
PDL
A High-Level Hardware Design Language for Pipelined Processors

Drew Zagieboylo
Department of Computer Science

Cornell University
dz333@cornell.edu

Charles Sherk
Department of Computer Science

Cornell University
cs897@cornell.edu

G. Edward Suh
School of Electrical and Computer Engineering

Cornell University
suh@ece.cornell.edu

Andrew C. Myers
Department of Computer Science

Cornell University
andru@cs.cornell.edu

Abstract
Processors are typically designed in Register Transfer Level
(RTL) languages, which give designers low-level control over
circuit structure and timing. To achieve good performance,
processors are pipelined, with multiple instructions execut-
ing concurrently in different parts of the circuit. Thus even
though processors implement a fundamentally sequential
specification (the instruction set architecture), the imple-
mentation is highly concurrent. The interactions of multiple
instructions—potentially speculative—can cause incorrect
behavior.
We present PDL, a novel hardware description language

targeted at the construction of pipelined processors. PDL pro-
vides one-instruction-at-a-time semantics; the first language
to enforce that the generated pipelined circuit has the same
behavior as a sequential specification. This enforcement facil-
itates design-space exploration. Adding or removing pipeline
stages, moving operations across stages, or otherwise chang-
ing pipeline structure normally requires careful analysis of
bypass paths and stall logic; with PDL, this analysis is han-
dled by the PDL compiler. At the same time, PDL still offers
designers fine-grained control over performance-critical mi-
croarchitectural choices such as timing of operations, data
forwarding, and speculation. We demonstrate PDL’s expres-
sive power and ease of design exploration by implementing
several RISC-V cores with differing microarchitectures. Our
results show that PDL does not impose significant perfor-
mance or area overhead compared to a standard HDL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00
https://doi.org/10.1145/3519939.3523455

CCS Concepts • Hardware → Hardware description
languages and compilation; • Software and its engineer-
ing→ Compilers.

ACM Reference Format:
Drew Zagieboylo, Charles Sherk, G. Edward Suh, and Andrew C.
Myers . 2022. PDL : A High-Level Hardware Design Language for
Pipelined Processors. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation (PLDI ’22), June 13–17, 2022, San Diego, CA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3519939.
3523455

1 Introduction
To achieve high performance, processors parallelize the exe-
cution of sequential instruction streams through pipelines,
achieving high throughput via microarchitectural optimiza-
tions such as bypassing, speculation, and out-of-order exe-
cution. Processor designs are inherently complex since they
must respect the sequential semantics of the instruction set
architecture (ISA) despite aggressively executing operations
in parallel. Processors are usually designed using hardware
description languages (HDL) that operate at the register
transfer level (RTL), providing low-level control but at the
cost of highly parallel semantics thatmake reasoning difficult.
This combination of complexity and RTL abstraction makes
it difficult to achieve high confidence in the correctness of
processor implementations. In practice, RTL processors are
usually validated via simulation or bounded model check-
ing: techniques that have seen practical success but cannot
expose all bugs in large designs [13, 20].
We propose a new approach, a Pipeline Description Lan-

guage (PDL) that raises the level of abstraction to specifically
target the construction of processor pipelines. PDL allows
designers to easily specify the intended functionality of a
processor, while still giving them fine-grained control over
its microarchitecture and performance. Designers can de-
marcate stage boundaries, ensuring each stage executes in a
single clock cycle. PDL introduces hazard locks, which ab-
stract different implementations of stalling and bypass logic

https://doi.org/10.1145/3519939.3523455
https://doi.org/10.1145/3519939.3523455
https://doi.org/10.1145/3519939.3523455

