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Abstract—Developing secure distributed systems is difficult, and
even harder when advanced cryptography must be used to achieve
security goals. Following prior work, we advocate using secure
program partitioning to synthesize cryptographic applications:
instead of implementing a system of communicating processes,
the programmer implements a centralized, sequential program,
which is automatically compiled into a secure distributed version
that uses cryptography.

While this approach is promising, formal results for the
security of such compilers are limited in scope. In particular, no
security proof yet simultaneously addresses subtleties essential for
robust, efficient applications: multiple cryptographic mechanisms,
malicious corruption, and asynchronous communication.

In this work, we develop a compiler security proof that
handles these subtleties. Our proof relies on a novel unification of
simulation-based security, information-flow control, choreographic
programming, and sequentialization techniques for concurrent
programs. While our proof targets hybrid protocols, which
abstract cryptographic mechanisms as idealized functionalities,
our approach offers a clear path toward leveraging Universal
Composability to obtain end-to-end, modular security results with
fully instantiated cryptographic mechanisms.

Finally, following prior observations about simulation-based
security, we prove that our result guarantees robust hyperproperty
preservation, an important criterion for compiler correctness that
preserves all source-level security properties in target programs.

I. INTRODUCTION

Ensuring security for modern distributed applications remains
a difficult challenge, as such systems can cross administrative
boundaries and involve parties that do not fully trust each
other. To defend their security policies, some applications
employ sophisticated mechanisms such as complex distributed
protocols [1, 2], trusted hardware [3, 4, 5], and advanced
uses of cryptography. These technologies add significant
complexity to software development and require expertise to
use successfully [6, 7, 8].

To ease the development of secure distributed applications,
prior work leverages compilers that translate high-level pro-
grams into distributed protocols that employ advanced security
mechanisms. Unfortunately, most compilers only target a single
mechanism—such as multiparty computation [9, 10, 11, 12],
zero-knowledge proofs [13, 14, 15, 16], or homomorphic

encryption [17, 18, 19]—and thus do not support secure
combinations of mechanisms. On the other hand, compilers that
perform secure program partitioning [20, 21, 22, 23, 24, 25]
do combine mechanisms, but come with limited or informal
correctness guarantees.

In this work, we give the first formal security result
for program partitioning that targets multiple cryptographic
mechanisms, arbitrary corruption, and adversarially controlled
scheduling. Our work proves the correctness of a reasonably
faithful model of the compilation process used in the Viaduct
compiler [25]. We formalize our result in the simulation-based
security framework, which establishes a modular foundation
for cryptographic protocol security [26]. Our security proof
is primarily concerned with program partitioning itself, and
thus does not reason about the concrete instantiation of
cryptographic mechanisms; however, we discuss how to extend
our results to reason about concrete mechanisms.

Our security proof incorporates multiple techniques for
simulation-based security: information-flow type systems [27]
to define the security policy and to guide partitioning, chore-
ographies [28] to define global programs for distributed
executions, and a novel information-flow guided technique
for concurrent program sequentialization [29].
• We formalize a variant of Simplified Universal Com-

posability (SUC) [30] enriched with information flow,
allowing us to capture distributed protocols in the presence
of adversarial scheduling and corruption.

• We show how to model secure program partitioning
using security-typed choreographies [28]. The input to
program partitioning is a sequential program representing
an idealized execution on a single, trusted security domain,
while the output is a distributed protocol with message-
passing concurrency between mutually distrusting agents.

• We prove simulation-based security for our model of
program partitioning. Informally, we show that any ad-
versary interacting with the compiled distributed program
is no more powerful than a corresponding adversary (a
simulator) interacting with the source program.

• We show that, in our setting, simulation implies robust
hyperproperty preservation [31], a strong criterion for



compiler correctness that ensures security conditions of
source programs are preserved in target programs.

This technical report is an expanded version of the corre-
sponding conference paper [32]. In particular, it includes the
proof details that had to be omitted for reasons of space, found
in Appendices A–G.

II. OVERVIEW

We illustrate compilation via the classic Millionaires’ Prob-
lem [33], expressed as the source program in fig. 2a. Here,
Alice and Bob learn who is richer without revealing their net
worth to each other. To do so, the program collects inputs from
Alice and Bob representing their net worth (lines 1 and 2);
compares these (line 3), and outputs the result to Alice and
Bob (lines 4 and 5).

A. Information Flow Control

Source programs prevent insecure information flows using
a security type system [27], which assigns a label to every
variable. Labels track the confidentiality and integrity of data.
Our security type system follows prior work [34, 35] in
using downgrading mechanisms—declassify and endorse
expressions—to selectively allow information flows that would
otherwise be deemed insecure. As in prior work [35], the type
system constrains these downgrading mechanisms to prevent
improper usage. These constraints turn out to be crucial.

In fig. 2a, the declassify expression explicitly allows
revealing the result of the comparison a < b to Alice and Bob,
which is by default disallowed since the computation reads
secrets from both parties. Dually, the endorse expressions
allow untrusted data coming from Alice and Bob to influence
the output from the comparison, which must be trusted since
the value is output to both parties.

Downgrading require explicit source and target labels.
Figure 2a suppresses these labels for the endorse expressions,
but shows the declassify expression that moves from A ∧ B
to A ⊓ B. Label A ∧ B is too secret for either Alice or Bob
to see the value; label A ⊓ B allows both parties to see it.

B. Compilation

Source programs serve as specifications of intended behav-
ior, and correspond to ideal functionalities from Universal
Composability [26]. Source programs act as trusted third
parties, perfectly and securely executing the program on behalf
of the involved hosts. The source language is high-level by
design, and its simple, sequential semantics facilitate reasoning.
Our compiler generates a concurrent distributed program that
correctly implements the same behavior.

Figure 1 gives an overview of the compilation pipeline. First,
protocol synthesis compiles the source program into a choreog-
raphy, a single, centralized program that represents a distributed
computation between many hosts. In addition to parties such
as Alice and Bob, choreographies may mention idealized hosts
such as MPC(Alice,Bob), which represents a maliciously
secure multiparty computation protocol between Alice and Bob.
Idealized hosts can perform computations that require high

confidentiality or integrity. Next, endpoint projection, a standard
procedure in choreographic programming [36, 37], partitions
the choreography into a distributed program, where hosts run
in parallel and interact via message passing. The distributed
program still contains idealized hosts, so it corresponds to
a hybrid program in UC. Finally, cryptographic instantiation
replaces idealized hosts with concrete cryptographic algorithms.

Figure 2b shows a choreography where Alice and Bob
perform their respective input and output statements, while
MPC(Alice,Bob) does the comparison. Explicit communi-
cation statements move data between hosts. Choreographies
have concurrent semantics, so statements at different hosts
may step out of program order. The penultimate line has
synchronization between Alice and Bob: Bob must wait on an
input from Alice before delivering output. This synchronization
step is necessary for the distributed program to match the
sequential source program, in which Bob’s output happens after
Alice’s. Figure 2c shows the distributed program obtained by
projecting the choreography in fig. 2b. Endpoint projection con-
verts communication statements to send/receive pairs, and
projects local computations to their corresponding hosts. Finally,
fig. 2d shows the result of cryptographic instantiation. Each
send/receive statement that interacts with MPC(Alice,Bob)
is replaced with a call to a cryptographic library.

C. Defining Correctness

Our main contribution is a proof that compilation is correct.
A correct compiler preserves properties of source programs
in generated target programs. For generality, we demand that
the compiler preserve all hyperproperties [38] guaranteed by
the source program. Hyperproperties capture many common
notions of security, including secure information flow.

Formally, preserving all hyperproperties is defined via
robust hyperproperty preservation (RHP) [31]. Following prior
observations [39, 40], we do not prove RHP directly, but
instead prove simulation, which we show implies RHP in our
framework. Simulation requires every attack by an adversary
against the target program to be possible against the source
program. Ideally, the source program is “obviously secure,”
meaning it has straightforward, sufficiently abstract semantics
and a narrow attack surface. In contrast, the target program
faithfully models real code and has a realistic attack surface.

As with UC, our framework abstracts concrete cryptographic
mechanisms as idealized hosts, yielding an extensible proof that
is generic over the set of supported cryptographic mechanisms.
Indeed, we sketch how our framework may be embedded into
UC to leverage the UC composition theorem [26]; using the
composition theorem, we can instantiate idealized hosts with
cryptographic mechanisms proven secure separately.

a) Threat Model: Simulation demands we carefully define
the capabilities of adversaries for each language in the pipeline.
Adversaries are characterized by two sets of labels P and
U representing public and untrusted labels. These label sets
induce a partitioning of hosts into three sets: honest (secret and
trusted), semi-honest (public and trusted), and malicious (public
and untrusted). Intuitively, malicious hosts are fully controlled
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Sequential Source
src(w), −→i

§VI
≥

Choreography
LwM, −→c

r

§VII
≥

Hybrid Distributed
LJwKM, −→r

§VIII
≥ Concrete Distributed

Protocol Synthesis Endpoint Projection Cryptographic Instantiation

Figure 1. Overview of compilation and the correctness proof. Left-to-right arrows are compilation steps; ≥ are proof steps. Term w is a choreography, J·K is
endpoint projection, src(·) is the inverse of protocol synthesis, and L·M models corruption. Dashed components represent proof sketches.

let a : A = input Alice;
let b : B = input Bob;
let x = declassify(endorse a < endorse b,

A ∧ B → A ⊓ B);
output x to Alice
output x to Bob

(a) Source program with information-flow labels.

let Alice.a = input;
Alice.a⇝ MPC(Alice,Bob).a′;
let Bob.b = input;
Bob.b⇝ MPC(Alice,Bob).b′;
let MPC(Alice,Bob).x =

declassify (endorse a′ < endorse b′);
MPC(Alice,Bob).x⇝ Alice.x1;
MPC(Alice,Bob).x⇝ Bob.x2;
output x1 to Alice
Alice.0⇝ Bob. ; // Sync outputs
output x2 to Bob

(b) Choreography with explicit communication and synchronization.

// Alice
let a = input;
send a to MPC(Alice,Bob)
let x1 = receive MPC(. . . );
output x1

send 0 to Bob // Sync

// Bob
let b = input;
send b to MPC(Alice,Bob)
let x2 = receive MPC(. . . );
let = receive Alice; // Sync
output x2

// MPC(Alice,Bob)
let a′ = receive Alice;
let b′ = receive Bob;
let x = declassify (endorse a′ < endorse b′);
send x to Alice
send x to Bob

(c) Hybrid distributed program derived by projecting choreography.

// Alice
let a = input;
// Calls to MPC library
output x1

send 0 to Bob // Sync

// Bob
let b = input;
// Calls to MPC library
let = receive Alice; // Sync
output x2

(d) Concrete distributed program derived by instantiating idealized hosts.

Figure 2. Compiling the Millionaires’ Problem

by the adversary, and semi-honest hosts follow the protocol
but leak all their data to the adversary [41]. We say a host is
dishonest if it is semi-honest or malicious, and nonmalicious
if it is honest or semi-honest.

Source programs are fully sequential, so adversaries do
not control scheduling. Moreover, adversaries cannot read or
change intermediate data within a source program. However,
adversaries can read messages from input/output expres-

sions involving dishonest hosts, read the results of declassify
expressions with public target labels, and change the results
of endorse expressions with untrusted source labels.

Choreographies and hybrid distributed programs have the
same semantics, so their adversaries have equal power. These
programs are concurrent and the adversary controls all schedul-
ing. The adversary also fully controls malicious hosts and can
read messages involving at least one semi-honest host. However,
the adversary cannot carry out computational attacks, since
cryptographic mechanisms are modeled as idealized hosts.

The adversary can view all message headers (source and
destination), but not necessarily message content. The adversary
may not drop, duplicate, or modify messages. This abstraction
of secure channels can be realized by standard techniques, such
as TLS [42]. In our model as in most models of cryptographic
protocols [26, 43], the adversary can exploit timing and progress
channels since it controls scheduling. These channels make
secret control flow insecure: any discrepancy in timing or
progress behavior between different control-flow paths can be
detected by the adversary. Therefore, we only prove security
for programs that make control flow decisions based on public,
trusted data.

D. Roadmap of Correctness Proof

To define and prove our compilation pipeline secure, we
make use of simulation (Section III), which defines a relation
≤ between semantic configurations. Intuitively, W1 ≤ W2

means that any adversary against configuration W1 is no more
powerful than an equivalent adversary against W2. Crucially,
the attacker often has more choices in W1 (e.g., low-level
scheduling decisions); the role of simulation is to show that
these extra choices are benign, and thus W1 is as secure as
W2.

Our proof exploits the transitivity of simulation, using
multiple intermediate simulations depicted in Figure 1. (To
follow the flow of compilation, the figure uses ≥, which is
defined as expected.)

a) Correctness of Protocol Synthesis: We first prove in
Section VI that protocol synthesis is correct: sequential source
programs (e.g., fig. 2a) are simulated by their choreographies
(e.g., fig. 2b).

There is a wide semantic gap between source programs
and choreographies: while source programs are sequential
and use declassify/endorse expressions to interface with
the adversary, choreographies are concurrent and allow the
adversary to read and corrupt data controlled by dishonest
hosts. To bridge this gap, we break the protocol synthesis proof
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Hosts h ∈ H
Endpoints c ∈ C = {Adv,Env} ∪H
Values v ∈ V = {0, . . .}
Messages m ∈ M ::= c1c2v
Actions a ∈ A ::= ?m | !m

actor(a) = c actor(?c1c2v) = c2 actor(!c1c2v) = c1

Figure 3. Syntax of messages and actions.

itself into three steps (fig. 12). These steps allow us to reason
separately about the semantic features of choreographies.

Aside from employing transitivity, each proof step W1 ≤ W2

requires us to define an appropriate simulator S(·) such that
for any adversary A, W1 running alongside A is identical in
behavior to S(A) running alongside W2. Thus, after defining
the simulator as a labeled transition system, we show that
the two resulting configurations are bisimilar using standard
information-flow arguments (e.g., by defining an appropriate
notion of low-equivalence between the configurations).

b) Correctness of Endpoint Projection: Second, we prove
in Section VII-C that choreographies are simulated by their
corresponding distributed programs (e.g., fig. 2d). Our proof
(theorem VII.1) largely follows the choreographic programming
literature [28, 36, 37, 44, 45], but deals with extra complications
arising from an adversary who may corrupt hosts.

c) Cryptographic Instantiation: Finally, we sketch in
Section VIII how hybrid distributed programs are simulated
by concrete distributed programs, which make use of actual
cryptographic mechanisms. In particular, we show how to
embed our framework in the SUC [30] framework, which in
turn embeds into the full UC framework. We can then leverage
the UC composition theorem to instantiate idealized hosts
one at a time, appealing to existing correctness proofs for
cryptographic mechanisms.

III. SEMANTIC FRAMEWORK

We capture the semantics of programs using labeled transi-
tion systems (LTSs), where labels are actions a drawn from
the grammar in fig. 3. An action a is either the input ?m or
the output !m of a message m. A message m specifies the
endpoints c1 and c2 of communication and carries a value v. An
endpoint is either a host h, the adversary Adv, or the external
environment Env. Values are drawn from an arbitrary set V,
which we assume contains at least 0. We define actor(a) as the
host performing a: the sender performs output actions and the
receiver performs input actions. Internal steps are represented
as self-communication !hh0, which identifies a host h making
progress without requiring a new syntactic form.

a) Configurations and Parallel Composition: A configura-
tion, W , is the parallel composition of a finite set of processes
wi, which are arbitrary LTSs. Following prior work [46, 47],
processes must be input-total: for every state w and input
message ?m, there exists a state w′ such that w

?m−−→ w′.
Figure 4 gives the semantics of configurations. A configuration

Processes w
Configurations W ::= w1 ∥ · · · ∥ wn

W
a−→ W ′

W -INPUT

∀i � wi
?m−−→ w′i

w1 ∥ · · · ∥ wn
?m−−→ w′1 ∥ · · · ∥ w′n

W -OUTPUT

wi
!m−−→ w′i ∀j ̸= i � wj

?m−−→ w′j

w1 ∥ · · · ∥ wn
!m−−→ w′1 ∥ · · · ∥ w′n

Figure 4. Syntax and semantics of configurations.

