buffers.
struct trackingStruct* track
Contains the tracking information for the robots and the ball.

Return Value: void
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void initializeSingleProfile(struct profile* p, int number)
Description: Initializes an array of profile structures to be al zero.
Inputs: struct profile* p
Array containing profile structuresto beinitialized
int number
The number of elementsin the array p

Return Value: void

void freeBlobAnalysis(struct blobAnalysisStruct* blobAnalysis)

Description: Frees all of the memory that is allocated for the blob analysis. These are the buffers and
the threads. The entire blobAnalysis structure is then freed.

Inputs: struct blobAnalysisStruct* blobAnalysis
The structure that is to be deall ocated.
Return Value: void

void freeGenesisBoard(struct genesisStruct* genesis)

Description: Frees al of the memory that is allocated for the genesis board. These are the buffers, the
device, camera, and the threads. The entire genesis structure is then freed.

Inputs: struct genesisStruct* genesis
The structure that isto be deallocated.
Return Value: void

void freeAllStructures(struct genesisStruct* genesis, struct blobAnalysisStruct* blobAnalysis,
struct trackingStruct* track, struct timingStruct* timing, struct statisticsStruct* statistics, struct
calibrationData* calibData)

Description: Frees all of the dynamically allocated structures and the respective dynamically allocated
pointers inside those structures.

Inputs: struct genesisStruct* genesis

Contains the genesis board device, camera, threads, and buffers.
struct blobAnalysisStruct* blobAnalysis

Contains the blob analysis buffers.
struct trackingStruct* tracking

Contains the tracking information.
struct timingStruct* timing

Contains the timing information.
struct statisticsStruct* statistics

Contains the vision system statistics.
struct calibrationData* calibData
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Contains the calibration information.
Return Value: void

F.8 networkFunctions.c

Header File: udp_network.h

int sendData (struct netData* nds, struct localNetworkStruct* Ins, int length)
Description: Sends the tracking information over the UDP network.
Inputs: struct netData* nds

Contains al the information relating to the port that is opened including the
address and port number to send the information to.

struct localNetworkStruct* Ins
The structure that will be sent across the network.
int length
Length of the network packet.
Return Value: The amount of datathat could actually be transmitted.

int recvData (struct netData* nds, struct localNetworkStruct* Ins, int length)

Description: Receives tracking data over the network. This function blocks until the data has been
received and read from the buffer.

Inputs: struct netData* nds

Contains al the information relating to the port that is opened including the
sending address and port humber.

struct localNetworkStruct* Ins
The structure that the tracking data will be read into.
int length
Length of the network packet that isto be received.
Return Value: The amount of datathat could actually be received.

int recvRequest (struct netData* nds, char* buffer, int length)

Description: Wait for and read a request for the transmission of data over the network. This will block
until the request comes in. If the data does not correspond to SUBMIT_REQUEST then the request is not
serviced and an error is returned.

Inputs: struct netData* nds

Contains al the information relating to the port that is opened including the
sending address and port number.

char* buffer

The piece of memory that the request will be read into.
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int length
Length of the network packet that isto be received.
Return Value: The amount of datathat could actually be received.

int sendRequest (struct netData* nds, char* buffer, int length)
Description: Send arequest over the network for the transmission of new tracking data.
Inputs: struct netData* nds

Contains al the information relating to the port that is opened including the
address and port number to send the information to.

char* buffer
The piece of memory that will be sent across the network.
int length
Length of the network packet to be transmitted.
Return Value: The amount of datathat could actually be transmitted.

struct netData* initializeNetworkClient(struct netData* sns, unsigned short port)

Description: Initialize the network client data structure. This is the structure that contains all of the
information that is needed for the artificial intelligence computers to use the local network. If a valid
structure is not passed as an input to the function, it will allocate a new structure on the heap. Otherwise, it
reinitializes the existing structure.