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

1 pipe cpu(pc)[rf, imem , dmem] {
2 acquire(imem[pc], R); // IFETCH STG
3 insn <- imem[pc];
4 release(imem[pc]);
5 --- // DECODE STG
6 op = insn {6:0};
7 // decode logic for rs1 ,rs2 ,etc.
8 acquire(rf[rs1], R); acquire(rf[rs2], R);
9 rf1 = rf[rs1]; rf2 = rf[rs2];
10 release(rf[rs1]); release(rf[rs2]);
11 if (writerd) reserve(rf[rd], W);
12 --- //EXEC STG
13 alu_out = alu(alu_op , alu_arg1 , alu_arg2);
14 offset = calc_offset(op, pc, imm , alu_out);
15 // start next instruction
16 call cpu(pc + offset);
17 --- //MEM STG
18 acquire(dmem[alu_out]);
19 if (isStore(op)) { dmem[alu_out] <- data; }
20 if (isLoad(op)) { rddata <- dmem[alu_out]; }
21 else { rddata = alu_out; }
22 release(dmem[alu_out]);
23 --- //WB STG
24 if (writerd) { block(rf[rd]);
25 rf[rd] <- rddata;
26 release(rf[rd]); }
27 }

Figure 1. Abbreviated PDL code for a 5-stage RISC pipeline.

to prevent data hazards. Additionally, PDL offers a specula-
tion API that enables pipelines to flexibly initiate and resolve
branch prediction. Lastly, PDL supports a limited form of
out-of-order execution.
Despite this microarchitectural control, PDL provides an

easy-to-understand one-instruction-at-a-time semantics. The
realized behaviors of pipelines are consistent with an exe-
cution that runs each instruction completely in sequence.
This strong assurance allows designers and static analysis
tools to easily reason about the behavior of a design with
respect to a sequential specification, facilitating design space
exploration.

As such, PDL does not directly support architectures with
relaxed consistency guarantees, such as the memory models
of multicore architectures. Nor can PDL express all pipelined
architectures, such as superscalar or 2D systolic arrays. Lastly,
PDL does not provide strong guarantees about the timing
of updates to architectural state, and thus cannot reason
precisely about timing channels. Supporting more relaxed
definitions of correctness, microarchitectural expressivity,
and precise reasoning about timing are interesting potential
future extensions to PDL.

In this work we present the following:
• An overview of the PDL language and its microarchi-
tectural abstractions for pipeline structure, data hazard
resolution, and speculation.

• An informal presentation of PDL’s semantics, correct-
ness assurance, and advantages over RTL.

• A description of the PDL compiler implementation.
• Evidence of PDL’s expressivity, practicality, and utility
in design-space exploration. To do so we evaluate the
performance of several RISC-V cores, implemented in
PDL with differing microarchitectures.

2 Pipeline Description Language
In an RTL implementation, the designer must explicitly in-
stantiate registers to store each pipeline stage’s inputs and
mustmanually coordinate the communication between stages.
PDL, in contrast, only requires the user to specify the core
functionality as an imperative-style program; then they can
employ a few key microarchitectural primitives to control
the pipeline’s structure and performance. The PDL com-
piler automatically generates the registers and control logic
necessary to split the pipeline into multiple, concurrently
executing stages. The PDL compiler also makes it safe and
easy to alter the pipeline structure or to move functionality
across stages, without worrying about introducing bugs.

2.1 Language Design
Figure 1 demonstrates some features of PDL by presenting an
abbreviated RISC processor. The code in this example is more
similar to an imperative program than typical RTL code, and
can mostly be understood via the straightforward impera-
tive interpretation. Syntax for combinational logic in PDL is
mostly standard, with support for sized integers and typical
operators such as bit selection and concatenation. Variables
are declared and assigned exactly once, like Verilog [27]
wires. Array access notation denotes a request to a mem-
ory, which is any stateful, addressed data structure, including
registers; it need not be implemented as SRAM/DRAM. Mem-
ories may be declared as providing either combinational or
synchronous read access1. The read at line 3 is made with
the arrow (<-) notation because imem has a synchronous in-
terface: its data cannot be used until the next pipeline stage.
Modern processors often contain pipelined subcomponents:
PDL thus supports a call statement that allows one pipeline
to make a synchronous request to another, e.g.:
int <32> divres <- call multi_cycle_div(arg1 ,arg2);

The above example sends a request to a pipelined divider,
multi_cycle_div. The subsequent stage in the primary pipeline
will wait for the divider’s response before executing.