W steps with an input ?m if all processes in W do, and steps
with an output !m if one of the processes outputs m, and the
rest input m.

b) Adversaries: As with processes, an adversary A or S is
an arbitrary LTS. The rules for running an adversary in parallel
with a configuration are the same as in fig. 4. In contrast
to processes, adversaries are not input-total, which enables
adversaries to control scheduling: to schedule an endpoint c1,
A refuses to step with actions of the form ?c′1c2m where
c′1 ̸= c1, but accepts actions ?c1c2m.

Due to the definition of parallel composition, a copy of
every message from the configuration and the environment is
delivered to the adversary; and any output of the adversary is
delivered to the configuration and the environment. However,
the adversary can only read a message if at least one endpoint
is dishonest, and can only forge messages from malicious hosts.

Definition III.1 (Adversary Interface). For all A:

1) If c1 and c2 are honest, then A ?c1c2v1−−−−−→ A′ if and only
if A ?c1c2v2−−−−−→ A′ for all v1 and v2.

2) If A !c1c2v−−−−→, then either c1 = Adv or c1 is malicious.

c) Determinism: To match UC, the adversary must resolve
all nondeterminism, so that A ∥ W is deterministic. We ensure
determinism with the following restrictions.

• Configurations and adversaries are internally deterministic:
if w a−→ w1 and w

a−→ w2, then w1 = w2.
• Adversaries are output deterministic: if A !m1−−→ and
A !m2−−→, then m1 = m2.

• Configurations are output deterministic per channel: if
w

!m1−−→, w
!m2−−→, and actor(!m1) = actor(!m2), then

m1 = m2.
• Adversaries are channel selective: if A ?m1−−−→ and A ?m2−−−→,

then actor(?m1) = actor(?m2).

d) Simulation: Simulation determines when a configura-
tion W2 securely realizes configuration W1: that is, if every
adversary A interacting with W2 can be simulated by another
adversary S (with the same interface) running against W1 [26].
The latter adversary is called a simulator.
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Definition III.2 (Simulation). W1 is simulated by W2, written
W1 ≥ W2, when the two systems are indistinguishable to any
external environment:

∀A � ∃S � TEnv(S ∥ W1) = TEnv(A ∥ W2)

Here, TEnv(W ) is the set of traces of W but containing
only the actions that communicate with the environment. Given
trace tr = a1, . . . , an, we have TEnv(W ) = {tr |Env | W tr−→},
where restriction tr |Env removes all actions in tr where neither
the source nor the destination is Env.

Our definition of simulation guarantees perfect (i.e., infor-
mation-theoretic) security. In Section VIII, we discuss how to
transfer our results to the SUC framework, which is based on
computational security.

IV. SPECIFYING SECURITY POLICIES

To succinctly capture both security policies and the ad-
versary’s power, we use a label model that can describe
confidentiality and integrity simultaneously [48, 49, 50].

A security label ℓ ∈ L is a pair of the form ⟨p, q⟩ where p
and q are elements of an arbitrary bounded distributive lattice
P. Here, p describes confidentiality and q describes integrity.
Elements of P are called principals. Principals can be thought
of as negation-free boolean formulas over a set {A,B,C, . . .}
of atomic principals.

The acts-for relation (⇒) orders principals by authority, and
coincides with logical implication: for example, p ∧ q ⇒ p
and q ⇒ p ∨ q. The most powerful principal is 0 and the least
powerful, 1, so we have 0 ⇒ p ⇒ 1 for any principal p.

We lift ∧, ∨, and ⇒ to labels in the obvious pointwise
manner. Whenever appropriate, we write p for the security
label ⟨p, p⟩. Confidentiality and integrity projections ℓ→ and ℓ←

completely weaken the other component of a label: ⟨p, q⟩→ =
⟨p, 1⟩ and ⟨p, q⟩← = ⟨1, q⟩.

As in FLAM [50], the authority ordering on principals
defines secure information flow. Flow policies become more
restrictive as they become more secret and less trusted:

⟨p1, q1⟩ ⊑ ⟨p2, q2⟩ ⇐⇒ p2 ⇒ p1 and q1 ⇒ q2

⟨p1, q1⟩ ⊔ ⟨p2, q2⟩ = ⟨p1 ∧ p2, q1 ∨ q2⟩
⟨p1, q1⟩ ⊓ ⟨p2, q2⟩ = ⟨p1 ∨ p2, q1 ∧ q2⟩

The least restrictive information flow policy is 0← (“public
trusted”), describing information that can be used anywhere,
while the most restrictive is 0→ (“secret untrusted”).

A. Authority of Hosts

Protocol synthesis places computations on hosts that have
enough authority to securely execute them. The authority of
each host h is captured with a label L(h) [20]. For our example,
we take L(Alice) = A and L(Bob) = B. Following an insight
from Viaduct [25], idealized hosts like MPC(Alice,Bob) have
a derived label that conservatively approximates the security
guarantees of the cryptographic mechanism. For maliciously
secure MPC, a reasonable label is L(MPC(Alice,Bob)) =
L(Alice)∧L(Bob) = A ∧ B, meaning that MPC(Alice,Bob)

Variables x ∈ X Labels ℓ ∈ L Operators f ∈ F
Atomic Expr. t ::= v | x
Expressions e ::= f(t1, . . . , tn)

| declassify(t, ℓf → ℓt)
| endorse(t, ℓf → ℓt)
| input | output t

Statements s ::= let h.x = e; s
| if(h.t, s1, s2)
| skip

Buffers B ∈ C× C → V∗
Processes w ::= ⟨H, B, s⟩

Figure 5. Syntax of the source language.

may view secrets of Alice and Bob, and also has enough
integrity to compute values for them.

B. Capturing Attacks with Labels

The power of the adversary is determined by partitioning
labels L across the two axes: public/secret and trusted/untrusted;
we denote these sets as P/S and T /U , respectively. We only
consider sets that form valid attacks [35]. Intuitively, a valid
attack requires that all untrusted labels are public, so that the
adversary cannot modify secret data; we define valid attacks
formally in Appendix A. The rest of our development is
parameterized over a valid partitioning of labels.

Recalling the threat model from Section II-C, an honest host
has a secret, trusted label (L(h) ∈ S ∩ T ); a semi-honest host
has a public, trusted label (L(h) ∈ P ∩ T ); and a malicious
host has a public, untrusted label (L(h) ̸∈ T ). A host with a
secret, untrusted label does not make any sense: an untrusted
host is fully controlled by the adversary, so it cannot hide
information from the adversary. We rule out such corruptions
by requiring all host labels to be uncompromised [51]. A valid
partitioning never classifies an uncompromised label as secret
and untrusted.

Definition IV.1 (Uncompromised Label). Label ℓ = ⟨p, q⟩ is
uncompromised, written ▼ℓ, if it is at least as trusted as it is
secret: q ⇒ p.

Theorem IV.2. Under a valid attack, if ▼ℓ, then we have
ℓ ̸∈ S ∩ U .

V. PROTOCOL SYNTHESIS

The first program transformation, protocol synthesis, takes
a sequential source program to a choreography.

A. Source Language

Figure 5 gives the syntax of source programs. The language
supports an abstract set of operators f over values. We distin-
guish pure, atomic expressions t from expressions e that may
have side effects. The declassify expression marks locations
where private data is explicitly allowed to flow to public
data. Similarly, endorse marks where untrustworthy data may
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Expressions e ::= . . . | receive h | send t to h
Statements s ::= . . . | h1.t⇝ h2.x; s | h1[v]⇝ h2; s
Processes w ::= ⟨H ⊆ H, B, s⟩

Figure 6. Syntax of choreographies as an extension to source syntax (fig. 5).
The send/receive expressions are only relevant for the security proof.

influence trusted data. The input/output expressions allow
programs to interact with the external environment [52, 53].

Statement let h.x = e; s performs the local computation
e at host h, binds the result to variable x, and continues
as s. In source programs, h is only relevant for input
and output expressions: we write let h.x = input and
let h.x = output t in contrast to our example in fig. 2a,
where we write let x = input h and let x = output t to h.
For all other expressions, h is ∗, a single fully trusted host.
Representing source programs with host annotations allows
smoothly extending the language later on.

A source-program configuration is a logically centralized
process ⟨H, B, s⟩. The component H indicates the process
acts for all hosts. The second component, B, is a buffer
mapping pairs of endpoints to first-in-first-out queues of values.
Processes buffer input so that output on other processes (the
adversary and the environment) is nonblocking.

B. Choreography Language

Choreographies are centralized representations of distributed
computations. Unlike source programs, they make explicit the
location of computations, storage, and communication.

Figure 6 gives the syntax of choreographies, which we
present as an extension of the source syntax. Host annotations
on let and if statements are no longer restricted to ∗ and can be
any host h ∈ H. The global communication statement h1.t⇝
h2.x; s represents host h1 sending the value of t to h2, which
stores it in variable x. The selection statement h1[v]⇝ h2; s
communicates control flow decisions, and is used to establish
knowledge of choice [28, 36]. We extend expressions with
send and receive, however, the compiler never generates
choreographies with these expressions; they are only used in
proofs to model malicious corruption (Section V-E).

As for source programs, configurations are single processes
⟨H,B, s⟩, but H may be a strict subset of H and does not
contain the ideal process ∗.

C. Operational Semantics of Choreographies

Following Section III, we give operational semantics to pro-
grams using labeled transition systems. Since choreographies
strictly extend the syntax of source programs, it suffices to
define a semantics for choreographies.

Following fig. 1, we define two transition relations: ideal
stepping −→i gives meaning to source programs and to idealized
choreographies (an intermediate language for our simulation
proof), and real stepping −→r gives meaning to choreographies
and distributed programs. Additionally, we lift ideal and real
stepping to concurrent versions, written −→c

i and −→c
r , to capture

h.e
a−→i v

ℓf ̸∈ P ℓt ∈ P

h.declassify(v, ℓf → ℓt)
!hAdvv−−−−→i v

ℓf ̸∈ T ℓt ∈ T

h.endorse(v, ℓf → ℓt)
?Advhv

′

−−−−−→i v
′

L(h) ∈ T

h.input
?Envhv−−−−−→i v

L(h) ∈ T

h.output v
!hEnvv−−−−→i 0

s
a−→r s

′

h1.v ⇝ h2.x; s
!h1h2v−−−−→r s[v/x] h1[v]⇝ h2; s

!h1h2v−−−−→r s

s
a−→c

α s′ s
a−→c

α s′ actor(a) /∈ hosts(E)

let h.x = e; s
a−→c

α let h.x = e; s′

Figure 7. Select ideal, real, and concurrent stepping rules.

the concurrent semantics of choreographies. Figure 7 gives a
selection of key rules; we defer full definitions to Appendix B.

1) Ideal Semantics: We write h.e
a−→i v to mean expression

e evaluates to value v at host h with action a. We assume
operators are total; partial operators (like division) can be
made total using defaults. Formally, we give meaning to
operator application assuming a denotation function eval :
F×V∗ → V. We model declassify and endorse expressions
as interactions with the adversary endpoint Adv. When a
value is declassified from a secret label to a public one, the
program outputs the value to Adv. Dually, when a value
is endorsed from an untrusted label to a trusted one, the
program takes input from Adv, and uses that value instead.
When the confidentiality/integrity of the value does not change,
these expressions act as the identity function and take internal
steps. The input/output expressions communicate with the
environment endpoint Env, except on malicious hosts; there,
they step internally and always return 0. In source programs
and idealized choreographies, receive/send expressions only
communicate with malicious hosts; we suppress them (they
take internal steps and always return 0) to give less power to
the adversary in the ideal setting.

For statements, we write s
a−→i s

′ to mean statement s steps
to s′ with action a. Statement stepping rules are as expected:
let statements step using substitution, if statements pick a
branch based on their conditional, and communication and
selection statements step internally, naming the “sending host”
as the host performing the action.

2) Real Semantics: Real stepping rules modify ideal step-
ping rules. The declassify/endorse expressions always
step internally instead of communicating with Adv. The
receive/send expressions communicate a value with the
specified host. Finally, communication and selection statements
step with a visible action instead of internally.
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src(s) = s′

src(let h.x = e; s) =

{
let h.x = e; src(s) I/O(e)

let ∗.x = e; src(s) ¬ I/O(e)

src(h1.t⇝ h2.x; s) = src(s)[t/x]

src(h1[v]⇝ h2; s) = src(s)

src(if(h.t, s1, s2)) = if(∗.t, src(s1), src(s2))
src(skip) = skip

I/O(e) = (e = input) ∨ (∃t � e = output t)

Figure 8. Canonical source program from a choreography.

3) Concurrent Lifting for Choreographies: Concurrent step-
ping rules, written s

a−→c
α s′, lift an underlying statement-

stepping judgment (−→i or −→r). Concurrent stepping allows
choreographies to step statements at different hosts out of
program order as long as there are no dependencies between
the hosts, and is the standard way choreographies model the
behavior of a distributed system [28]. The key rule allows
skipping over let statements to step a statement in the middle
of a program. This rule requires the actor of the performed
action to be different from the hosts of the statements being
skipped over, matching the behavior of target programs where
code running on a single host is single-threaded.

a) Synchronous vs. Asynchronous Choreographies: When
skipping over let statements, requiring only the actor to be
missing from the context leads to an asynchronous seman-
tics [54]. In a synchronous setting, the side condition would
require both endpoints to be missing: hosts(a)∩hosts(E) = ∅.
Consider the following program:

let Alice.x1 = input;
Bob.0⇝ Alice.x2;

Alice is waiting on an input, so is not ready to receive from
Bob. In a synchronous setting, these statements must execute
in program order since Bob can only send if Alice is ready to
receive. In an asynchronous setting, sends are nonblocking, so
the second statement can execute first.

4) Processes: A buffer B behaves as a FIFO queue for each
channel: it can input a message by appending the received
value at the end of the corresponding queue, and can output the
value at the beginning of any queue. Buffers guarantee in-order
delivery within a single channel c1c2, but messages across
different channels may be reordered. A process w forwards
its input to its buffer if the message is addressed to a relevant
host; otherwise, w discards the message. A process takes an
internal step when its buffer delivers a message to its statement,
and an output step when its statement outputs.

D. Compiling to Choreographies

Instead of committing to a specific algorithm, we give
validity criteria for the output of protocol synthesis, which
generalizes our results to and beyond prior work [21, 25, 55].
Because a source program can be realized as many different
choreographies, protocol synthesis cannot be modeled as a

function from source programs to choreographies. Instead,
we capture a valid protocol synthesis as a mapping from
choreographies to source programs.

Definition V.1 (Valid Protocol Synthesis). Choreography s′

is a valid result of protocol synthesis on source program s if
src(s′) = s, ϵ ⊢ s′, and ∆ ⊩ s′ for some ∆.

Figure 8 defines the function src(·), which maps a choreog-
raphy to its canonical source program by removing communica-
tion and selection statements and replacing all host annotations
with ∗ (except those associated with input and output).
The judgment Γ ⊢ s denotes that choreography s has secure
information flows, and ∆ ⊩ s denotes s is well-synchronized.
We define these judgments next.

1) Information-Flow Type System: First, we give a type
system for choreographies based on information-flow con-
trol [20, 21, 22, 25] which validates that hosts have enough
authority to execute their assigned statements.

