The Cornell Robocup Team

Raffaello D’Andrea!, Tamés Kalmar-Nagy?, Pritam Ganguly? and Michael
Babish?

! Sibley School of Mechanical and Aerospace Engineering
Ithaca, NY 14853, USA
rd28Qcornell.edu
2 Department of Theoretical and Applied Mechanics
Ithaca, NY 14853, USA
{nagy,pritam}@tam. cornell.edu
8 Department of Computer Science
Tthaca, NY 14853, USA
mjb33@cornell.edu

Abstract. This paper describes the Cornell Robocup Team, which won
the RoboCup-2000 F180 championship in Melbourne, Australia. The
success of the team was due to electro-mechanical innovations (omni-
directional drive and a dribbling mechanism) and the control strategies
that rendered them effective. As opposed to last year’s “role-based” strat-
egy, a “play-based” strategy was implemented, which allowed us to make
full use of the robot capabilities for cooperative control.

1 Introduction

The RoboCup competition is an excellent vehicle for research in the control of
complex dynamical systems. From an educational perspective, it is also a great
means for exposing students to the systems engineering approach for designing,
building, managing, and maintaining complex systems.

In an effort to shift the current emphasis of the competition away from simple
strategies to more complicated team-based strategies, the main emphasis of this
year’s team was to play a controlled game. In other words, in a game without ball
control, effective strategies essentially consist of overloading the defensive area
during a defensive play (the so called “catenaccio” in human soccer, a strategy
that is very effective, if not extremely dull and frustrating for the spectators),
and shooting the ball towards open space or the goal area in the opponent’s half
during offensive plays. This was, in fact, the simple role based strategy adopted
by our championship team in 1999, which was shown to be extremely effective.
In order to bring coordination and cooperation to the RoboCup competition,
the Cornell team developed two electro-mechanical innovations (omni-directional
drive and dribbling, described in Section 2) and the associated control strategies
that rendered them effective (described in Sections 3 and 4).

The key system concept employed by the Cornell RoboCup team is that
of hierarchical decomposition, the main idea of which is depicted in Figure 1.

2 Raffaello D’Andrea et al.

DESIRED FINAL POSITIONS AND

VELOCITIES, TIME TO TARGET DESIRED VELOCITIES
STRATEGY " TRAJECTORY LOCAL
« GENERATION CONTROL

FEASIBILITY OF REQUESTS

Fig. 1. Hierarchical decomposition

At the lowest level is the local control, which physically occurs on the robots;
local feedback loops regulate the wheel velocities about the desired wheel ve-
locities commanded by a centralized computational unit (a workstation). The
desired wheel velocities are generated by the Trajectory Generation block; these
velocities are generated in such a way to ensure that the robots are physically
capable of executing the maneuvers (as limited by power, friction, and stability
constraints). The Trajectory Generation block uses desired final position, veloc-
ity, and time to target information, generated by the Strategy block, to calculate
the desired robot trajectories; feasibility information is sent back to the Strategy
block to ensure that only executable commands are sent to the actual robots.
The reader is referred to [3] for details on how this general approach can be used
to control complex systems.

This decomposition structure renders the real-time vehicle coordination prob-
lem tractable. In particular, the high level strategy (described in Section 4) does
not need to consider the details of vehicle motion, except for feasibility infor-
mation; if a desired play is not deemed feasible (for example, leading a pass to
another robot is not deemed feasible because the receiving robot cannot execute
the interception), alternate strategies are implemented.

The RoboCup competition is relatively mature, with many teams compet-
ing at a high level; we have thus decided to emphasize in this paper aspects
of our system that we feel are innovative, and forgo a detailed explanation of
the sub-systems that are well understood and documented in previous RoboCup
publications; interested readers are referred to [5], [1], and [10]. The rest of the
paper is organized as follows: in Section 2, a brief description of omni-directional
drive and dribbling is presented, followed by an in-depth discussion of the Trajec-
tory Generation scheme in Section 3. A description of team strategy is presented
in Section 4.

2 Omni-Directional Drive and Dribbling

A very effective way of position control was implemented by the Cornell Robocup
Team in the 2000 competition. The omni-directional drive consists of three pairs
of wheels (see Figure 2). Each pair of wheels has an active degree of freedom
in the direction of the rotation of the motor and a passive one perpendicular

Lecture Notes in Computer Science

Fig. 3. Dribbling mechanism

4 Raffaello D’Andrea et al.

to it (see [4], for example). Since the drive directions are pair-wise linearly in-
dependent, the translation and the rotation of the robot can independently be
controlled by a judicious choice of drive velocities.

The dribbling mechanism is a rotating bar with a latex cover placed just
above the kicking mechanism (see Figure 3). Upon contact with the ball, the
rotation of the bar imparts a backward spin on the ball; the bar is strategically
placed such that the net component of the force on the ball is always towards
the robot, and this is achieved without violating the 20 % convexity rule.