Pipeline Structure Stage separators (---)2 control the struc-
ture of a pipeline, breaking up combinational logic across
multiple clock cycles.

1Synchronous means that requests and responses are coordinated via a
clock-edge aligned protocol, such as a ready-valid interface.
2This notation is inspired by Dahlia’s [16] ordered composition operator.

A High-Level HDL for Pipelined Processors PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 1. The hazard-lock interface with summarized requirements for using each operation.

Operation Description Requirements

reserve(m[a], R/W) Defines the intended order of memory ops Lock has not been acquired and is executed dur-
ing an in-order stage.

block(m[a]) Stall the current thread until it can execute the associated op Lock is “reserved”.
acquire(m[a], R/W) Syntactic sugar for reserve;block Same as reserve.
read/write(m[a]) Execute the op, potentially forwarding data Lock is “acquired” via block().
release(m[a]) Release lock resources associated with op and commit Read or write has executed, and release is exe-

cuted during an in-order stage.

checkpoint(m) Create a checkpoint of lock state Automatically inserted with final reservation.
rollback(c) Reset lock state to checkpoint c Automatically inserted with verify statements.

DISPATCH

DIV

DMEM WB

coordination tag

Figure 2. Stage graph of a pipeline with unordered DIV and
DMEM stages. Each stage can execute different instructions
in parallel: an in-order issue, out-of-order execute pipeline.
The coordination tag is used to re-establish the original exe-
cution order in the WB stage.

Although each instruction flows through pipeline stages in
sequence, stages actually execute in parallel and can process
multiple instructions at a time. For the most part, separa-
tors can be placed wherever the designer wishes, to tune
the critical path of the realized design without affecting the
functionality; PDL rejects any design that could violate one-
instruction-at-a-time semantics.

Out-of-Order Stages PDL is not limited to fully in-order
pipeline descriptions; placing stage separators inside con-
ditional branches describes a pipeline as a directed acyclic
graph. While instructions travel through the ordered stages
of the pipeline in the same order they were started, this is
not true for unordered stages. Consider the following CPU
design, which utilizes the aforementioned call statement
to execute division in a separate pipeline, but still allows
memory access operations to execute in parallel:
// DISPATCH
if (isDiv) {

--- //DIV
int <32> res <- call multi_cycle_div(arg1 ,arg2);

} else {
int <32> addr = arg1 + off;
--- //DMEM
int <32> res <- dmem[addr];

}
--- //WB
rf[rd] <- res;

Figure 2 visualizes the pipeline generated by this code snip-
pet. The DIV and DMEM stages may execute in parallel,
despite being unordered. PDL ensures that the code follow-
ing the branch (the WB stage) does execute in order. PDL
generates coordination signals that record the original exe-
cution order. The DISPATCH stage enqueues a tag indicating
which branch an instruction took; the WB stage uses this
queue to determine from which stage to receive its next
inputs, and stalls until that stage has completed execution.

Pipeline Threads In PDL, a pipeline body describes how to
sequentially process a single instruction. To initiate execution
of the next instruction, a recursive call is used, as at line 16.
The one-instruction-at-a-time semantics allows the designer
to think of these recursive calls as tail calls that occur at the
end of the pipeline body. Semantically, a pipeline is a loop
that processes one instruction per iteration.
The placement of the recursive call does not affect the

semantics of the generated circuit, but it does have an impact
on performance: it introduces concurrency. At this point in
the pipeline, the pipeline begins processing the subsequent
(called) instruction, in parallel with the rest of the current
instruction. We borrow the term thread from concurrent
software; each instruction is executed by a single thread that
travels through the pipeline independently, and potentially
in parallel with other threads. Thread order refers to the order
in which threads are initiated; it is equivalent to program
order in processors.