Figure 9 gives the typing rules. A label context Γ maps a
variable to its host and label, as a set of bindings x : h.ℓ. The
judgment Γ ⊢ e : h.ℓ, means that e at host h has label ℓ in the
context Γ. Rule ℓ-VARIABLE ensures hosts only use variables
they own. Rules ℓ-DECLASSIFY and ℓ-ENDORSE enforce
nonmalleable information flow control (NMIFC) [35] by
requiring source and target labels to be uncompromised [51, 35].
NMIFC requires declassified data to be trusted, enforcing robust
declassification, and endorsed data to be public, enforcing trans-
parent endorsement. These restrictions prevent the adversary
from exploiting downgrades. Enforcing NMIFC is crucial for
our simulation result, which we discuss in Section VI-C.

In choreographies, receive/send expressions model com-
munication with malicious hosts. Choreographies exclude code
for malicious hosts, which exhibit arbitrary behavior; thus,
labels for receive/send expressions must be approximated.
Rule ℓ-RECEIVE ensures data coming from malicious hosts is
considered untrusted; it treats the data as fully public since we
do not care about preserving the confidentiality of malicious
hosts. Rule ℓ-SEND ensures secret data is not sent to malicious
hosts; it ignores integrity since malicious hosts are untrusted.

Statement checking rules have the form Γ ⊢ s; they are
largely standard [27], but do not track program counter labels
since we require programs to only branch on public, trusted
values. Rules ℓ-LET and ℓ-COMMUNICATE check that the host
storing a variable has enough authority to do so. This is the
key condition governing secure host selection and prevents,
for example, Bob’s secret data being placed on Alice, or high-
integrity data being placed on an untrusted host. Rule ℓ-SELECT
ensures that if host h1 informs h2 of a branch being taken,
then h1 has at least as much integrity as h2. So malicious hosts
cannot influence control flow on nonmalicious hosts. Finally,
rule ℓ-IF requires control flow to be public and trusted.

2) Synchronization Checking: Next, we define a novel
synchronization judgment, ∆ ⊩ s, which guarantees that
all external actions in s happen in sequential program order.
For example, any endorse statement that happens after a
declassify must logically depend on the declassify. Since
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Γ ⊢ t : h.ℓ Γ ⊢ e : h.ℓ

ℓ-VALUE

Γ ⊢ v : h.ℓ

ℓ-VARIABLE
ℓ′ ⊑ ℓ

Γ, x : h.ℓ′ ⊢ x : h.ℓ

ℓ-OPERATOR
∀i � Γ ⊢ ti : h.ℓ

Γ ⊢ f(t1, . . . , tn) : h.ℓ

ℓ-DECLASSIFY
Γ ⊢ t : h.ℓf ℓ←f = ℓ←t
▼ℓf ▼ℓt ℓt ⊑ ℓ

Γ ⊢ declassify(t, ℓf → ℓt) : h.ℓ

ℓ-ENDORSE
Γ ⊢ t : h.ℓf ℓ→f = ℓ→t
▼ℓf ▼ℓt ℓt ⊑ ℓ

Γ ⊢ endorse(t, ℓf → ℓt) : h.ℓ

ℓ-INPUT
L(h) ⊑ ℓ

Γ ⊢ input : h.ℓ

ℓ-OUTPUT
Γ ⊢ t : h.L(h)

Γ ⊢ output t : h.ℓ

ℓ-RECEIVE
L(h′)← ⊑ ℓ

Γ ⊢ receive h′ : h.ℓ

ℓ-SEND
Γ ⊢ t : h.L(h′)→

Γ ⊢ send t to h′ : h.ℓ

Γ ⊢ s

ℓ-LET
Γ ⊢ e : h.ℓ L(h) ⇒ ℓ

Γ, x : h.ℓ ⊢ s

Γ ⊢ let h.x = e; s

ℓ-COMMUNICATE
Γ ⊢ t : h1.ℓ L(h2) ⇒ ℓ

Γ, x : h2.ℓ ⊢ s

Γ ⊢ h1.t⇝ h2.x; s

ℓ-SELECT
L(h1)

← ⊑ L(h2)
← Γ ⊢ s

Γ ⊢ h1[v]⇝ h2; s

ℓ-IF
Γ ⊢ t : h.0←

Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ if(h.t, s1, s2)

ℓ-SKIP

Γ ⊢ skip

Figure 9. Information-flow typing rules for expressions and statements in choreographies.

∆ ⊩ s
SYNC-EXTERNAL
external(e) reset(∆, h) ⊩ s outputting(e) =⇒ synched(∆, h)

∆ ⊩ let h.x = e; s

SYNC-INTERNAL
internal(e) ∆ ⊩ s

∆ ⊩ let h.x = e; s

SYNC-COMMUNICATE
sync(∆, h1 ⇝ h2) ⊩ s

∆ ⊩ h1.t⇝ h2.x; s

SYNC-SELECT
sync(∆, h1 ⇝ h2) ⊩ s

∆ ⊩ h1[v]⇝ h2; s

SYNC-IF
∆ ⊩ s1 ∆ ⊩ s2

∆ ⊩ if(h.t, s1, s2)

SYNC-SKIP

∆ ⊩ skip

synched(∆, h) reset(∆, h) = ∆′ sync(∆, h1 ⇝ h2) = ∆′

synched(∆, h) = ∀h′ �∆(h′, h) ⊑ L(h′) ∨ L(h) reset(∆, h) = ∆[h, ∗ := 1][h, h := L(h)]

sync(∆, h1 ⇝ h2) = ∆[∗, h2 := ∆(∗, h2) ∧ (∆(∗, h1) ∨ L(h2))]

Figure 10. Checking that a concurrent choreography has sequential behavior.

these statements may be run on different hosts, the declassify
could happen before the endorse, violating program order.
To prevent this, we require that the host running the endorse
synchronizes with the host running the declassify.

Synchronization becomes more complex with corruption. For
example, if Alice and Bob synchronize through another host
h (Alice⇝ h⇝ Bob) and h is malicious, h might give Bob
the go-ahead before confirming with Alice. We use integrity
labels to ensure synchronization even under corruption.

Figure 10 defines the synchronization-checking judgment
∆ ⊩ s. Intuitively, a choreography is well-synchronized when
for any external (input or output) expression e, a high-integrity
communication path exists from e to all output expressions
following e in the program order.1 Integrity of a communication
path h1 ⇝ · · ·⇝ hn is determined by the hosts in the path:

L(h1 ⇝ · · ·⇝ hn) = L(h1)
← ∨ · · · ∨ L(hn)

←

1Input expressions are input and endorse; output expressions are
output and declassify.

Hosts can be malicious, so each host on the path weakens
integrity, which is captured by disjunction (∨). Multiple paths
between the same hosts increase integrity, which we capture
by taking the conjunction (∧) of path labels:

L(paths(h1, h2)) =
∧

path∈paths(h1,h2)

L(path)

We track the integrity of paths using the context ∆,
which maps pairs of hosts ∆(h1, h2) to the integrity label
L(paths(h1, h2)).

Rule SYNC-EXTERNAL checks a let statement that executes
an external expression e on h. The continuation is checked
under a context where the label of all paths from h to any
other host are set to 1 (this corresponds to removing the paths),
since these hosts now need to synchronize with h. Also, if e
is an output expression, h must be synchronized with all hosts
through the following condition, which ensures that if neither
h1 nor h2 is malicious, a communication path exists from h1
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LsM = s′

Llet h.x = e; sM =

{
let h.x = e; LsM h ∈ T
LsM o/w

Lh1.t⇝ h2.x; sM =


h1.t⇝ h2.x; LsM h1, h2 ∈ T
let h1. = send t to h2; LsM h1 ∈ T
let h2.x = receive h1; LsM h2 ∈ T
LsM o/w

Lh1[v]⇝ h2; sM =


h1[v]⇝ h2; LsM h1, h2 ∈ T
let h1. = send v to h2; LsM h1 ∈ T
LsM o/w

Lif(h.t, s1, s2)M =

{
if(h.t, Ls1M, Ls2M) h ∈ T
⊥ o/w

LskipM = skip

LwM = w′ L⟨H,B, s⟩M = ⟨{h ∈ H | h ∈ T }, B, LsM⟩

Figure 11. Modeling malicious corruption. We write h ∈ T for L(h) ∈ T .

to h2 that could not have been influenced by the adversary:

L(paths(h1, h2)) ⊑ L(h1) ∨ L(h2) (1)

Rules SYNC-COMMUNICATE and SYNC-SELECT update ∆
using sync(∆, h1 ⇝ h2). The function captures that a path
from some h to h1 implies there is a path from h to h2 that
goes through h1. Further, all existing paths are still valid.

E. Modeling Malicious Corruption

Malicious hosts are fully controlled by the adversary. Fol-
lowing UC [26], we entirely remove processes that correspond
to malicious hosts in hybrid distributed programs, and allow
the adversary to forge arbitrary messages in their stead. This
is reflected in choreographies by rewriting them to elide
statements that involve malicious hosts.

Figure 11 defines the corruption LsM of a choreography s. The
operation considers each statement in turn. If all hosts involved
in a statement are nonmalicious, the statement stays as is. If all
hosts involved in a statement are malicious, the statement
is removed entirely. Otherwise, only some involved hosts
are malicious, and we rewrite the statement. Communication
statements become either a send or a receive, depending
on whether the sending or the receiving host is nonmalicious.
Selection statements are similar, except we cannot have a
malicious sending host and a nonmalicious receiving host
(rule ℓ-SELECT). Similarly, if statements cannot be at a
malicious host since we require trusted control flow (rule ℓ-IF).

VI. CORRECTNESS OF PROTOCOL SYNTHESIS

We prove the correctness of protocol synthesis by demon-
strating a simulation between source programs and their
corresponding choreographies. For w = ⟨H,B, s⟩, we write
Γ ⊢ w and ∆ ⊩ w if Γ ⊢ s and ∆ ⊩ s, respectively, and define
src(w) = ⟨H,B, src(s)⟩.

Theorem VI.1. If ϵ ⊢ w, and ∆ ⊩ w for some ∆, then
⟨src(w),−→i⟩ ≥ ⟨LwM,−→r⟩.

We prove theorem VI.1 through a series of intermediate
simulations, following fig. 12 from left to right. First, in
Section VI-A, we show idealized, sequential choreographies
simulate their canonical source programs. Then, we show in
Section VI-B that our synchronization judgment ensures all
externally visible actions happen in program order. Finally, in
Section VI-C, we move from the ideal semantics −→c

i to the
real semantics −→c

r .
For each simulation, we define a simulator that emulates the

adversary “in its head”. We ensure that the emulated adversary’s
view is the same as the real adversary even though the simulator
only has access to public information. Concretely, we establish
a (weak) bisimulation relation [56, 57] between the ideal world
(simulator running against ideal configuration) and the real
world (adversary running against real configuration).

A. Correctness of Host Selection
First, we show that the original source program is simulated

by the sequential choreography:

Theorem VI.2. If ϵ ⊢ w, then ⟨src(w),−→i⟩ ≥ ⟨LwM,−→i⟩.

This is shown via two simpler simulations. First, we add host
annotations and explicit communication to the source program:

Lemma VI.3. If ϵ ⊢ w, then ⟨src(w),−→i⟩ ≥ ⟨w,−→i⟩.

Proof. Statements removed by src(·) only produce internal
actions, which the simulator can recreate. Host annotations
affect program behavior only by changing the source and
destination of internal actions and actions generated by
declassify/endorse; the simulator must recover the original
host names before forwarding messages from/to the adversary.

The simulator maintains a public view of w and runs the
adversary against this view. When the adversary steps w,
the simulator steps src(w) only if the statement is preserved
by src(·); it does nothing otherwise. To handle declassify,
whenever the simulator receives a message of the form ∗Advv,
the simulator inspects its copy of w to determine the sending
host h, and sends hAdvv to the adversary instead. Similarly, to
handle endorse, the simulator replaces h with ∗ in messages
Advhv from the adversary.

Second, we add corruption, obtaining a choreography which
steps sequentially:

Lemma VI.4. If ϵ ⊢ w, then ⟨w,−→i⟩ ≥ ⟨LwM,−→i⟩.

Proof. Corruption only removes statements at malicious hosts,
however, these statements only generate internal actions:
input/output expressions always step internally using ideal
rules, and typing ensures declassify/endorse expressions
step internally. This means LwM and w have the same external
behavior, except w takes extra internal steps. The simulator
follows the control flow and acts like the adversary, but
whenever the adversary schedules LwM, the simulator schedules
w multiple times until the head statement is at a nonmalicious
host; then, it schedules w again.

A small caveat: in LwM, all data from malicious hosts is
explicitly replaced with 0, whereas malicious hosts may store
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Sequential Source
src(w), −→i

VI.2
≥

Sequential
Choreography

LwM, −→i

VI.5
≥

Ideal Choreography
LwM, −→c

i

VI.6
≥

Choreography
LwM, −→c

r

Protocol Synthesis (VI.1)

Figure 12. Intermediate simulation steps for proving the correctness of protocol synthesis.

arbitrary data in w. Since data from malicious hosts is untrusted,
our type system ensures this data does not influence trusted data,
which includes all output messages. Formally, we only require
and maintain that LwM and w agree on trusted values.

B. Correctness of Sequentialization

Next, we show that if the choreography is well-synchronized,
then the choreography stepping sequentially is simulated by
itself stepping concurrently:

Theorem VI.5. If ϵ ⊢ w, and ∆ ⊩ w for some ∆, then
⟨LwM,−→i⟩ ≥ ⟨LwM,−→c

i ⟩.

The adversary, interacting with the concurrent version of
the choreography, can schedule a statement that is not next in
program order. If the statement produces an externally visible
action, the simulator must schedule the same statement. Since
the simulator interacts with the sequential version, it must
“unwind” the choreography by scheduling every statement
leading up to the desired statement. Synchronization ensures
unwinding does not fail due to a statement blocked on input
(input or endorse), or a statement that performs a different
visible action (output or declassify).

The concurrent and sequential choreographies necessarily
fall out of sync during simulation: the adversary may schedule
steps for the concurrent choreography that the simulator cannot
immediately match, and the simulator might schedule steps
for the sequential choreography while unwinding, steps the
adversary did not schedule. Nevertheless, the two choreogra-
phies remain joinable: they can reach a common choreography
via only internal actions. We prove choreographies are con-
fluent [58, 59, 60], which ensures joinable processes remain
joinable throughout the simulation.

Proof sketch for theorem VI.5. The simulator maintains a pub-
lic view of the concurrent process, and runs the adversary
against this view. When the adversary schedules an output, the
simulator schedules the sequential process until it performs
the same output; the simulator does nothing for input and
internal actions. Well-synchronization guarantees the sequential
program can perform the output. The primary invariant, that
the concurrent and sequential processes remain joinable, is
ensured by confluence. See Appendix D for details.

C. Correctness of Ideal Execution

Finally, we move from a concurrent choreography stepping
with ideal rules to a concurrent choreography stepping with
real rules:

Theorem VI.6. If ϵ ⊢ w, then ⟨LwM,−→c
i ⟩ ≥ ⟨LwM,−→c

r⟩.

The main difference between the two semantics is the inter-
face with the adversary. In the real semantics, dishonest hosts
actively leak data to the adversary (through send expressions
and communication statements), and the adversary controls
all data coming from malicious hosts (through receive). In
contrast, the ideal semantics interacts with the adversary only
via declassify and endorse. In effect, the ideal semantics
causes leakage and corruption to become coarse-grained.
Additionally, by eliminating all blocking receive expressions
(which communicate with the adversary), the ideal semantics
can make progress in a manner independent of the adversary;
this aids the sequentialization proof in Section VI-B.

To bridge the gap between the real and ideal semantics, we
show that the simulator can use declassify expressions to
recreate all data no longer leaked through communication, and
endorse expressions to corrupt all data no longer corruptible
through receive expressions. This is possible because our type
system ensures secrets are not directly sent to dishonest hosts
(rules ℓ-SEND and ℓ-COMMUNICATE), and data from malicious
hosts cannot directly influence trusted data (rule ℓ-RECEIVE).