The omni-directional drive, coupled with the dribbling mechanism, greatly
increases the potential capabilities of the robots (we stress the word potential,
since it is not obvious that a real-time control strategy can be developed to fully
utilize these features). The main capability which is rendered possible by this
combination is the effective receiving of passes, which must be central to any
sophisticated team-based strategy.

3 Trajectory Generation and Control

Actual position and

R O B O.l. orientation of robot Vl Sl O N

A 4

$ > D
g " Velocity o 5%
@ LOCAL of motors Dgsned flnoll é €]
o oltage| CONTROL position, velocity g é
2 L
5 ¢ Predicted 32
ko) c|
2 Desired Y position, § =
8 CONVERSION 1O | velocity |TRAJECTORY | orientation &
DESIRED WHEEL |« GENERATION PREDICTION |«
VELOCITIES
7'y 7'y y §

Desired angular velocity |ORIENTATION
CONTROL

A

Desired orientation

Fig. 4. Block diagram representation of trajectory generation

The overall trajectory generation and control scheme for one robot is depicted
in Figure 4. The Vision block feeds the calculated position and orientation of the

Lecture Notes in Computer Science 5

robot to the Prediction block, which estimates the position and orientation of the
robot in the robot temporal frame based on the vision data and the history of the
commanded velocities. The Trajectory Generation block solves a relaxation of an
optimal control problem to calculate the future robot velocity profile required to
reach the prescribed final position and final velocity in either the shortest possible
time, or in a prescribed amount of time using the least amount of control effort;
a similar step occurs for the robot orientation. The dynamics of the motors and
the robots are taken into account to ensure that the generated velocity profiles
are feasible. This data is then converted to wheel velocities, which is sent to the
robot via wireless communication. A local control loop on the robot regulates the
actual wheel velocities about the desired wheel velocities. Note that the overall
system feedback is achieved by solving an optimal control problem for every
robot at every frame (approximately 30 times per second).

3.1 Feasible Trajectory Generation

As described in Section 1 and depicted in Figure 1, desired wheel velocities are
calculated by the Trajectory Generation block based on desired final position
and velocity information passed down by the Strategy block. Two types of tra-
jectories are generated: minimum time and minimum control effort. Minimum
time trajectories are called upon when a robot must move to a given location,
with a given final velocity, as quickly as possible; minimum control effort trajec-
tories are called upon when a robot must arrive at a given location, with a given
final velocity, at a given time. A minimum control effort trajectory is clearly not
feasible if the minimum time counterpart takes longer to execute.

The full equations of motion of an omni-directional vehicle are complex
enough to render the real-time computation of optimal trajectories impossi-
ble with today’s computational resources. In addition, it is desirable for feasible
trajectories to be generated very quickly to allow high-level strategies to ex-
plore as many scenarios as possible. Our approach is based on relaxation: can a
simplified, computationally tractable optimal control problem be solved whose
solution yields feasible, albeit sub-optimal, trajectories? The omni-directionality
of our robots permits a positive answer to the above question. The basic idea is
to decouple the three degrees of freedom (two translational and one rotational),
to solve an optimal control problem for each degree of freedom independently.

Each degree of freedom can be captured by the following differential equation:

Z=au-— pz, (1)

where z is the displacement or rotation, u is the effective voltage, and a and 8
are physical parameters which can be calculated from the physical characteristics
of the robots and motors. Note that equation (1) captures, to a very high level
of accuracy, the dynamics of a single motor driving a load [6]. The problem
becomes a constrained boundary value problem when the initial position, initial
velocity, final position, and final velocity are prescribed:

2(0) = 20, 2(tr) =2r, 2(0) =wvo, 2(tr) =vFr (2)

6 Raffaello D’Andrea et al.

subject to the physical constraint |u| < Umee. Since @ and S are fixed, we can
introduce new length and time scales and assume, without loss of generality,
that a = 8 = Upmqee = 1. In this non-dimensional form, the maximum achievable
velocity has magnitude 1, achieved asymptotically when Z = 0. We will thus
assume that |vg| < 1 and that |vp| < 1.

When performing a minimum control effort maneuver, the decoupling of
the degrees of freedom does not pose a problem, since a time of execution is
specified. When performing a minimum time maneuver, however, the degrees of
freedom will invariably take different amounts of time to execute. This is easily
solved by executing a minimum time trajectory for the slowest degree of freedom,
and executing minimum control effort trajectories for the remaining degrees of
freedom.

The minimum time and minimum control effort solutions are provided below.
The amount of time required to calculate a trajectory for one robot was on the
order of 1000 FLOPS (floating point operations), which is an extremely small
number. In particular, as of the writing of this paper a typical desktop computer
can execute upwards of 100 MFLOPS per second; at a sampling rate of 30
times per second, the computational resources required to calculate one robot
trajectory amounts to less than 0.03 percent of the time allotted to execute one
complete system cycle.