2.2 Preventing Data Hazards with Hazard Locks
A key to one-instruction-at-a-time semantics is ensuring that
pipelines are free of data hazards. Data hazards occur when
read and write operations on memories do not respect thread
order, and are typically prevented by explicit stall logic or
by bypassing values from writes to reads. For instance, in a
standard 5-stage processor pipeline, stall and bypass logic
are needed to prevent the following RISC-V [29] instruction
sequence from creating a read-after-write hazard:

lw a0, 0(sp) //load data from stack into a0
addi a0, a0, 1 // increment a0 register

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

Absent this logic, the read from register a0 in the second
instruction would occur before the load into a0, so the final
value of a0 would effectively ignore the load instruction.

Hazard Locks PDL introduces a novel hazard lock abstrac-
tion to prevent data hazards. Hazard locks encapsulate data
hazard prevention in a separate hardware module, whose
usage in the pipeline can be checked by the compiler. This
design contrasts strongly with traditional RTL development,
where bypass and stall logic is explicitly described by the de-
signer and manually integrated into the entire pipeline. RTL
hazard resolution logic is also non-modular and brittle; it can-
not be re-used across designs, and must often be changed if
the pipeline structure is modified. On the other hand, hazard
locks are a general abstraction that can express a variety of
different microarchitectural designs, from simple stall logic
to the renaming used in complex out-of-order pipelines.

As with traditional software locks, a thread must acquire a
hazard lock before accessing the associated memory location:
acquire(rf[rs1], R); // acquire READ lock for rs1
int <32> x = rf[rs1]; //OK: lock acquired
int <32> y = rf[rs2]; //ERROR: acquire missing

Similarly, hazard locks must eventually be released. To sup-
port implementations with a variety of performance charac-
teristics, PDL allows acquisition to be split into two phases:
reservation, and blocking until the reservation is fulfilled.
reserve(rf[rd], W); // reserve WRITE lock for rd
--- //(READ locks can be reserved too)
block(rf[rd]); //STALL this stage until OK to exec

The acquire operation is actually just syntactic sugar for the
sequence reserve followed by block in the same stage.
A key insight is that, even in highly speculative, out-of-

order processors, there is an in-order execution point where
the CPU establishes and records sequential data dependen-
cies in some data structure. We abstract this record-keeping
point as lock reservation; it must execute in thread order, but
still allows execution to proceed freely. Blocking represents
the point in the pipeline when a stage may be forced to stall
lest it observe a stale value or incorrectly overwrite state.
Writing data makes it available for bypassing, and releasing
the lock represents the actual, in-order commit point.
Table 1 lists a summary of the hazard lock interface and

how the PDL compiler restricts its use. For brevity, we often
refer to hazard locks as “locks” in the remainder of the paper.

2.3 Refining the Hazard Lock Abstraction
While the lock abstraction allows PDL to reason aboutwhether
a design is free of data hazards, different lock implemen-
tations have different performance characteristics. PDL is
bundled with a small library of lock implementations reflect-
ing different microarchitectural designs; designers can also
implement and use their own unique locks in RTL. Here we
present the implementations we have developed.

Queue Lock The simplest lock implementation is a First-
In-First-Out (FIFO) queue of reservation requests for a given
memory location. Reserve enqueues a request. Block stalls
until the associated reservation is at the head of the queue.
Read and write access memory normally. Release dequeues
the reservation. The implementation refines the specification
required by PDL, but assumes we have a separate queue for
each memory location: an obvious impracticality for large
memory. To efficiently implement queue locks, we provide a
fully associative array of queues. In this way, any location
can be associated with any queue and is disassociated once
the queue is completely empty (and is therefore reusable by
another location). The size of the associative array and the
depth of the queues are design parameters that may influence
performance; for instance, attempting to reserve an unused
location when all queues are in use could cause pipeline
stalls. This lock represents a simple but low-performance
design: it has stall logic but no bypassing paths between
conflicting writes and reads.