Proof sketch for theorem VI.6. The simulator maintains a pub-
lic view of the real process, and runs the adversary against
this view. The simulator flips the input/output behavior of
declassify and endorse expressions: when the ideal process
outputs data through a declassify expression, the simulator
inputs this data instead. Similarly, the simulator outputs data
with endorse expressions, which it sends to the ideal process.
The key invariant is that the simulator’s version of the process
matches the real one on public values, and the ideal process
matches the real one on trusted values.

This invariant is strong enough to witness simulatability.
Since the simulator’s version of the process matches the real
one on public values, the adversary in the real configuration
has a view identical to the adversary running inside of the
simulator (the adversary only sees public data). Similarly, since
the real process matches the ideal one on trusted values, the
environment has the same view in both (the environment is
only sent trusted data).

Next, we argue that our simulator can preserve the invariant.
For the simulator to have an accurate view of public values in
the real process, the ideal process must output values through
declassify expressions that match the values in the real
process. The information-flow type system provides necessary
restrictions. Robust declassification [35] guarantees only trusted
values are declassified. Since the ideal process matches the
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Expressions e ::= . . . | receive h | send t to h
Statements s ::= . . . | case (h1 ⇝ h2) {v 7→ sv}v∈V
Processes w ::= ⟨{h ∈ H}, B, s⟩

Figure 13. Hybrid distributed syntax as an extension to source (fig. 5).

real one on trusted values, data coming from declassify
expressions is accurate. Dually, when the simulator sends
data to the ideal process through endorse expressions, the
values must match the ones in the real process. Transparent
endorsement [35] guarantees only public values are endorsed.
Thus, the result follows from the simulator holding accurate
public values. See Appendix E for details.

VII. ENDPOINT PROJECTION

The second stage of compilation, endpoint projection, trans-
forms a choreography into a distributed program.

A. Hybrid Distributed Language

As for choreographies, fig. 13 specifies the syntax of
hybrid distributed programs by extending the syntax of source
programs. Hybrid distributed programs are configurations
containing multiple processes, with each process acting on
behalf of a single host h ∈ H. These processes communicate
data via send/receive and agree on control flow via send
and case. The case statement, on receiving a value on the
expected channel, steps to the specified branch.

Operational Semantics: Each process transitions using
the real stepping rules (−→r), and the distributed configuration
steps using the parallel composition rules in fig. 4.

B. Compiling to Distributed Programs

Given a choreography s and a host h, the endpoint projection
JsKh defines the local program that h should run. The distributed
system JsK is derived by independently projecting onto each
host in the choreography.

Our notion of endpoint projection is entirely standard, so we
defer the formal definition to Appendix F. Our proof is agnostic
to how endpoint projection is defined, and only relies on its
soundness and completeness, properties extensively studied in
prior work [28, 36, 37, 44, 45].

C. Correctness of Endpoint Projection

Let LW M remove from W all processes for malicious hosts.

Theorem VII.1. If ϵ ⊢ w, then ⟨LwM,−→c
r⟩ ≥ ⟨LJwKM,−→r⟩.

A choreography and its endpoint projection match each
other action-for-action; once we prove this fact, showing
simulation is trivial since we can pick S = A. This perfect
correspondence between a choreography and its projection is
studied extensively in the literature [28, 36, 37, 44, 45], and
formalized as soundness and completeness of endpoint projec-
tion. However, the standard methods of proving soundness and
completeness must be modified to handle malicious corruption
and asynchronous communication. Existing work relates w to

JwK, which we must extend to relate LwM to LJwKM. This is
trivial since LJwKM = JLwMK.

The presence of asynchrony breaks the perfect correspon-
dence between the projected program and the choreography: a
send/receive pair reduces in two steps in a projected program,
but the corresponding communication statement reduces in only
one. We follow prior work [54, 61] and add syntactic forms
to choreographies for partially reduced send/receive pairs:
messages that have been sent and buffered but not yet received.
These run-time terms exist only to restore the correspondence,
and are never generated by the compiler. An additional, simple
simulation then shows that a choreography with these run-time
terms simulates one without, removing the need to reason
about run-time terms in other proof steps. For details, see
Appendix G.

VIII. CRYPTOGRAPHIC INSTANTIATION

Our simulation result is a necessary and novel first
step toward constructing a verified, secure compiler for
distributed protocols that use cryptography. We have ab-
stracted all cryptographic mechanisms into idealized hosts (e.g.,
MPC(Alice,Bob)); thus, to achieve a full end-to-end security
proof, these idealized hosts must be securely instantiated with
cryptographic subprotocols (e.g., BGW [62] for multiparty
computation). Such an instantiation would imply UC security
for all compiled programs, in contrast to existing formalization
efforts for individual protocols [63, 64, 65].

To this end, we show how the distributed protocols arising
from our compilation correspond to hybrid protocols in the
Simplified Universal Composability (SUC) framework [30].
Then, we show how to take advantage of the composition
theorem in SUC to obtain secure, concrete instantiations of
cryptographic protocols.

a) Simplified UC: Let s be a choreography with partition-
ing JsK. We construct a corresponding SUC protocol JsKSUC
which behaves identically to the partitioned choreography, with
minor differences due to the differing computational models.
Each host in s is either a local host (e.g., Alice), or an idealized
host standing in for cryptography, such as MPC(Alice,Bob).
Local hosts map onto SUC parties, while idealized hosts map
onto ideal functionalities in SUC.

Protocol execution in SUC happens through activations
scheduled by the adversary: a party runs for some steps,
delivers messages to a central router, and cedes execution
to the adversary. To faithfully capture the behavior of host h
in JsK, the party/functionality for h in JsKSUC is essentially
a wrapper around the projected host JsKh, who steps JsKh
accordingly and forwards correct messages to the router.

Each wrapper needs to explicitly model corruption, which
our framework captures by labels: if host h is semi-honest
(L(h) ∈ P ∩ T ), the wrapper for h allows the adversary to
query h for its current message transcript so far. Similarly, if
h is malicious (L(h) ̸∈ T ), the wrapper for h should enable
the adversary to take complete control over h. By using labels
to model corruption, we model static security in SUC.
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b) Communication Model: In SUC, all messages be-
tween local hosts are fully public, while messages between
hosts and functionalities contain public headers (e.g., the
source/destination addresses) and private content (the message
payload). In our system, we do not stratify message privacy
along the party/functionalities axis, but rather along the
information flow lattice: the adversary can read the messages
intended for semi-honest hosts, and can forge messages from
malicious hosts. Indeed, information flow policies allow more
flexible security policies for communication.

However, we can encode our communication model into SUC
with the aid of additional functionalities. To do so, we make
use of a secure channel functionality Rsec, which guarantees
in-order message delivery and enables secret communication
between honest hosts. We can realize Rsec in SUC via a
standard subprotocol using a public key infrastructure.

For ideal functionalities in JsKSUC, we need to ensure
that they only communicate with local hosts, and not with
other ideal functionalities. This property is preserved by
compilation, so we only need to ensure that host selection
produces a choreography s that has this property. Indeed,
our synchronization judgment ∆ ⊩ s makes it possible for
choreographies to stay well-synchronized, even when the ideal
hosts do not communicate with each other.

c) Adversaries and Environments: In our framework, we
prove perfect security against non-probabilistic adversaries.
However, allowing the adversary to use probability (as in
SUC) does not weaken our simulation result.2 Additionally, in
UC/SUC, the environment is given by a concurrently running
process that outputs a decision bit, whereas our model uses
a trace semantics to model the environment. Security for the
latter easily implies the former, since our simulation result
proves equality of environment views between the two worlds.

Finally, UC (and SUC) require all parties—the adversary,
environment, simulator, and hosts—to run in polynomial time
since cryptographic schemes can be broken given enough time.
Since our simulators query the adversary and emulate source
and target programs in a straightforward manner, all simulators
we define run in time bounded by a polynomial in the run
times of the adversary and the source and target programs.

A. Secure Instantiation of Cryptography

To securely instantiate cryptographic mechanisms, we appeal
to the composition theorem in SUC, which says that ideal SUC-
functionalities F may be substituted for SUC protocols that
securely realize them. Concrete cryptographic protocols are
obtained by applying this theorem iteratively to each ideal host.

Ideal hosts in our model correspond closely to the broad
class of reactive, deterministic straight-line functionalities in
SUC, including MPC [30, 66] and Zero-Knowledge Proofs
(ZKP) [67]. The main difference is that our model allows the
adversary to corrupt ideal functionalities (both semi-honestly
and maliciously), while SUC functionalities are incorruptible.

2The dummy adversary theorem [26] implies that security against non-
probabilistic adversaries guarantees security against probabilistic adversaries.

However, we guarantee that the adversary does not gain more
power in our model by restricting the possible corruption
models via authority labels for ideal hosts.

For example, we have MPC(Alice,Bob) has label A ∧ B,
meaning that MPC(Alice,Bob) is semi-honest (resp. mali-
cious) only if both Alice and Bob are semi-honest (resp.
malicious). Thus, any power the adversary gains in corrupting
MPC(Alice,Bob) can be instead achieved using Alice and
Bob alone. Similar security concerns for label-based host se-
lection have been discussed for Viaduct [25]. We can formalize
this intuition via a simulation of the form ⟨W,−→i⟩ ≤ ⟨W,−→′i⟩,
where W uses MPC(Alice,Bob), and −→′i is modified so that
corruption of MPC(Alice,Bob) is impossible.

IX. SECURITY PRESERVATION

We use simulation to define the correctness of compilation,
and show that it corresponds to a well-studied correctness crite-
rion, robust hyperproperty preservation (RHP) [31]. RHP states
that hyperproperties [38] satisfied by source programs under any
context are also satisfied by target programs under any context.
RHP is important because common notions of information-
flow security such as termination-insensitive noninterference,
observational determinism [68], and nonmalleable information
flow control [35] are hyperproperties. With a compiler that
satisfies RHP, one only needs to prove security of source
programs; security of target programs immediately follows.

Definition IX.1 (Robust Hyperproperty Preservation (RHP)).
Let ↓ be a compiler from a source program to a target program,
▷◁ be an operator that composes a program with its context, and
B be a behavior function that returns the set of possible traces
generated from a whole program (i.e., a program composed
with a context). Then ↓ satisfies RHP over source program
set P, source context set CS, and target context set CT when,
given program P ∈ P, for all CT ∈ CT there exists CS ∈ CS

such that B(CS ▷◁ P) = B(CT ▷◁ P↓).3

Patrignani et al. [39, 40] previously observed a corre-
spondence between UC simulation and robust hyperproperty
preservation; it also holds for our notion of simulation.

Theorem IX.2 (Simulation Implies RHP). Define A ▷◁ W =
A ∥ W . Then given behavior function B(·) = TEnv(·) and
an operator ↓ between configurations such that W↓ ≤ W for
any configuration W ∈ W, we have that ↓ satisfies RHP over
source program set W and source and target context set {A}.

Corollary IX.3 (Partitioning Satisfies RHP). The function
λw.⟨LJwKM,−→r⟩ satisfies RHP over source and target context
set {A} and source program set

{⟨src(w),−→i⟩ | ϵ ⊢ w,∆ ⊩ w}

Proof. Theorem IX.2 follows from definitions III.2 and IX.1.
Corollary IX.3 follows from theorems VI.1 and IX.2.

3This is the “property-free” definition of RHP as given by Abate et al. [31].
An equivalent but more direct definition is that ↓ satisfies RHP given that
if for some hyperproperty HP it is the case that B(CS ▷◁ P) ∈ HP for any
CS ∈ CS, then B(CT ▷◁ P↓) ∈ HP for any CT ∈ CT.
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X. RELATED WORK

Secure Program Partitioning and Compilers for Secure
Computation: Prior work on secure program partitioning [69,
20, 21, 25] focuses largely on the engineering effort of
compiling security-typed source programs to distributed code
with the aid of cryptography. Liu et al. [70] does give an
informal UC simulation proof of a compiler, but it is limited
to two party semi-honest MPC and oblivious RAM, and they
do not consider integrity.

There is also a large literature on compilers for secure
computation that target specific cryptographic mechanisms
such as MPC [9, 11, 71, 12, 72], ZKP [73, 13, 14], and
homomorphic encryption [18, 17, 19, 74, 75]. Again, the
focus of this literature is efficient implementations, not formal
guarantees.

A long line of work [23, 24, 76, 77, 78, 79] focuses on
enforcing computational noninterference for information-flow
typed programs by using standard cryptographic mechanisms,
such as encryption. However, computational noninterference
guarantees little in the presence of downgrading. In contrast, our
compiler enjoys simulation-based security, which guarantees
preservation of all hyperproperties, even for programs using
declassification and endorsement.

Our compilation model is closest to that of Viaduct [25],
which like this work also approximates security guarantees
of cryptographic mechanisms with information-flow labels.
However, this work differs from Viaduct, and from most of
the literature on secure program partitioning and compilers
for secure computation, in that our goal is to provide a model
of a secure end-to-end compilation process, not to provide an
implementation of an actual compiler. Our model currently
does not analyze a source language with functions, loops,
or mutable arrays, which Viaduct supports. Additionally, our
model does not capture some minor subtleties of Viaduct, such
as allowing secret-dependent conditionals whenever they may
be eliminated via multiplexing the two branches. An interesting
research direction would be to close the gap between our
model and existing compilers by providing a verified compiler
implementation akin to CompCert [80].

Simulation-based Security: Simulation-based cryptographic
frameworks, such as Universal Composability [26], Reactive
Simulatability [43], and Constructive Cryptography [81], allow
modular proofs of distributed cryptographic protocols, and Liao
et al. [82] give a core language for formalizing UC protocols.
We abstract away concrete cryptography, so we do not explicitly
model some subtleties of these systems: probability, compu-
tational complexity, and cryptographic hardness assumptions.
But our approach should be compatible with these frameworks.

Prior verification efforts [63, 83, 64] show simulation-based
security for concrete cryptographic mechanisms. Our work is
orthogonal: simulation-based security for compiler correctness,
rather than proofs for individual protocols.

Secure Compilation: Standard notions of compiler cor-
rectness are derived from full abstraction and hyperproperty
preservation [31]. Patrignani et al. [39, 40] argue that robust

hyperproperty preservation and Universal Composability are
directly analogous. We affirm this hypothesis by proving that
our simulation-based security result guarantees RHP. To our
knowledge, we are the first to make this connection formally.

Choreographies: The use of choreographies is central to
our compilation process and to the proof of its correctness.
The primary concern in the extensive literature on choreogra-
phies [28, 36, 37, 44, 45], is proving deadlock freedom; very
little prior work considers security [84]. Our extension of
choreographies with an information-flow type system, modeling
semi-honest and malicious corruption, is novel.

XI. CONCLUSION AND FUTURE WORK

This work presents a novel simulation-based security result
for a compiler from sequential source programs to distributed
programs, using idealizations of cryptographic mechanisms.
Our simulation result guarantees that the security properties of
source programs are preserved in the compiled protocols.

We believe this work opens up many opportunities for future
research; in particular, it gives a clear path toward building a
fully verified cryptographic compiler. Aside from adding more
language features (e.g., subroutines, loops, and mutable arrays)
to our source language to better match real-world cryptographic
compilers, the remaining verification effort largely consists of
verifiably instantiating all abstract components we assume. For
example, we model protocol selection via abstract judgments
on choreographies; in turn, outputs of a concrete protocol
selection algorithm must satisfy these judgments. Additionally,
we assume that parties communicate over secure channels,
and use ideal functionalities for performing cryptography;
these assumptions can be eliminated using cryptographic
instantiations verified in the Simplified UC framework.

Our security result holds for a strong attacker that knows
when communication occurs between hosts and controls its
scheduling, but secret control flow is therefore precluded. To
improve expressive power, weaker attacker models should be
explored.