Minimum Time: The minimum time problem consists of finding a velocity
profile u(t) such that the boundary conditions in (2) are satisfied for as small a
tr as possible. It can be shown (see [7], for example), that the boundary value
problem always has a solution, and that the voltage profile which minimizes time
tr consists of a piecewise constant u(t) composed of two segments of magnitude
1. This type of control strategy is commonly referred to as “bang-bang” control.
In particular, the following must be solved for U, ¢1, and ta:

Z+z2=U, 0<t<ty (3)
EZ+z2==-U, t1 <t<ty+ty=tp, (4)

where U is either 1 or -1. Subject to the constraints in (2), we can solve the
above to yield
C Vo — U

h=ts— <, explts— <) = , (5)
U U (vk + U) exp(ta) — 2U

where C' := 29 +v9 — zr —vr. The second expression is equivalent to a quadratic
equation in exp(t3), with solution:

1+ /1 —exp(C/U)(1 + vp/U)(1 —vo/U) (©)
14+vp/U '

Four different cases must be considered (two for U, and two for equation (6)).
A solution with ¢; > 0 and t» > 0 always exists; the one which yields a minimum
value of t; + t5 is chosen. Note that once U and t; are determined, a closed form
solution for z(t) can be constructed for 0 < t < t; +t5. The computational effort
required to solve for t1, t2, and U is less than 200 FLOPS.

exp(tz) =

Lecture Notes in Computer Science 7

Minimum Control Effort: The minimum control effort problem is based
upon the minimum time solution. In particular, let t3. = t] 4+ t5 denote the time
required to execute the minimum time trajectory. It can be shown that when
the desired final velocity is zero, for all ¢ty > t},, there exists t; > 0, to > 0, and
0 < v < 1 such that equations (5) are satisfied with ¢t = t; + t2 and |U| = .
In other words, a bang-bang trajectory with lower control effort can always be
constructed such that the desired state is reached in the prescribed amount of
time. Unlike the minimum control effort problem, a closed form solution cannot
be constructed; a simple iterative scheme can be used, however, to solve for ¢;
and t» which executes in less than 1000 FLOPS.

A second scheme for generating fixed time trajectories can be employed if
1000 FLOPS is too computationally expensive. The equations of motion can be
expressed in first order form as follows & = Az + Bu, where = (z,2). It can
readily be shown (see [2], for example), that for a given ¢, the control strategy
u(t) which minimizes the 2-norm of u is given by

u(t) = B*exp(A(tr —t))W ' (zr — exp(Atr)zo), (7

where
tr
w :/ exp(AT)BB* exp(A*T)dr. (8)
0
We can then solve for x as follows:
t
2(t) = exp(At)z(0) + / exp(A(t — 7)) Bu(r)dr. ©)
0

The above expression can be solved analytically for z(t); the second com-
ponent of x(t) yields the desired velocity profile 2(t). The computational effort
required to solve for 2(¢) is less than 100 FLOPS. Note however, that the min-
imum 2-norm trajectory need not be feasible; in particular, there may exist a
t such that |u(t)] > 1, which violates the actuator constraints. This was not
found to be a problem in practice, however, and was the algorithm used in the
competition.

3.2 Latency Determination

An integral component of the trajectory control is the Prediction block; this
block constructs the optimal estimate of the robot position and orientation in
the robot temporal frame. In order to make this estimate, the overall latency of
the system must be known precisely. A simple and robust method was devised
to accurately estimate the overall system latency, described below.

Consider the angular control of a robot:

0(t) = vo(1), (10)

8 Raffaello D’Andrea et al.

where vy(t) is the commanded angular rate. When the commanded rate is set to
a multiple of the observed angular position, the following expression is obtained:

O(t) = —kO(t — 7), (11)
At

where 7 is the overall system latency. Consider solutions of the form 6 (t) = ce™*,
where A is a complex number. This yields the following characteristic equation:

A+ ke ™ =0 (12)

The locations of the (infinitely many) roots A determine system stability (nega-
tive real parts correspond to stable behavior). The motion is oscillatory (with a
decaying or growing envelope) and the change from stable to unstable behavior
will take place as a root crosses the imaginary axis, i.e., A = iw (see [9], for
example). This yields
w=k, 7= % (13)
This leads to the following method for estimating the system latency: find the
value of k for which oscillations neither grow nor decay. The observed frequency
of oscillation should be k radians per second, and the system latency 5. For our
system, it was indeed observed that the frequency of oscillation was equal to &,
validating the approach. The system latency was calculated to be 0.12 seconds.