Bypass Queue To support in-order cores with bypassing,
we implemented a lock which commits writes to the memory
in reservation order, but allowswrite values to be bypassed to
reads by storing them in a temporary buffer. We implement
this lock as a queue of write addresses, values, and valid bits.
Reserve write enqueues the address and sets the associated
valid bit to 0. Block write is a no-op, and writes update the
data and valid bits of the associated queue entry. Release then
commits the write to the actual memory.
Reserve read checks for conflicting writes and updates a

register with the entry number of the given write. Block
read stalls until the conflicting write has executed (if there
is one), and reading either forwards data from the write or
reads directly from the memory. Release read frees internal
state for future read reservations. This implementation also
buffers read data so that access to the memory occurs in
the same cycle as reservation, and includes combinational
bypass paths so that writes are observable to reads in the
same cycle. With this implementation, we can fully bypass a
standard 5-stage in-order core.

Renaming Register File We also implemented the lock
interface with a renaming register file of the kind used in
modern out-of-order processors. A renaming register file
maintains a table that maps architectural register addresses
(a.k.a. names) to physical names, and stores data in a tradi-
tional register file indexed by physical names. Lock reserva-
tion translates to physical name allocation for writes, and
physical name lookup for reads. A vector of per-register
valid bits tracks their status: they are set to 0 on allocation,
and 1 once data is written. Block operations are no-ops for
writes and check the appropriate valid bit for reads. Release
operations are no-ops for reads, but for writes they add the
old name mapping to a free list for future allocation. Like
the Bypass Queue, this implementation can fully bypass a

A High-Level HDL for Pipelined Processors PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 2. Speculation operations supported by PDL.

Operation Description

s <- spec call pipe(pred) Spawn a speculative thread using value pred.
update(s, npred) Update the prediction for speculation s using npred.
verify(s, real) {pred(...) } Mark speculative thread s as correctly or mispredicted by comparing the value of real to the original

prediction; optionally, update external predictor module pred.
spec_check() Kill the current thread if it has been mispredicted.
spec_barrier() Stall until this thread’s status is known. If mispredicted, then kill this thread.

5-stage pipeline, although it is also general enough to be a
good fit for a Tomasulo-style out-of-order machine [28].

2.4 Speculation
Speculation is critical for processor performance, and PDL
enables a large class of speculation through speculative call
statements. As with locks, PDL offers a modular abstraction
for speculative operations, summarized in Table 2. Designers
can initiate a speculative thread, mark it as (mis)predicted,
update a prediction, and kill speculative threads. In PDL,
all speculation is made explicit, even speculation that is of-
ten overlooked in processors: the typical pc + 4 prediction
that instructions usually execute sequentially. The following
snippet implements this speculation:
spec_check (); //Kill this thread if misspeculated
s <- spec call cpu(pc + 4); //Spawn a new thread

The spec call speculatively spawns a new thread with the
argument pc + 4 and produces a handle, s, used to later
reference this speculation. We refer to the thread making the
speculative call as the parent thread, and the thread created
by the speculative call as the child thread. In a pipeline that
uses speculation, every thread has the potential to be both
a parent and a child. For that reason, we use the operation
spec_check to kill the current thread if it is misspeculated.
Note that this check does not prevent “nested” speculation
(i.e., speculation initiated by an already speculative thread);
this check just ensures that already misspeculated threads do
not continue to speculate.
Eventually, the parent thread needs to verify whether its

prediction was correct:
s <- spec call cpu(pc + 4);
... //later in the pipeline
spec_barrier (); // blocking version of spec_check ()
verify(s, npc); //check that npc == pc + 4

The parent thread first ensures that it itself is non-speculative
with a blocking version of the speculation check. Then it
marks reference s with a single bit defining its correctness;
PDL automatically propagates the original prediction and
inserts a comparison with the given value. In this instance
the verify operation marks s as correct if npc == pc + 4. If
the prediction was wrong, the child thread will be killed once
it executes a spec_check or spec_barrier operation (often in

the same cycle). In this case, verify also causes the parent to
spawn a new, non-speculative, thread with the correct value.