We have focused on confidentiality and integrity properties;
however, some protocols also explicitly address availability [85],
which would be another interesting direction for exploration.
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A DETAILS FOR SECTION IV (SPECIFYING SECURITY POLICIES)

Formally, an attack is specified by picking two sets of principals: public principals P ⊆ P and untrusted principals Q ⊆ P.
Some common-sense conditions must hold on the sets P and Q [35]. We state the conditions for P but they apply equally to
Q. The adversary always controls the weakest principal, but never controls the strongest: 1 ∈ P and 0 ̸∈ P . If the adversary
controls a principal, then it controls all weaker principals: if p ∈ P and p ⇒ q, then q ∈ P . Attacking principals may collude:
if p, q ∈ P , then p ∧ q ∈ P . Combining secret/trusted principals leads to secret/trusted principals: if p ∨ q ∈ P , then either
p ∈ P or q ∈ P . Together, these conditions imply that P and Q are sensible truth assignments to elements P: sensible in the
sense that they play nicely with ∧ and ∨.4

We can derive the set of public/secret and trusted/untrusted labels from P and Q:

P = {⟨p, q⟩ ∈ L | p ∈ P} S = L \ P T = {⟨p, q⟩ ∈ L | q ̸∈ Q} U = L \ T .

Additionally, we require that attacks compromise at least as much confidentiality as integrity.

Definition A.1 (Valid Attack). Attack ⟨P,Q⟩ is valid if all untrusted principals are public: Q ⊆ P .

Theorem IV.2. Under a valid attack, if ▼ℓ, then we have ℓ ̸∈ S ∩ U .

Proof. Let ⟨P,Q⟩ be a valid attack and ℓ = ⟨p, q⟩. Assume ▼ℓ and ℓ ∈ U . By definition, we have q ∈ Q. Unfolding ▼ℓ, we
have q ⇒ p, and since Q is upward closed, we have p ∈ Q. Finally, p ∈ Q ⊆ P , so ℓ ∈ P .

B DETAILS FOR SECTION V-C (OPERATIONAL SEMANTICS OF CHOREOGRAPHIES)

Figure 14 gives the full set ideal, real, and concurrent stepping rules for expressions and statements. Figure 15 gives buffer
and process stepping rules. Concurrent stepping rules refer to evaluation contexts—statements containing a single hole—and the
function hosts(·), which returns the set of hosts that appear in an evaluation context. Rule s-DELAY allows skipping over let,
communication, and selection statements to step a statement in the middle of a program. Rule s-IF-DELAY allows stepping
the body of an if statement without resolving the conditional as long as both branches step with the same action. Both rules
require the actor of the performed action to be different from the hosts of the statements being skipped over, matching the
behavior of target programs where code running on a single host is single-threaded.

C PROPERTIES OF THE CHOREOGRAPHY LANGUAGE

A. Typing and Synchronization

Typing ensures robust declassification and transparent endorsement, which guarantee that declassified values are always
trusted, and that endorsed values are always public.

Lemma C.1 (Robust Declassification). If Γ ⊢ declassify(t, ℓf → ℓt) : h.ℓ, ℓf ̸∈ P , and ℓt ∈ P , then ℓf ∈ T .

Lemma C.2 (Transparent Endorsement). If Γ ⊢ endorse(t, ℓf → ℓt) : h.ℓ, ℓf ̸∈ T , and ℓt ∈ T , then ℓf ∈ P .

Typing has standard properties.

Definition C.3 (Refinement). Define
• Γ1 ⊑ Γ2 if (x : h.ℓ2) ∈ Γ2 implies (x : h.ℓ1) ∈ Γ1 for some ℓ1 such that ℓ1 ⊑ ℓ2.
• ∆1 ⊑ ∆2 if ∆1(h1h2) ⊑ ∆2(h1h2) for all h1, h2 ∈ H .

Lemma C.4 (Subsumption). We have
1) If Γ ⊢ e : h.ℓ, Γ′ ⊑ Γ, and ℓ ⊑ ℓ′, then Γ′ ⊢ e : h.ℓ′.
2) If Γ ⊢ s and Γ′ ⊑ Γ, then Γ′ ⊢ s.
3) If ∆ ⊩ s and ∆′ ⊑ ∆, then Γ′ ⊩ s.

Lemma C.5 (Substitution). Substitution preserves typing:
1) If (Γ, x : h′.ℓ′) ⊢ e : h.ℓ, then Γ ⊢ e[v/x] : h.ℓ.
2) If (Γ, x : h.ℓ) ⊢ s, then Γ ⊢ s[v/x].

A well-typed program remains well typed under execution and all corruption.

Lemma C.6 (Type Preservation). If Γ ⊢ s and s
a−→ s′, then Γ ⊢ s′.

Lemma C.7 (Robust Typing). If Γ ⊢ s, then Γ ⊢ LsM.

A well-synchronized program remains well synchronized under execution and all corruption.

4For those familiar with order theory, P and Q must be prime filters of P.
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h.e
a−→i v

e-OPERATOR
v = eval(f, v1, . . . , vn)

h.f(v1, . . . , vn)
!hh0−−−→i v

e-DECLASSIFY
ℓf ̸∈ P ℓt ∈ P

h.declassify(v, ℓf → ℓt)
!hAdvv−−−−→i v

e-DECLASSIFY-SKIP
ℓf ∈ P ∨ ℓt ̸∈ P

h.declassify(v, ℓf → ℓt)
!hh0−−−→i v

e-ENDORSE
ℓf ̸∈ T ℓt ∈ T

h.endorse(v, ℓf → ℓt)
?Advhv

′

−−−−−→i v
′

e-ENDORSE-SKIP
ℓf ∈ T ∨ ℓt ̸∈ T

h.endorse(v, ℓf → ℓt)
!hh0−−−→i v

e-INPUT
L(h) ∈ T

h.input
?Envhv−−−−−→i v

e-INPUT-MALICIOUS
L(h) ̸∈ T

h.input
!hh0−−−→i 0

e-OUTPUT
L(h) ∈ T

h.output v
!hEnvv−−−−→i 0

e-OUTPUT-MALICIOUS
L(h) ̸∈ T

h.output v
!hh0−−−→i 0

e-RECEIVE

h.receive h′
!hh0−−−→i 0

e-SEND

h.send v to h′
!hh0−−−→i 0

s
a−→i s

′

s-LET

h.e
a−→i v

let h.x = e; s
a−→i s[v/x]

s-COMMUNICATE

h1.v ⇝ h2.x; s
!h1h10−−−−→i s[v/x]

s-SELECT

h1[v]⇝ h2; s
!h1h10−−−−→i s

s-IF
i = if v ̸= 0 then 1 else 2

if(h.v, s1, s2)
!hh0−−−→i si

(a) Ideal stepping rules for expressions and statements.

h.e
a−→r v

e-DECLASSIFY-REAL
ℓf ̸∈ P ℓt ∈ P

h.declassify(v, ℓf → ℓt)
!hh0−−−→r v

e-ENDORSE-REAL
ℓf ̸∈ T ℓt ∈ T

h.endorse(v, ℓf → ℓt)
!hh0−−−→r v

e-RECEIVE-REAL

h.receive h′
?h

′
hv−−−→r v

e-SEND-REAL

h.send v to h′
!hh

′
v−−−→r 0

s
a−→r s

′

s-COMMUNICATE-REAL

h1.v ⇝ h2.x; s
!h1h2v−−−−→r s[v/x]

s-SELECT-REAL

h1[v]⇝ h2; s
!h1h2v−−−−→r s

s-CASE

case (h1 ⇝ h2) {v 7→ s, . . .} ?h1h2v−−−−→r s

(b) Real stepping rules for expressions and statements. These override the rules in fig. 14a.

s
a−→c

α s′

s-SEQUENTIAL

s
a−→α s′

s
a−→c

α s′

s-DELAY

s
a−→c

α s′ actor(a) /∈ hosts(E)

E[s]
a−→c

α E[s′]

s-IF-DELAY

s1
a−→c

α s′1 s2
a−→c

α s′2 actor(a) ̸= h

if(h.t, s1, s2)
a−→c

α if(h.t, s′1, s
′
2)

E hosts(E) = H

Evaluation Contexts E ::= let h.x = e; [·] | h1.t⇝ h2.x; [·] | h1[v]⇝ h2; [·]

hosts(let h.x = e; [·]) = {h} hosts(h1.t⇝ h2.x; [·]) = {h1, h2} hosts(h1[v]⇝ h2; [·]) = {h1, h2}

(c) Concurrent lifting of ideal/real stepping rules.

Figure 14. Ideal, real, and concurrent stepping rules for expressions and statements.
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B
a−→ B′

B-INPUT

B[c1c2 := V ]
?c1c2v−−−−→ B[c1c2 := V · v]

B-OUTPUT

B[c1c2 := v · V ]
!c1c2v−−−−→ B[c1c2 := V ]

w
a−→ w′

w-INPUT
c1 ̸∈ H c2 ∈ H

B
?c1c2v−−−−→ B′

⟨H,B, s⟩ ?c1c2v−−−−→ ⟨H,B′, s⟩

w-DISCARD
c1 ∈ H ∨ c2 ̸∈ H

⟨H,B, s⟩ ?c1c2v−−−−→ ⟨H,B, s⟩

w-INTERNAL

B
!c1c2v−−−−→ B′ s

?c1c2v−−−−→ s′

⟨H,B, s⟩ !c2c20−−−−→ ⟨H,B′, s′⟩

w-OUTPUT

s
!m−−→ s′

⟨H,B, s⟩ !m−−→ ⟨H,B, s′⟩
Figure 15. Stepping rules for buffers and processes.

Lemma C.8 (Synchrony Preservation). If ∆ ⊩ s and s
a−→ s′, then ∆ ⊩ s′.

Lemma C.9 (Robust Synchrony). If ∆ ⊩ s, then ∆ ⊩ LsM.

A host can only output if it is synchronized with all previous external actions.

Lemma C.10 (Output Synchronization). If ∆ ⊩ s and s
!m−−→ with m external, then synched(∆, h).

B. Operational Semantics

Below, we write −→ to stand for any of −→i, −→r, −→c
i , or −→c

r .
Processes never refuse input.

Lemma C.11 (Input Totality). For all w and m, there exists w′ such that w ?m−−→ w′.

The stepping judgments are nondeterministic since inputs are externally controlled (different input values lead to different
states), and, for concurrent judgments, outputs and internal actions are independent across hosts. However, processes are fully
deterministic when the action is fixed.

Lemma C.12 (Internal Determinism). If w
a−→ w1 and w

a−→ w2, then w1 = w2.

Lemma C.13 (Output Determinism). If w
!m1−−→ w1, w !m2−−→ w2, and actor(!m1) = actor(!m2), then m1 = m2.

These results lift to configurations W as long as the configuration does not contain duplicate hosts.

D DETAILS FOR SECTION VI-B (CORRECTNESS OF SEQUENTIALIZATION)

Definition D.1 (Joinable Processes). We write w1 ↓ w2 if there exist traces tr1 and tr2 containing only internal actions such
that w1

tr1−−→c
i w and w2

tr2−−→c
i w for some w. Diagrammatically:

w1 w2

∃w

tr1 tr2

We prove confluence through a diamond lemma, which allows reordering independent actions.

Definition D.2 (Independent Actions). Actions a1 and a2 are independent, written a1 ⊥⊥ a2, if one is an input while the other
is an output, or they are on different channels. We write tr1 ⊥⊥ tr2 if a1 ⊥⊥ a2 for all a1 ∈ tr1 and a2 ∈ tr2.

Lemma D.3 (Diamond for Processes). If w
tr1−−→c

i w1, w tr2−−→c
i w2, and tr1 ⊥⊥ tr2, then w1

tr2−−→c
i w′ and w2

tr1−−→c
i w′ for

some w′. Diagrammatically:
w

w1 w2

∃w′

tr1 tr2

tr2 tr1
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Lemma D.3 does the heavy lifting when proving multiple confluence results below, and requires quite a bit of work to show.
We first prove a diamond lemma for statements, and then lift it to processes.

Lemma D.4 (Half Diamond for Statements). If s
a1−→i s1, s a2−→c

i s2, and a1 ⊥⊥ a2, then s1
a2−→c

i s
′ and s2

a1−→i s
′ for some s′.

Proof. By case analysis on s
a2−→c

i s2.

• Case s-SEQUENTIAL. Contradicts a1 ⊥⊥ a2.
• Case s-DELAY. By case analysis on the evaluation context followed by inversion on s

a1−→i s1. The step for a1 involves
only the head statement and ignores all future statements, whereas the step for a2 ignores the head statement and involves
only a statement in the future. Thus, they can be performed in sequence in either order without changing the end result.

• Case s-IF-DELAY. The step for a2 steps both branches of the if statement, whereas the step for a1 selects a branch. They
can be performed in sequence in either order.

Lemma D.5 (Diamond for Statements). If s
a1−→c

i s1, s a2−→c
i s2, and a1 ⊥⊥ a2, then s1

a2−→c
i s
′ and s2

a1−→c
i s
′ for some s′.

Proof. By induction on the derivations of both stepping judgments. If either is by rule s-SEQUENTIAL, we conclude by
lemma D.4. Otherwise, both steps ignore the head of s using the same delay rule. We appeal to the induction hypothesis, and
use the same delay rule to get a complete derivation.

Proof of lemma D.3. We prove the statement when tr1 and tr2 are single actions; the more general statement follows
straightforwardly by induction on tr1 followed by induction on tr2.

We proceed by case analysis on both stepping judgments.

• Both steps are input (rules w-INPUT and w-DISCARD). Since tr1 ⊥⊥ tr2, the input messages are added at the end of two
different queues. Both actions can be performed in either order without affecting the end result.

• One step is input, the other is by rule w-INTERNAL. The input step adds a message to a queue, while rule w-INTERNAL
pops a message from a queue and feeds it to the choreography. The queues must be different since tr1 ⊥⊥ tr2, so the
steps are independent.

• One step is input, the other is by rule w-OUTPUT. The input step only affects the queue, and the output step only affects
the choreography, so the steps are independent.

• Both steps are output (rules w-INTERNAL and w-OUTPUT). If either step is by rule w-INTERNAL, then we use tr1 ⊥⊥ tr2
as before to show we pull messages out of different queues. This allows reordering changes to the buffer. Lemma D.5
finishes the proof.

The proof of lemma D.3 reasons generically about buffers, and appeals to a diamond lemma for statements in a black-box
manner. This means we can generalize lemma D.3 to arbitrary (combinations of) stepping relations without extra work as long
as a diamond property for the same relations holds for statements.

Lemma D.6 (Generalized Diamond for Processes). Assume the diamond property holds for statements with stepping relations −→1

and −→2. If w
tr1−−→1 w1, w tr2−−→2 w2, and tr1 ⊥⊥ tr2, then w1

tr2−−→2 w′ and w2
tr1−−→1 w′ for some w′.

Proof. Same as the proof of lemma D.3.

Processes remain joinable after taking internal or matching steps.