Inputs: struct netData* sns

Contains the addresses and port numbers that indicate where to get the data
from.

unsigned short port
The port that the connection has to be made to on the vision computer.
Return Value: The address of the structure that contains the valid information.

struct netData* initializeNetwor kServer (struct netData* cns, unsigned short port)

Description: Initializes the network server data structure. This is the structure that contains all of the
information that is needed for the vision system to process and service requests over the local network. If a
valid structure is not passed as an input to the function, it will allocate a new structure on the heap.
Otherwise, it reinitializes the existing structure.

Inputs: struct netData* cns

Contains the address and port numbers that the request for information had come
from.

unsigned short port
The port number that the socket binds to for waiting on requests.
Return Value: The address of the structure that contains the valid information.

void destroyNetwor k(struct netData* cns)
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Description: This closes the network port and frees the memory that was allocated during the
initialization.
Inputs: struct netData* cns

Contains all the information for network communication.

Return Value: void

F.9 orientation.c
Header File: orientation.h

int orientBlobs (struct state* tRobotProfile, struct point* robot, int numRobot, struct point* orient,
int numOrient)

Description: Registers orientation and team marker blobs together and computes the orientation angle
between the two of them. If an orientation blob is not registered, then the orientation angle is set to
NOT_ORIENTED. All orientation angles are in radians.

Inputs: struct state* tRobotProfile
The state of the supposed robot. Thisisthe position and orientation.
struct point* robot
The array of team marker blobs.
int numRobot
The number of elementsin the array robot.
struct point* orient
The array of orientation blobs.
int numOrient
The number of elementsin the array orient.

Return Value: The number of team marker blobs that have orientation markers registered to them.

F.10 output.c

Header File: vision.h

void debugOutput (struct trackingStruct* track, struct calibrationData* calibData)

Description: Print the tracking information and profile for all of the objects currently being tracked to
the console window.

Inputs: struct trackingStruct* track
Contains the tracking information and filter.
struct calibrationData* calibData

Contains the calibration information including how many robots should be on
the field.

Return Value: void
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void screenOutput (struct genesisStruct* genesis, struct trackingStruct* track, struct
calibrationData* calibData, int buffer Number)

Description: Outputs the current blobs which fall into each sub-volume that is being looked for to the
genesis display section and can be viewed on the monitor.

Inputs: struct genesisStruct* genesis
Contains the buffers that correspond to the display section.
struct trackingStruct* track

Contains the tracking information that we wish to look at and the locations of
the objects so the |abels may be placed appropriately.

struct calibrationData* calibData

Contains the calibration information including the number of robots to be
expected on the field.

int bufferNumber
The current buffer index that is marked as processing in the circular grab buffer.
Return Value: void

void imageCapture(struct genesisStruct* genesis, int mode)

Description: Captures a frame from the display section and saves it to disk as a TIFF image. Hitting
the ‘9’ key on the number pad captures the image.

Inputs: struct genesisStruct* genesis
Contains the buffers that are to be captured to disk.
int mode
Whether the capture is done during the initialization or the processing stage.
Return Value: void

F.11 packetize.c

Header File: vision.h

void packetizeData (struct trackingStruct* track, struct calibrationData* calibData, struct
localNetworkStruct* Ins, HANDL E* mutex, int* dirty, int mode)

Description: Places the data that results from the tracking into the appropriate structure for
transmission to the artificial intelligence computers. The type of datathat is sent is dependent on the mode
variable and the type of vision system build.

Inputs: struct trackingStruct* track
Contains the information that needs to be packetized.
struct calibrationData* calibData

Contains the calibration information including the number of robots to be
expected on the field.
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struct local NetworkStruct* Ins
The structure that will be sent across the network.
HANDLE* mutex

The mutual exclusion lock that prevents the data from being read while new data
isbeing written.

int* dirty

Flag that states whether the data in the localNetworkStruct is dirty of if it is new
data

int mode
The type of computer that the packet will be transmitted to.
Return Values: void

F.12 robot_filter.c

Header File: track.h

int trackRobotPositions (struct trackingStruct* track, int mode, struct calibrationData* calibData);

Description: Orient, identify, filter, and track the robot positions in image coordinates. Also filters the
linear and rotational velocity. The barrel distortion and parallax error are also removed. If a robot is not
located but is physically in the field, then the data is extrapolated from the previous frames. The position is
clipped if the filter overshoots the frame size.