3.3 Obstacle Avoidance

The Cornell team was able to implement effective obstacle avoidance mainly due
to the hierarchical decomposition of overall robot control into trajectory genera-
tion and the higher level strategy algorithms. The algorithm we used was devel-
oped for circular obstacles (the robots are approximated by their circumscribing
circle), and is similar to the one presented in [8]. Even though the obstacles are
treated as static, the algorithm works well since it is run every frame. Extension
of this algorithm to include instantaneous velocities of obstacles (both friendly
and opponent) is straightforward.

(Xe.Ye)

[XODS’yObS)

(Xo/Ye)

Fig. 5. Trajectory intersecting an obstacle

Lecture Notes in Computer Science 9

If the trajectory from the starting point (xo,yo) to the final point (zp,yr)
intersects a single circular obstacle, the path has to be modified (Figure 5). In
this case, the algorithm generates two new paths, with via-points located on
lines perpendicular to the tangents to the circle from the starting point (Figure
6). The best path is then chosen (for example, the faster one). A straightforward
extension of the above algorithm is used for multiple obstacles.

(XeYe)

(Xo/Ye)

Fig. 6. Avoiding a single obstacle.

4 Strategy

The effectiveness of Cornell’s trajectory generation system made it much easier
to develop the high level strategy. The design only needs to choose a destination
for each robot, and trust that the low level control can move the robot towards
that destination. This year, Cornell abandoned its “role-based” strategy in favor
of a “play-based” strategy. The new system is a finite state automaton based
on a playbook, as depicted in Figure 7. At any point during a game, the robots
are involved in a specific play (such as Offense, Defense, or PassPlay) and have
specific goals to carry out. The main advantage of this design is that it was
extremely easy to develop and debug, and very easy to adapt during the compe-
tition when we discovered problems with our strategy. The main disadvantage
is that it is dependent on human intuition for its strategy - the system had no
way to adapt to unexpected situations. In the future we hope to develop a team
with many different strategy options, and the ability to choose the best strategy
based on the current opponent.

5 Conclusions

The proposed increase in the field size will greatly reward teams that implement
effective team play. We strongly feel that the dribbling mechanism will greatly
improve the quality of the game, and allow teams to effectively use sophisticated
team-based strategies. The main benefit of the omni-directional drive mechanism
is a simplification of the resulting control problem, which greatly reduces the
computation required for generating nearly optimal trajectories, and thus free

10 Raffaello D’Andrea et al.

Play Transitions - Midfield

OFFENSE

' all_P as= ” Back_Paz= I I Pass_Py Offense
k

hidfield

Offense_GetTheBall

| st special | | widtield_specia |

Kidkcatt_Lis

DEFENSE

Midfield_GetTheBall

Fig. 7. Example of Playbook.

Fig. 8. Example of Plays. Left diagram, offensive play; right diagram, defensive play.

Lecture Notes in Computer Science 11

up computational resources for higher level control decisions; we do not feel,
however, that it will be a necessary feature of future competitive teams. It is
clear, however, that successful future teams must seriously address dynamics
and control issues, such as estimation, coping with system latency, robustness,
and optimal control; only by doing so can the full benefits of team play and
cooperation be achieved.

6 Acknowledgements

The lead author would like to thank all of the students involved in the RoboCup
project at Cornell University, past and present, for their dedication to the project,
and for their numerous accomplishments. We would also like to thank our many
sponsors for their continuing support, in particular Jim Morgan at Applied Ma-
terials, John Swanson at ANSYS, Lockheed Martin, and United Technologies.

References

1. M. Asada and H. Kitano, editors. RoboCup-98: Robot Soccer World Cup II. Lecture
Notes in Computer Science. Springer, 1999.

2. G. E. Dullerud and F. Paganini. A Course in Robust Control Theory. Springer,
2000.

3. E. Frazzoli,M. A. Dahleh and E. Feron. Robust Hybrid Control for Autonomous
Vehicle Motion Planning. In Conference on Decision and Control, 2000.

4. M. Jung,H. Shim H. Kim and J. Kim. The Miniature Omni-directional Mobile
Robot OmniKity-I(OK-I). In International Conference on Robotics and Automa-
tion, volume 4, pages 2686-2691, 1999.

5. H. Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Lecture Notes in
Computer Science. Springer, 1998.

6. K. Ogata. Modern Control Engineering. Prentice-Hall, third edition, 1997.

7. D. A. Pierre. Optimization Theory with Applications. Dover, second edition, 1986.

8. Z. Shiller. Online sub-optimal obstacle avoidance. In International Conference on
Robotics and Automation, volume 1, pages 335-340, 1999.

9. G. Stépén. Retarded Dynamical Systems. Longman Harlow, 1989.

10. M. Veloso, E. Pagello, and H. Kitano, editors. RoboCup-99: Robot Soccer World
Cup III. Lecture Notes in Computer Science. Springer, 2000.