Lemma D.7 (Internal Action). If w1 ↓ w2 and w1
a−→c

i w
′
1 for a internal, then w′1 ↓ w2. Diagrammatically:

w1 w2

w′1 w w2

∃w′

a tr1 tr2

tr ′
1 tr ′

2

Proof. Since w1 and w2 are joinable, there exist w and internal tr1, tr2 such that w1
tr1−−→c

i w and w2
tr2−−→c

i w. We case on
whether a ⊥⊥ tr1.
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• Case a ⊥⊥ tr1. Lemma D.3 gives w′ such that w′1
tr1−−→c

i w
′ and w

a−→c
i w
′. Since a and tr2 are internal, so is tr2 · a. Thus,

w′1 ↓ w2 through tr1 and tr2 · a.
w1 w2

w′1 w

∃w′

a tr1

tr2

tr1

Lemma D.3

a

• Case a ⊥̸⊥ tr1. Let a1 be the first action in tr1 such that a ⊥̸⊥ a1, that is, tr1 = tr ′1 · a1 · tr ′′1 with a ⊥⊥ tr ′1. We have,

w1
tr ′

1−−→c
i w′

a1−→c
i w′′

tr ′′
1−−→c

i w. Lemma D.3 gives w′′1 such that w′1
tr ′

1−−→c
i w′′1 and w′

a−→c
i w′′1 . We now have w′

a−→c
i w′′1

and w′
a−→c

i w
′′, however, the stepping judgment is deterministic on dependent internal actions, thus lemma C.13 gives

w′′1 = w′′.5 Finally, w′1 ↓ w2 through tr ′1 · tr ′′1 and tr2.

w1 w2

w′1 w′

∃w′′1 w′′

w

a tr ′
1

tr2
tr ′

1

Lemma D.3
a a1

Lemma C.13

tr ′′
1

Lemma D.8 (Matching Actions). If w1 ↓ w2, w1
a−→c

i w
′
1, and w2

a−→c
i w
′
2, then w′1 ↓ w′2. Diagrammatically:

w1 w2

w′1 w w′2

∃w′

a tr1 tr2 a

tr ′
1 tr ′

2

Proof. Since w1 and w2 are joinable, there exist w and internal tr1, tr2 such that w1
tr1−−→c

i w and w2
tr2−−→c

i w. If a is internal,
then the result follows by two applications of lemma D.7. Otherwise, a ⊥⊥ tr1 and a ⊥⊥ tr2. The result follows from two
applications of lemma D.3, and one application of lemma C.12:

w1 w2

w′1 w w′2

∃w′′1 ∃w′′2

a tr1 tr2 a

tr1

Lemma D.3

a a tr2

Lemma D.3

Lemma C.12

If a well-typed, well-synchronized program can take an output step concurrently, then it can take the same step sequentially
(after taking the series of internal steps leading up to the output). We write w

!m−−→→i w
′ if w tr · !m−−−−→i w

′ for some internal tr .

Lemma D.9 (Sequential Execution). If ϵ ⊢ w, ∆ ⊩ w, and w
!m−−→c

i for m external, then w
!m−−→→i.

Proof sketch. By induction on the stepping relation. If the step is by rule s-SEQUENTIAL, then w
!m−−→i and we are done.

Otherwise, it must be by rule s-DELAY. We need to show that we can take a sequential internal step by casing on the evaluation

5More specifically, a and a1 are internal actions, which are represented as outputs. Since a ⊥̸⊥ a1, we have actor(a) = actor(a1), so lemma C.13 applies.
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context E. Note that the top statement in E must be internal, otherwise we get a contradiction by lemma C.10. Since w has no
free variables, it can take an internal step.

Lemma D.10 (Step Over). If w1
a1−→c

i w2
a2−→i, then either w1

a1−→i w2, or w1
a2−→i and a1 ⊥⊥ a2.

Proof. Assume the first step cannot be done sequentially (otherwise we are done). Then, the first step uses a delay rule
(rules s-DELAY and s-IF-DELAY), which ignores the head statement of w1. The second step is sequential so it only depends
on the head statement of w2, which is the same as the head statement of w1, thus, w1 can step with a2. We get that a1 ⊥⊥ a2
from the side conditions on delay rules, which require actor(a1) to be different from actor(a2).

Lemma D.11 (Delayed Step). If w1
a−→c

i w2
!m−−→→i for a internal, then w1

!m−−→→i.

Proof. Unfolding the definition of −→→i gives w2
tr−→i w3

!m−−→i for some tr and w3. We proceed by induction on tr . In either
case, we are done if w1

a−→i w2, so assume w1 cannot perform a sequentially.

• Case tr = ϵ. We have w1
a−→c

i w2
!m−−→i. Lemma D.10 gives w1

!m−−→i, and thus w1
!m−−→→i.

• Case tr = a′ · tr ′. We have w1
a−→c

i w2
a′

−→i w3
tr ′

−−→i w4
!m−−→i. Lemma D.10 gives w1

a′

−→i w
′
2 for some w′2. Lemma D.6

with lemma D.4 then gives w1
a′

−→i w
′
2

a−→c
i w′3 for some w′3, and lemma C.12 shows w′3 = w3. We use the induction

hypothesis on w′2
a−→c

i w3
tr ′

−−→i w4
!m−−→i to get w′2

!m−−→→i, and combined with w1
a′

−→i w
′
2, we get w1

!m−−→→i.
Diagrammatically (we use tails to denote sequential steps):

w1

w2 ∃w′2

w3 ∃w′3

w4

a a′ (Lemma D.10)

a′ a′
Lemma D.6

a
!m (IH)

tr ′

Lemma C.12

!m

If two processes are joinable and one of them can concurrently perform an output action, then the other can perform the
same action sequentially (after unwinding).

Lemma D.12 (Matching Outputs). Let w1 and w2 be such that w1 ↓ w2, ϵ ⊢ w2, and ∆ ⊩ w2. If w1
!m−−→c

i for m external,
then w2

!m−−→→i.

Proof. Since w1 and w2 are joinable, there exist w and internal tr1, tr2 such that w1
tr1−−→c

i w and w2
tr2−−→c

i w. Because m is
external and tr1 is internal, we have !m ⊥⊥ tr1, so lemma D.3 gives w

!m−−→c
i . Now we have w2

tr2 · !m−−−−−→c
i , and we want to

show w2
!m−−→→i. We proceed by induction on tr2. When tr2 is empty, lemma D.9 completes the proof. When tr2 = a · tr ′2, the

induction hypothesis gives w2
a−→c

i w
′
2

!m−−→→i, and lemma D.11 gives the desired result.

Proof of theorem VI.5. The simulator maintains a public view of the concurrent process, and runs the adversary against this
view. When the adversary schedules an output action, the simulator schedules the sequential process until it performs the same
output; the simulator does nothing for input and internal actions. Lemma D.12 guarantees the sequential program can perform
the output. The primary invariant, that the concurrent and sequential processes remain joinable, is ensured by lemmas D.7
and D.8.

More formally, we show UC simulation as follows.
Simulator The simulator has the form S(A ∥ w′1, w

′
2) where w′1 is the public view of the concurrent process, and w′2 is

the public view of the sequential process. When the simulator receives an input from the environment or a declassify
message from the sequential process, it feeds the message to A, w′1, and w′2. When the adversary outputs a value (for the
environment or for an endorse expression), the simulator feeds it to w′1 and w′2, and outputs the same value. When the
simulator receives an internal message from the sequential process (which indicates the sequential process has taken a
step), it steps w′2. The simulator only allows an output step for the sequential process if w′1 can perform same output.
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Bisimulation Relation Let A ∥ w1 R S(A′ ∥ w′1, w
′
2) ∥ w2 if: (1) A = A′, (2) w1 =P w′1, (3) w2 =P w′2, (4) w1 ↓ w2,

and (5) ϵ ⊢ w2 and ∆ ⊩ w2 for some ∆.
Simulation We claim R is a weak bisimulation.

Conditions (4) and (5) ensure lemma D.12 is applicable, which in turn ensures the external behavior of both systems is
the same.
Condition (1) is preserved since w′1 is an accurate public view of w1 (condition (2)). Conditions (2) and (3) are preserved
since messages from declassify are sufficient to maintain a public view. Lemmas D.7 and D.8 ensure condition (4) is
preserved. Lemmas C.6 and C.8 ensure condition (5) is preserved.

E DETAILS FOR SECTION VI-C (CORRECTNESS OF IDEAL EXECUTION)

Consider choreography w and its corruption LwM when Alice is malicious:

// w
let Alice.x = input;
Alice.x⇝ Bob.y;
Alice.x⇝ Chuck.z;
let Bob.y′ = y + 1;
Bob.y′ ⇝ Alice.x′;

// LwM

let Bob.y = receive Alice;
let Chuck.z = receive Alice;
let Bob.y′ = y + 1;
let Bob. = send y′ to Alice;

The function L·M erases all code on Alice (the first let statement) since a malicious host does not follow the choreography and
has arbitrary behavior. Additionally, it replaces all communication statements involving Alice with receive/send statements,
capturing the fact that Alice need not use the variables specified in the choreography (x and x′). In particular, even though the
original choreography specifies Alice sends the same value to Bob and Chuck, a malicious Alice can send different values.
Giving Alice the power to equivocate in this manner can compromise security, for instance, Alice could cause Bob and Chuck
to disagree on control flow if x is used as a conditional guard. Information-flow checking prevents Alice from exploiting this
power.

Information-flow checking ensures untrusted data (from malicious hosts) cannot influence trusted data (of nonmalicious
hosts). We formalize this intuition by erasing all data from malicious hosts in the ideal semantics: instead of receiving the
value of y from Alice (i.e., the adversary), Bob simply assigns 0 to y (Chuck does the same for z). The adversary cannot
possibly have any control over trusted data if all data coming from the adversary is replaced with 0. Note that erasing untrusted
data can change the adversary’s view. In the example, Bob sends y′ = y + 1 to Alice, which is different from sending 0 + 1.
The simulator can compute the correct value in this case since y comes from the adversary (which the simulator has access to),
and 1 is a fixed constant. In the general case, the simulator can compute all public values, and our type system ensures only
public values are sent to dishonest hosts (rules ℓ-SEND and ℓ-COMMUNICATE).

In addition to preventing the adversary from corrupting trusted values, we must prevent the adversary from learning secrets.
In the real semantics, the adversary witnesses all communication and can read any message if at least one endpoint is dishonest.
Information-flow checking ensures the adversary does not learn anything new by reading these messages. We formalize this
intuition by erasing communication: in the ideal semantics, communication statements step internally. The simulator must again
recreate these hidden messages for the adversary, which is possible since our type system ensures the messages the adversary
can read are public.

Simply discarding all untrusted data and hiding all secret data weakens the adversary in the ideal semantics too much. We
bridge the gap between the real and ideal semantics through downgrade expressions. An endorse expression indicates that
some untrusted data should be treated as trusted, so in the ideal semantics, an endorse inputs data from the adversary. Dually,
a declassify expression indicates some secret data should be treated as public, so a declassify outputs data to the adversary.
Explicit declassify/endorse expressions capture programmer intent. Going back to the example, our type system requires
Bob and Chuck to endorse x before using it in a trusted context. If Bob and Chuck separately endorse x, then they might
get two different values. If there is only one endorse (e.g., a separate trusted host performs the endorse and shares the
result), then there can only be one value.

The core of the simulation result is showing that the simulator can use declassify expressions to recreate all data no
longer leaked through communication, and endorse expressions to influence all data no longer corruptible through receive
expressions. For this to work, we need to ensure the ideal choreography outputs the correct value to the simulator when
performing a declassify, and we need to ensure the simulator can input the correct value to the ideal choreography for an
endorse. For example, when the ideal choreography performs declassify x, we must ensure the value of x is the same
in the real and ideal choreographies. This is nontrivial since the ideal semantics replaces all untrusted data with 0. Robust
declassification requires only trusted data is declassified, and type checking ensures untrusted data does not influence trusted data.
Thus, x is trusted and erased values cannot influence its value. Similarly, when the ideal choreography performs endorse x, the
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h.e
a−→sim v

e-DECLASSIFY-SIMULATOR
ℓf ̸∈ P ℓt ∈ P

h.declassify(v, ℓf → ℓt)
?hAdvv

′

−−−−−→sim v′

e-ENDORSE-SIMULATOR
ℓf ̸∈ T ℓt ∈ T

h.endorse(v, ℓf → ℓt)
!Advhv

′

−−−−−→sim v

Figure 16. Stepping rules used internally by the simulator. These override fig. 14b.

simulator must compute the value x would have in the real choreography and send that to the ideal choreography. Transparent
endorsement requires only public data is endorsed, and the simulator can recreate all public data.

The simulator maintains a public view of the real process, and runs the adversary against this view. It uses the rules in fig. 16,
which flip the roles of declassify and endorse. We maintain the invariant that the simulator’s version of the choreography
matches the real one on public values, and the ideal choreography matches the real one on trusted values. Next, we define
what it means for two terms to agree on public/trusted values.

Definition E.1 (Closing Substitution). A closing substitution σ : Γ is a mapping from variables to values σ : dom(Γ) → V.

Definition E.2 (Channel Label). A channel’s label derives from the labels of its endpoints:

L(c1c2v) = L(c1c2) = L(c1) ∨ L(c2) L(?m) = L(!m) = L(m).

We let L(Adv) = 0← and L(Env) = 0, which leads to L(Env c) = L(cEnv) = L(c) and L(Adv c) = L(cAdv) = L(c)←
(communication with the adversary is public, and is trusted only if the other endpoint is).

Definition E.3 (Syntactic L-Equivalence). For a set of labels L ⊆ L, define =L as follows.
• c1c2v1 =L c1c2v2 if L(c1c2) ∈ L implies v1 = v2.
• ?m1 =L ?m2 and !m1 =L !m2 if m1 =L m2.
• s1 =L s2 if there exist Γ1, Γ2, and s with (Γ1,Γ2) ⊢ s, and substitutions σ1, σ2 : Γ2 such that σ1(s) = s1 and σ2(s) = s2.

Additionally, for (x : ℓ.h) ∈ (Γ1,Γ2), we require L(h) ⇒ ℓ, and for (x : ℓ.h) ∈ Γ2, we require ℓ ̸∈ L.
• B1 =L B2 if B1(c1c2) = B2(c1c2) for all c1 and c2 such that L(c1c2) ∈ L.
• ⟨H,B1, s1⟩ =L ⟨H,B2, s2⟩ if B1 =L B2 and s1 =L s2.

We instantiate definition E.3 with L = P for agreement on public values, and with L = T for agreement on trusted values.
Definition E.3 requires the two terms to have the same structure, but allows some values v ∈ V (those with labels not in L) to
differ between them. For example, two messages can only be equivalent if they are on the same channel. Additionally, they
must carry the same value if the channel is public and we are considering public equality (=P ); they are allowed to carry
different values otherwise. Action and buffer equivalence simply lift the definition for messages. Equivalence for statements
demands further explanation.

Values are fixed constants and can be assigned any label. It is therefore not immediate which values should be allowed to
differ between statements. For example, consider the following statements that have the same structure but differ in the value of
x:

// s1
let Alice.x = 0;
Alice.x⇝ Bob.y;

// s2
let Alice.x = 1;
Alice.x⇝ Bob.y;

The intuition behind definition E.3 is that s1 and s2 are equivalent if x can be treated as secret/untrusted. To check that,
definition E.3 abstracts out values where the two statement differ to find a common statement, and type-checks the generalized
statement in a context where all introduced variables are marked as secret/untrusted. For example, we could pick s as follows

// s
let Alice.x = x′;
Alice.x⇝ Bob.y;

along with substitutions σ1 = {x′ 7→ 0} and σ2 = {x′ 7→ 1}. If s can be typed under a context where x′ is considered secret,
then s1 =P s2. However, if Bob has a public label (is dishonest), for example, then there is no such context.

Definition E.3 splits the context into Γ1 and Γ2, with the substitutions only assigning values for variables in Γ2. Context Γ1

is added to allow relating open terms, which is needed for inductive cases of some proofs.
For the rest of this section, we assume L = P or L = T . Moreover, whenever receive h or send t to h appears in a

program, we assume L(h) ̸∈ T (which is ensured by L·M).6

6Our results hold for more general L, but we do not need this generality.
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Equivalent choreographies remain equivalent given equivalent inputs and after producing outputs on the same host.

Lemma E.4 (Equivalence Preservation). Assume s1 =L s2 and s1
a1−→c

r s′1 without using rule e-DECLASSIFY-REAL or
rule e-ENDORSE-REAL.
• If a1 = ?m1, then s2

?m2−−−→c
r s
′
2 with s′1 =L s′2 for all m2 =L m1.