Inputs: struct trackingStruct* track
Contains all of the data for tracking, and filtering.
int mode
Specifies the data that needs to be tracked.
struct calibrationData* calibData
Contains all of the calibration information including the filter constants.

Return Value: Returnsa‘0’ aways.

F.13 track.c

Header File: track.h

void getAllObjectPositions(struct trackingStruct* track, struct blobAnalysisStruct* blobAnalysis,
struct calibrationData* calibData)

Description: Wrapper that performs all of the function calls for object tracking.
Inputs: struct trackingStruct* track
Contains all of the data for tracking and filtering.
struct blobAnalysisStruct* blobAnalysis
Contains the results of the blob analysis.
struct calibrationData* calibData
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Contains the calibration information including the size if the windows and the
minimum and maximum that a blob can be.

Return Value: void

void preprocessBlobResults(struct trackingStruct* track, IM_BLOB_GROUP1_ST* results, int
sizeX)

Description: Size and shape filtering of the blobs to eliminate any spurious data points that may result
in the image processing. The blobs are then processed from the common list of all blob features. The blobs
are separated based on color.

Inputs: struct trackingStruct* track
Contains all of the data for tracking and filtering.
IM_BLOB_GROUPL_ST* results
The buffer that the results of the blob analysis will be copied into.
int sizeX
The width of the windowed grab buffer that only contains the field.
Return Value: void

void getRobotPositions(struct trackingStruct* track, struct calibrationData* calibData)

Description: Copies the locations of the opponent robots into the tracking structure until no more blobs
are found or until there are not supposed to be more players on the field.

Inputs: struct trackingStruct* track
Contains the tracking information.
struct caibrationData* calibData

Contains the calibration information including the number of robots to be
expected on the field.

Return Value: void

F.14 transform.c

Header File: transformation.h

struct profile transformCoord (struct profileinPoint, struct calibrationData* calibData)
Description: Transforms the coordinates from image coordinates to field coordinates.
Inputs: struct profile inPoint
The profile that is to be converted from image to field coordinates.
struct calibrationData* calibData

Contains the calibration information including the transformation from image to
field coordinates.

Return Value: The profilein field coordinates.
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void paralaxCorrect (struct point* inPoint, int object, int number, struct calibrationData* calibData)

Description: Removes the parallax error that results from objects of different heights. The error
removal is dependent on the classification of the object in question.

Inputs: struct point* inPoint
Array of point structures that need the parallax error removed.
int object
Type of object in question.
int number
Number of elementsin the array inPoint.
struct calibrationData* calibData
Contains the calibration information including the parallax scalar and offset.
Return Value: void

F.15 vision.c
Header File: vision.h

void main(int argc, char **argv)

Description: Entry point into the vision system code. This function calls all of the other functions and
has the main vision processing loop.

Inputs: intargc
The number of elementsin the array argv.
char** argv
Array of the arguments to the executable.

Return Value:  The exit status of the program.

void errHandler (void *success)

Description: Error handler for the genesis function calls. Exits the program upon error in the genesis
native library calls. Outputs the error to the console window.

Inputs: void* success
Flag to mark whether or not there was en error in the processing loop.
Return Value: void

void commT hread(void)
Description: The thread that services tracking data requests over the network in competition mode.
Inputs: void

Return Value: void
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void commBrazilThread(void)

Description: The thread that will service al requests for data from the Brazil artificia intelligence
computer.

Inputs: void

Return Value: void

void commltalyThread(void)

Description: The thread that will service all requests for data from the Italy artificial intelligence
computer.

Inputs. void
Return Value: void

void commDisplayThread(void)
Description: The thread that will service all requests for data from the display client computer(s).
Inputs: void

Return Value: void

void uiThread(void)

Description: The thread that services all user interface commands to the processing thread.
Inputs: void

Return Value: void
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