• If a1 = !m1, then s2
!m2−−→c

r s
′
2 with s′1 =L s′2 for some m2 with actor(!m2) = actor(!m1).

Proof. By definition E.3, there exists s such that Γ ⊢ s, σ1(s) = s1, and σ2(s) = s2 for some Γ = (Γ1,Γ2) and σ1, σ2 : Γ2.
We proceed by induction on the stepping judgment. In all cases, stepping on s1 forces certain atomic expressions t to be values
v (as opposed to variables x); the same expressions in s2 must also be values since σ2 substitutes for the same variables as σ1.
We appeal to this fact implicitly.
• Case s-LET. We have

s1 = let h.x = e1; s
′′
1 s2 = let h.x = e2; s

′′
2 s = let h.x = e; s′′

and

h.e1
a1−→r v1 h.e2

a2−→r v2

with actor(a1) = actor(a2) = h. Inversion on Γ ⊢ s gives

RULE ℓ-LET
Γ ⊢ e : h.ℓ L(h) ⇒ ℓ Γ, x : h.ℓ ⊢ s′′

Γ ⊢ s

In each case, we either prove v1 = v2 or ℓ ̸∈ P . When v1 = v2, we define s′ = s′′[v/x]. We then have Γ ⊢ s′ by
lemma C.5, σ1(s

′) = s′′1 [v/x] = s′1, and σ2(s
′) = s′′2 [v/x] = s′2, so s′1 =L s′2.

When ℓ ̸∈ P , we define Γ′2 = (Γ2, x : h.ℓ), σ′1 = σ1 ∪ {x 7→ v1}, σ′2 = σ2 ∪ {x 7→ v2}, which ensures σ′1(s
′′) =

s′′1 [v1/x] = s′1 and σ′2(s
′′) = s′′2 [v2/x] = s′2. Note that Γ2 satisfies the requirements of definition E.3, and σ′1, σ

′
2 : Γ′2, so

s′1 =L s′2.
We case on the expression stepping relation to show one of the requirements.
– Case e-OPERATOR. We have

e1 = f(t11, . . . , t
n
1 ) e2 = f(t12, . . . , t

n
2 ) e = f(t1, . . . , tn).

If all ti are values, then ti1 = ti = ti2 and v1 = v2. Otherwise, let ti = xi. Inversion on Γ ⊢ e : h.ℓ gives (xi : h.ℓ′) ∈ Γ2

for ℓ′ ̸∈ L and ℓ′ ⊑ ℓ, which implies ℓ ̸∈ L.
– Case e-DECLASSIFY-REAL. Deliberately excluded; handled by lemma E.9.
– Case e-DECLASSIFY-SKIP. Same as the case for rule e-OPERATOR.
– Case e-ENDORSE-REAL. Deliberately excluded; handled by lemma E.10.
– Case e-ENDORSE-SKIP. Same as the case for rule e-OPERATOR.
– Case e-INPUT. We have

e1 = e2 = e = input.

Assume ℓ ∈ L since we are done otherwise. Inversion on Γ ⊢ e : h.ℓ gives L(h) ⊑ ℓ, so L(h) ∈ L, which means
L(Envh) = L(h) ∈ L. Thus, ?Envhv1 = a1 = a2 = ?Envhv2 and v1 = v2.

– Case e-INPUT-MALICIOUS. We have v1 = 0 = v2.
– Case e-OUTPUT. We have v1 = 0 = v2.
– Case e-OUTPUT-MALICIOUS. We have v1 = 0 = v2.
– Case e-RECEIVE-REAL. We have

e1 = e2 = e = receive h′.

We have L(h′) ̸∈ T by assumption, and L(h′) ∈ P by definition A.1.
If L = P , then L(h′) ∈ L so L(h′h) ∈ L. This gives ?h′hv1 = a1 = a2 = ?h′hv2, so v1 = v2.
If L = T , then inversion on Γ ⊢ e : h.ℓ gives L(h′)← ⊑ ℓ. Since L(h′) ̸∈ T = L, we have ℓ ̸∈ L.

– Case e-SEND-REAL. We have v1 = 0 = v2.
• Case s-COMMUNICATE-REAL. We have

s1 = h1.v1 ⇝ h2.x; s
′′
1 s2 = h1.v2 ⇝ h2.x; s

′′
2 s = h1.t⇝ h2.x; s

′′
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and

s1
!h1h2v1−−−−−→r s

′′
1 [v1/x] s2

!h1h2v2−−−−−→r s
′′
2 [v2/x].

By inversion on Γ ⊢ s, we have

RULE ℓ-COMMUNICATE
Γ ⊢ t : h1.ℓ L(h2) ⇒ ℓ Γ, x : h2.ℓ ⊢ s′′

Γ ⊢ h1.t⇝ h2.x; s
′′

We case on t. If t = v for some v, then v1 = σ1(v) = v = σ2(v) = v2. Additionally, Γ ⊢ s′′[v/x] by lemma C.5,
σ1(s

′′[v/x]) = s′′1 [v/x], and σ2(s
′′[v/x]) = s′′2 [v/x], so s′′1 [v1/x] =L s′′2 [v2/x].

Otherwise, t = x′ for some x′ ∈ dom(Γ2). By inversion on Γ ⊢ t : h1.ℓ, we have (x : h1.ℓ
′) ∈ Γ2 for some ℓ′ ⊑ ℓ. Since

ℓ′ ̸∈ L and ℓ′ ⊑ ℓ, we have ℓ ̸∈ L. Define Γ′2 = (Γ2, x : h2.ℓ), σ′1 = σ1 ∪ {x 7→ v1}, σ′2 = σ2 ∪ {x 7→ v2}, which ensures
σ′1(s

′′) = s′′1 [v1/x] and σ′2(s
′′) = s′′2 [v2/x]. Note that Γ2 satisfies the requirements of definition E.3, and σ′1, σ

′
2 : Γ′2, so

s′′1 [v1/x] =L s′′2 [v2/x].
• Case s-SELECT-REAL. We have

s1 = h1[v1]⇝ h2; s
′
1 s2 = h1[v2]⇝ h2; s

′
2 s = h1[v]⇝ h2; s

′

and

s1
!h1h2v1−−−−−→r s

′
1 s2

!h1h2v2−−−−−→r s
′
2.

Γ ⊢ s′ (by inversion on Γ ⊢ s), σ1(s
′) = s′1, and σ2(s

′) = s′2, thus s′1 =L s′2.
• Case s-IF. We have

s1 = if(h.v1, s
1
1, s

2
1) s2 = if(h.v2, s

1
2, s

2
2) s = if(h.t, s1, s2)

and

s1
!hh0−−−→r s

i
1 s2

!hh0−−−→r s
j
2.

Inversion on Γ ⊢ s (which must be by rule ℓ-IF) gives Γ ⊢ t : h.0←. Additionally, σ1(t) and σ2(t) are values, so
free(t) ⊆ Γ2, meaning Γ2 ⊢ t : h.0←. Since 0← ∈ L for all attacks (recall definition A.1), and Γ2 only contains variables
with labels not in L, t must be a value, that is, t = v for some v. Then, v1 = σ1(v) = v = σ2(v) = v2, so i = j. Finally,
we have si1 =L sj2 since Γ ⊢ si (by inversion on Γ ⊢ s), σ1(s

i) = si1, and σ2(s
i) = si2 = sj2.

• Case s-CASE. Impossible by inversion on Γ ⊢ s.
• Case s-SEQUENTIAL. Immediate by the induction hypothesis.
• Case s-DELAY. We have

s1 = E1[s
′′
1 ] s2 = E2[s

′′
2 ] s = E[s′′]

and

s′′1
a−→c

r s
′′′
1 actor(a) /∈ hosts(E1)

s1
a−→c

r E1[s
′′′
1 ]

s′′2
a−→c

r s
′′′
2 actor(a) /∈ hosts(E1)

s2
a−→c

r E2[s
′′′
2 ]

Note that (Γ1,Γ
′
1,Γ2) ⊢ s′′ where Γ′1 are the variables defined by E (which must be the same as the ones defined by E1

and E2). Thus, s′′1 =L s′′2 through s′′, σ1, and σ2, and we can apply induction hypothesis to get s′′′1 =L s′′′2 . This then
gives s′1 = E1[s

′′′
1 ] =L E2[s

′′′
2 ]s′2.

• Case s-IF-DELAY. Using the induction hypotheses similar to rule s-DELAY.

Public-equivalent choreographies produce public-equivalent outputs.

Lemma E.5 (Public Outputs). If s1 =P s2, s1
!m1−−→c

r , and s2
a2−→c

r with actor(!m1) = actor(a2), then !m1 =P a2.

Proof. By definition E.3, there exists s such that Γ ⊢ s, σ1(s) = s1, and σ2(s) = s2 for some Γ = (Γ1,Γ2) and σ1, σ2 : Γ2.
We proceed by induction on the two stepping judgments, which must be by the same rule since s1 and s2 have the same
structure.

Cases for rules s-DELAY and s-IF-DELAY follow from the induction hypotheses. Cases for rules e-OPERATOR,
e-DECLASSIFY-SKIP, e-ENDORSE-SKIP, e-OUTPUT-MALICIOUS, s-IF, e-DECLASSIFY-REAL and e-ENDORSE-REAL are
immediate since both actions are internal, i.e., !m1 = !hh0 = a2 for some h, which implies !m1 =P a2. We detail the remaining
cases.
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• Case s-LET. We have

s1 = let h.x = e1; s
′
1 s2 = let h.x = e2; s

′
2 s = let h.x = e; s′

and

h.e1
!hcv1−−−→r h.e2

!hcv2−−−→sim .

Inversion on Γ ⊢ s gives Γ ⊢ e : h.ℓ for L(h) ⇒ ℓ. We case on the expression stepping relations.
– Case e-OUTPUT. We have c = Env, L(h) ∈ T , and

e1 = output v1 e2 = output v2 e = output t.

If L(h) ̸∈ P , then !m1 = !hEnvv1 =P !hEnvv2 = a2 immediately, so assume L(h) ∈ P . Inversion on Γ ⊢ e : h.ℓ
gives Γ ⊢ t : h.L(h). Since L(h) ∈ P , t = v for some v, meaning v1 = σ1(t) = v = σ2(t) = v2, so !m1 = !hEnvv =
!hEnvv = a2, and !m1 =P a2.

– Case e-SEND-REAL. We have c = h′ and

e1 = send v1 to h′ e2 = send v2 to h′ e = send t to h′.

If t = v for some v, then v1 = v2 and we are done, so assume t = x′ for some x′. Inversion on Γ ⊢ e : h.ℓ gives
Γ ⊢ t : h.L(h′)→. We then have (x′ : ℓ′.h) ∈ Γ2 with L(h) ⇒ ℓ′, ℓ′ ̸∈ P , and ℓ′ ⊑ L(h′)→. Then,

ℓ′ ̸∈ P ∧ L(h) ⇒ ℓ′ =⇒ L(h) ̸∈ P
ℓ′ ⊑ L(h′)→ ∧ ℓ′ ̸∈ P =⇒ L(h′)→ ̸∈ P =⇒ L(h′) ̸∈ P.

Thus, L(hh′) ̸∈ P and !m1 = !hh′v1 =P !hh′v2 = a2.
• Case s-COMMUNICATE-REAL. We have

s1 = h1.v1 ⇝ h2.x; s
′′
1 s2 = h1.v2 ⇝ h2.x; s

′′
2 s = h1.t⇝ h2.x; s

′′

and

s1
!h1h2v1−−−−−→r s2

!h1h2v2−−−−−→sim .

By inversion on Γ ⊢ s, we have
RULE ℓ-COMMUNICATE
Γ ⊢ t : h1.ℓ L(h2) ⇒ ℓ Γ, x : h2.ℓ ⊢ s′′

Γ ⊢ h1.t⇝ h2.x; s
′′

We case on t. If t = v for some v, then v1 = σ1(v) = v = σ2(v) = v2. So a1 = !h1h2v = a2 and a1 =P a2.
Otherwise, t = x′ for some x′ ∈ dom(Γ2). By inversion on Γ ⊢ t : h1.ℓ, we have (x : h1.ℓ

′) ∈ Γ2 for some ℓ′ ⊑ ℓ. Then,

ℓ′ ̸∈ P ∧ ℓ′ ⊑ ℓ =⇒ ℓ ̸∈ P
ℓ′ ̸∈ P ∧ L(h1) ⇒ ℓ′ =⇒ L(h1) ̸∈ P
ℓ ̸∈ P ∧ L(h2) ⇒ ℓ =⇒ L(h2) ̸∈ P

L(h1) ̸∈ P ∧ L(h2) ̸∈ P =⇒ L(h1h2) ̸∈ P.

Since L(h1h2) ̸∈ P , a1 = !h1h2v1 =P !h1h2v2 = a2.
• Case s-SELECT-REAL. We have

s1 = h1[v1]⇝ h2; s
′
1 s2 = h1[v2]⇝ h2; s

′
2 s = h1[v]⇝ h2; s

′

and

s1
!h1h2v1−−−−−→r s2

!h1h2v2−−−−−→sim .

Note that selection statements do not allow variables to be communicated, so s sending v (rather than t) is not a mistake.
Thus, we have v1 = σ1(v) = v = σ2(v) = v2, which means a1 = !h1h2v = a2, which in turn means a1 =P a2.

Trusted-equivalent choreographies produce trusted-equivalent outputs for the environment. The statement does not apply to
intermediate messages between hosts because untrusted values can be sent on trusted channels (e.g., a trusted third party can
process untrusted values from other hosts).

Lemma E.6 (Trusted Outputs). If s1 =P s2, s1
!hEnvv1−−−−−→c

r , and s2
a2−→c

r with actor(a2) = h, then !hEnvv1 =P a2.
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Proof. By induction on the stepping relations. Inductive cases are handled similarly to lemma E.5. The only other relevant case
is under rule s-LET with rule e-OUTPUT. The argument is similar to the case in lemma E.5, but holds because only trusted
values can be output to nonmalicious hosts.

The simulator’s view of the real choreography stays accurate on public values.

Lemma E.7 (Matching Steps for Public Equivalence). Assume s1 =P s2 and s1
a1−→c

r s
′
1 without using rule e-DECLASSIFY-REAL

or e-ENDORSE-REAL.
• If a1 = ?m1, then s2

?m2−−−→c
sim s′2 with s′1 =P s′2 for all m2 =P m1.

• If a1 = !m1, then s2
!m2−−→c

sim s′2 with s′1 =P s′2 for some m2 =P m1.
In addition, the statement holds with the roles of −→c

r and −→c
sim reversed (excluding rules e-DECLASSIFY-SIMULATOR

and e-ENDORSE-SIMULATOR instead).

Proof. Follows immediately from lemmas E.4 and E.5 since −→c
sim is equivalent to −→c

r except for rules e-DECLASSIFY-REAL
and e-ENDORSE-REAL, which we exclude.

The ideal choreography stays accurate to the real choreography on trusted values.

Lemma E.8 (Matching Steps for Trusted Equivalence). Assume s1 =T s2 and s1
a1−→c

r s′1 without using
rule e-DECLASSIFY-REAL or e-ENDORSE-REAL.
• If a1 = ?Envhv1, then s2

a2−→c
i s
′
2 with s′1 =T s′2 for all a2 =T a1.

• If a1 = !hEnvv1, then s2
a2−→c

i s
′
2 with s′1 =T s′2 for some a2 =T a1.

• Otherwise, s2
!hh0−−−→c

i s
′
2 with s′1 =T s′2 and actor(a1) = h.

In addition, the statement holds with the roles of −→c
r and −→c

i reversed (excluding rules e-DECLASSIFY and e-ENDORSE
instead).

Proof. Follows from lemmas E.4 and E.6. judgment −→c
r behaves the same as −→c

r except it replaces some output messages
with internal steps. Since this does not affect the resulting choreographies (only the actions), lemma E.4 applies and shows that
the resulting choreographies are equivalent. The one exception to this rules e-RECEIVE and e-RECEIVE-REAL, where the ideal
choreography proceeds with 0 instead of receiving a value; this value is treated as untrusted so the choreographies still agree
on trusted values as required.

Assume the simulator’s view agrees with the real choreography on public values, and the ideal choreography agrees with the
real choreography on trusted values. If the ideal choreography declassifies a value and we feed that value to the simulator,
then all three choreographies remain in agreement. Only trusted values are declassified, so the ideal choreography outputs the
correct value to the simulator.

Lemma E.9 (Equivalence After Declassify). Let s1 =P s2 and s1 =T s3. If s1
!hh0−−−→c

r s
′
1, s2

?hAdvv−−−−−→c
sim s′2, and s3

!hAdvv−−−−→c
i s
′
3,

then s′1 =P s′2 and s′1 =T s′3.

Proof. By definition E.3, there exist sp and st such that Γp ⊢ sp, σ1(sp) = s1, σ2(sp) = s2, and Γt ⊢ st, σ′2(st) = s2,
σ3(st) = s3 for Γp = (Γ1,Γ2), σ1, σ2 : Γ2, Γt = (Γ3,Γ4), and σ′2, σ3 : Γ4.

We proceed by induction on the stepping relations. Inductive cases (rules s-DELAY and s-IF-DELAY) are handled
similarly to lemma E.7. The only remaining case is when the steps are by rules e-DECLASSIFY, e-DECLASSIFY-REAL
and e-DECLASSIFY-SIMULATOR, respectively. We have

s1 = let h.x = declassify(v1, ℓf → ℓt); s
′′
1 sp = let h.x = declassify(tp, ℓf → ℓt); s

′′
p

s2 = let h.x = declassify(v2, ℓf → ℓt); s
′′
2 st = let h.x = declassify(tt, ℓf → ℓt); s

′′
t

s3 = let h.x = declassify(v, ℓf → ℓt); s
′′
3

where ℓf ̸∈ P and ℓt ∈ P , and

s′1 = s′′1 [v1/x] s′2 = s′′2 [v/x] s′3 = s′′3 [v/x].

We claim v1 = v (v2 is ignored by s2, so it is irrelevant). By lemma C.1 and inversion on Γt ⊢ st, we have ℓf ∈ T . Assume for
contradiction that tt = xt for some xt. Then, (xt : h.ℓ) ∈ Γ4 for ℓ ⊑ ℓf . However, ℓ ̸∈ T so ℓf ̸∈ T , which is a contradiction.
Thus, tt = vt for some vt. Then, v1 = σ′2(tt) = σ′2(vt) = vt = σ3(vt) = σ3(tt) = v.

Finally, let s′p = s′′p[v/x] and s′t = s′′t [v/x]. We have s′1 =P s′2 since Γp ⊢ s′p (inversion on Γp ⊢ sp followed by lemma C.5),
σ1(s

′
p) = s′1, and σ2(s

′
p) = s′2; and we have s′2 =T s′3 since Γt ⊢ s′t (inversion on Γt ⊢ st, then lemma C.5), σ′2(s

′
t) = s′2, and

σ3(s
′
t) = s′3.
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Similarly, if the simulator recreates a value that the ideal choreography endorses, all three choreographies remain in agreement.
Only public values are endorsed, so the simulator outputs the correct value to the ideal choreography.

Lemma E.10 (Equivalence After Endorse). Let s1 =P s2 and s1 =T s3. If s1
!hh0−−−→c

r s
′
1, s2

!Advhv−−−−→c
sim s′2, and s3

?Advhv−−−−−→c
i s
′
3,

then s′1 =P s′2 and s′1 =T s′3.

Proof. Dual to lemma E.9, but focusing on s1 =P s2 and using lemma C.2.

Lemmas E.7 and E.8 straightforwardly lift from choreographies s to processes w. Lemma E.7 needs an additional condition
on buffer equivalence: for B1 =P B2, we require |B1(c1c2)| = |B2(c1c2)| when L(c1c2) ̸∈ P . That is, the buffers must agree
exactly on public channels, and agree on the number of messages on secret channels. This condition allows the simulator to
keep track of messages on secret channels even though it cannot read message contents.

Proof sketch for theorem VI.6. We prove simulation as follows.

Simulator The simulator has the form S(A ∥ w) where w is a public view of the real process. The simulator runs w against
A for all internal messages. The simulator forwards inputs from Env to A and w, and forwards messages from A destined
for Env to Env. When the ideal process outputs data through a declassify expression, the simulator inputs this data to w.
Similarly, when w outputs data through an endorse expressions, the simulator forwards this data to the ideal process.7

Bisimulation Relation We maintain the invariant that the simulator’s version of the process matches the real one on public
values, and the ideal process matches the real one on trusted values. More concretely, we define A ∥ w1 R S(A′ ∥ w) ∥ w2

if: (1) A = A′, (2) w1 =P w, and (3) w1 =T w2 .
Simulation We claim R is a weak bisimulation.

Since the simulator’s version of the process matches the real one on public values (condition (2)), the adversary in the real
configuration has a view identical to the adversary running inside of the simulator (the adversary only sees public data).
Similarly, since the real process matches the ideal one on trusted values, the environment has the same view in both (the
environment is only sent trusted data).
Condition (1) is preserved since w is an accurate public view of w1 (condition (2)). When there are no downgrade actions,
lemma E.7 ensures condition (2) is preserved, and lemma E.8 ensures condition (3) is preserved. Lemmas E.9 and E.10
cover the cases with downgrades.

F DETAILS FOR SECTION VII (ENDPOINT PROJECTION)

Figure 17 formalizes projecting onto a host h. Projection keeps let statements assigned to h, and removes ones assigned to
other hosts. Communication statements become a send or a receive, or are entirely removed depending on whether h is the
sending host, the receiving host, or neither. Selection statements follow the same logic, but are projected as a send expression
or a case statement with a single branch.

The most interesting case is if statements. If the if statement is placed at h, we perform the if as usual and project the
branches. Otherwise, h does not store the conditional and cannot determine which branch should be taken. In this case, the
projections of the two branches must be compatible, formalized by a merge function. Merging requires the two branches to
have the same syntactic structure, but allows case statements to have disjoint branches, which are combined into one. We elide
most cases of the merge function, since the proof is agnostic to the details.

We lift projection to processes: projecting a buffer onto h keeps only messages destined for h, and projecting processes is
done componentwise. The projection JwK of process w is the configuration formed by projecting onto each host in w:

Jw = ⟨H, , ⟩K = ∥
h∈H

JwKh.

G DETAILS FOR SECTION VII-C (CORRECTNESS OF ENDPOINT PROJECTION)

A choreography and its endpoint projection match each other action-for-action; once we prove this fact, showing simulation
is trivial since we can pick S = A. The choreographic programming literature [28, 36, 37, 44, 45] extensively studies this
perfect correspondence between a choreography and its projection, and formalizes the correspondence as strong bisimulation.

To prove that a choreography w is bisimilar to its endpoint projection JwK, we must define a relation R between an arbitrary
configuration and process, W1 R w2, and show that R is a bisimulation. The obvious approach is to define W1 R w2 if
W1 = Jw2K, but this idea fails because R is not preserved under stepping.

Lemma G.1. Define W1 R w2 if W1 = Jw2K. We claim R is not a bisimulation.

7The simulator needs to step the ideal process an additional time so that the ideal process pulls the message from its buffer. This is due to how we define
operational rules for processes. This extra step forces us to use weak bisimulation instead of strong bisimulation.
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JsKh = s′

Jlet h′.x = e; sKh =

{
let h′.x = e; JsKh h′ = h

JsKh o/w

Jh1.t⇝ h2.x; sKh =


let h1. = send t to h2; JsKh h1 = h

let h2.x = receive h1; JsKh h2 = h

JsKh o/w

Jh1[v]⇝ h2; sKh =


let h1. = send v to h2; JsKh h1 = h

case (h1 ⇝ h2) {v 7→ JsKh} h2 = h

JsKh o/w

Jif(h′.t, s1, s2)Kh =

{
if(h′.t, Js1Kh, Js2Kh) h′ = h

merge(Js1Kh, Js2Kh) o/w
JskipKh = skip

merge(s1, s2) = s

merge(s1, s2) = case (h1 ⇝ h2) {v 7→ sv}v∈V1∪V2

where s1 = case (h1 ⇝ h2) {v 7→ sv}v∈V1

s2 = case (h1 ⇝ h2) {v 7→ sv}v∈V2

V1 and V2 disjoint
merge(s1, s2) = let h.x = e; merge(s′1, s

′
2)

where s1 = let h.x = e; s′1
s2 = let h.x = e; s′2

JBKh = B′ JwKh = w′

JBKh(c1c2) =

{
B(c1c2) c1 ̸= h ∧ c2 = h

ϵ otherwise

J⟨H,B, s⟩Kh = ⟨H ∩ {h}, JBKh, JsKh⟩

Figure 17. Endpoint projection: statements, buffers, processes.

Proof. Consider the following choreography and its projection:

// Choreography
w2 = if(Alice.1,Alice[Bob]⇝ 1; s1,Alice[Bob]⇝ 0; s2)
// Alice
Jw2KAlice = if(Alice.1, send 1 to Bob; Js1KAlice, send 0 to Bob; Js2KAlice)
// Bob
Jw2KBob = case (Alice⇝ Bob) {1 7→ Js1KBob, 0 7→ Js2KBob}

Let W1 = Jw2K; we have W1 R w2. Now, host Alice can reduce the if statement with an internal step in both W1 and w2,
which gives:

// Choreography
w′2 = Alice[Bob]⇝ 1; s1
// Alice
W ′1(Alice) = send 1 to Bob; Js1KAlice

// Bob
W ′1(Bob) = case (Alice⇝ Bob) {1 7→ Js1KBob, 0 7→ Js2KBob}
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Statements s ::= . . .
| h1 ⇝ h2[v/x]; s
| h1 ⇝ h2[v]; s

Figure 18. The syntax of asynchronous choreographies (extends fig. 6).

s
a−→a s′

s-COMMUNICATE-SEND

h1.v ⇝ h2.x; s
!h1h2v−−−−→a h1 ⇝ h2[v/x]; s

s-COMMUNICATE-RECEIVE

h1 ⇝ h2[v/x]; s
!h2h20−−−−→a s[v/x]

s-SELECT-SEND

h1[v]⇝ h2; s
!h1h2v−−−−→a h1 ⇝ h2[v]; s

s-SELECT-RECEIVE

h1 ⇝ h2[v]; s
!h2h20−−−−→a s

Figure 19. Stepping rules for asynchronous choreographies. These override the rules for −→r in fig. 14b.

Note that the process for Bob in W ′1 does not match Jw′2KBob, which is

Jw′2KBob = case (Alice⇝ Bob) {1 7→ Js1KBob}

(there is no case for 0).
Thus, we have W1 R w2, W1

!AliceAlice0−−−−−−−→ W ′1, w2
!AliceAlice0−−−−−−−→ w′2, but it is not the case that W ′1 R w′2. Lemma C.12 implies

W ′1 is uniquely determined, so there is no other W ′′1 related to w′2 that W1 can step to. Therefore, R is not a bisimulation.

Intuitively, when a choreography reduces an if statement, the branch that is not taken disappears in one step for all hosts.
However, in the projected program, each host reduces its corresponding case statement separately, which results in extraneous
dead branches during simulation. This is a known issue in the choreography literature [28], and it does not break bisimilarity,
but we need to be smarter about how to define R.

The solution to the issue raised by lemma G.1 is to ignore extraneous branches when defining R. Even though the configuration
W ′1 has “leftover” branches that projecting the choreography w′2 does not create, we know that these branches will never be
taken. So we can ignore these branches when defining R.

Following Montesi [28], we define w1 ⪰ w2 if w1 and w2 are structurally identical, except w1 has at least as many branches
in case statements as w2. We lift ⪰ pointwise to configurations. Now, we define W1 R w2 if W1 ⪰ Jw2K. We claim R is a
bisimulation. Further, the proof is split into showing the soundness and completeness of endpoint projection.

Lemma G.2 (Soundness of Endpoint Projection). If W ⪰ JwK and w
a−→c

r w
′, then W

a−→r W
′ for some W ′ ⪰ Jw′K.

Lemma G.3 (Completeness of Endpoint Projection). If W ⪰ JwK and W
a−→r W

′, then w
a−→c

r w
′, for some w′ with W ′ ⪰ Jw′K.

A. Handling Asynchronous Communication

We follow prior work [54, 61] and add syntactic forms to choreographies to represent partially reduced send/receive pairs
given in fig. 18. We extend endpoint projection so that the new syntactic forms are projected as a receive statement and a
message on the receiver’s buffer. For example, while Alice.v ⇝ Bob.x; s becomes a send on Alice and a receive on Bob,
Alice⇝ Bob[v/x]; s becomes a receive on Bob and a message (from Alice) in Bob’s buffer. We update the stepping rules
for communication and selection statements so that they reduce to the corresponding run-time terms, which in turn reduce to
their continuations. Figure 19 gives the updated rules.

These run-time terms are sufficient to restore perfect correspondence, and make lemmas G.2 and G.3 go through. We refer to
Cruz-Filipe and Montesi [54] for details.

Lemma G.4. If ϵ ⊢ w, then ⟨LwM,−→c
a⟩ ≥ ⟨LJwKM,−→r⟩.

Proof. Let S = A. Lemmas G.2 and G.3 immediately give a strong bisimulation.

B. Restoring Original Choreography Syntax

Lemma G.4 proves the correctness of endpoint projection for extended choreographies that have run-time terms. Next, we
show a simple simulation that a choreography with run-time terms simulates one without, removing the need to reason about
run-time terms in other proof steps.

Lemma G.5. If ϵ ⊢ w, then ⟨LwM,−→c
r⟩ ≥ ⟨LwM,−→c

a⟩.
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Proof. The simulator follows the control flow by maintaining a public view of the extended choreography ⟨LwM,−→c
a⟩ and

runs the adversary against this view. The simulator behaves the same as the adversary, except when the adversary schedules a
run-time term, the simulator takes an internal step (and does not schedule the original choreography).

Proof of theorem VII.1. By lemmas G.4 and G.5 using the transitivity of UC simulation.

32


	Introduction
	Overview
	Information Flow Control
	Compilation
	Defining Correctness
	Roadmap of Correctness Proof

	Semantic Framework
	Specifying Security Policies
	Authority of Hosts
	Capturing Attacks with Labels

	Protocol Synthesis
	Source Language
	Choreography Language
	Operational Semantics of Choreographies
	Ideal Semantics
	Real Semantics
	Concurrent Lifting for Choreographies
	Processes

	Compiling to Choreographies
	Information-Flow Type System
	Synchronization Checking

	Modeling Malicious Corruption

	Correctness of Protocol Synthesis
	Correctness of Host Selection
	Correctness of Sequentialization
	Correctness of Ideal Execution

	Endpoint Projection
	Hybrid Distributed Language
	Compiling to Distributed Programs
	Correctness of Endpoint Projection

	Cryptographic Instantiation
	Secure Instantiation of Cryptography

	Security Preservation
	Related Work
	Conclusion and Future Work
	Acknowledgments
	Details for Section IV (Specifying Security Policies)
	Details for Section V-C (Operational Semantics of Choreographies)
	Properties of the Choreography Language
	Typing and Synchronization
	Operational Semantics

	Details for Section VI-B (Correctness of Sequentialization)
	Details for Section VI-C (Correctness of Ideal Execution)
	Details for Section VII (Endpoint Projection)
	Details for Section VII-C (Correctness of Endpoint Projection)
	Handling Asynchronous Communication
	Restoring Original Choreography Syntax