PDL also supports an update operation that can be used to
compose both termination and speculation, by spawning a
new thread if the new (presumably more accurate) prediction
does not match the original and marking the old child thread
for termination.
PDL allows predictors to be implemented as modules in

RTL safely: predicted values cannot affect functional correct-
ness! Predictor accuracy has significant impact on processor
performance, so the ability to integrate custom predictors
without compromising PDL’s correctness assurance is criti-
cal for efficiency. The following example shows how to use
an external branch history table (BHT) for branch prediction:
s <- spec call cpu(pc + (bht.req(pc) ? imm : 4));
...
verify(s, npc) { bht.upd(pc, brTaken) }

The module bhtmust be declared earlier in the PDL program
as externally implemented with a req interface that produces
a boolean. A true value indicates the branch should be taken;
false means it should not. The predictor bht also provides
an upd interface that receives a pc and a “was taken” bit to
update its own internal state. Whenever verify executes, the
branch history table is also updated.

Implementation Like locks, speculation in PDL places few
restrictions on the structure and timing of the pipeline. To
achieve this, PDL stores speculation state in a table, which
threads can use to update and read speculative status. Spawn-
ing a thread allocates a new identifier. verify and update

statements mark a child thread’s entry as correct or incorrect.
Entries are freed whenever a child thread learns its specula-
tive status through spec_check and spec_barrier statements.
Importantly, whenever a verify or updatemarks an entry as
mispredicted, it also marks all newer entries as mispredicted
too. In this way, all threads will eventually be notified of their
status, even if their parent is killed before it calls verify.

This table is a straightforward circular buffer, which is also
synthesized with combinational bypass paths between the
status updates and speculation checks. These paths are nec-
essary when pipelines both speculate and resolve every cycle
(the typical case). However, representing this structure as a
registered table allows it to function even in loosely timed

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

scenarios, where threads may not check their speculative
status in every pipeline stage. This implementation requires
no strict assumptions about the timing of speculative checks
and verification operations, and frees PDL from the in-order
requirements of other tools that generate pipeline specula-
tion [18]. This design can contribute to the overhead of PDL
when building very simple processors whose control logic
can be manually optimized by reasoning about global invari-
ants. Nevertheless, it generalizes to more complex processors
which do not broadcast speculation results to every stage.

2.5 Supporting Speculative Reservation
For any given lock implementation, allowing speculative lock
reservation could lead to bugs; a thread holding a lock may
be killed, leading to an inconsistent lock state. To increase
the expressivity of PDL, we extend the lock abstraction with
checkpoint and rollback primitives that can be used to safely
undo speculative lock operations. A checkpoint causes the
lock to logically snapshot its current internal state and re-
turns a handle referencing this snapshot; rollback indicates
that the snapshot is no longer needed, and/or that the lock
should revert its internal state to the given snapshot.
Unlike the other lock operations, these need not be ex-

posed to the designer; these operations must be executed
exactly at certain points in the pipeline, and the compiler can
automatically insert them. Specifically, a checkpoint must be
taken atomically as each thread completes its reservations;
thereby making a checkpoint between the reservations of
a parent thread and its (speculative) child. Rollback invo-
cations must coincide with verify and update operations;
whenever a parent terminates its child thread, it should re-
vert all memories to the state that captures the parent’s
reservations, but not subsequent speculative ones. To il-
lustrate this, we annotate the following snippet where the
compiler would invoke checkpoint and rollback operations:

s <- spec call cpu(pc + 4); //...
if (writerd) { reserve(rf[rd],W); }
//c <- checkpoint(rf);
//take checkpoint after last reservation
...
verify(s, npc); // rollback(rf, c);
//undo speculative ops on rf if misprediction
// release lock state associated with checkpoint

Checkpoint Implementations We extend both the By-
passQueue and the Renaming Register File with standard
rollback mechanisms. The former requires little additional
state; the head of the write queue (i.e., most recently reserved
write) itself serves as a checkpoint. Rollback simply requires
invalidating all entries newer than that point and moving
back the write queue head. For the rename file, we repli-
cate the mapping table and free list; rollback resets the main
mapping table and free list to the indicated replica.

3 Sequential Pipeline Behavior
A central draw of PDL is that it allows designers and static
analysis tools to describe and reason about pipelines as se-
quential programs that process instructions one at a time.
Any PDL program accepted by the compiler can be automat-
ically translated—via a straightforward erasure process—to a
sequential program that serves as a specification of correct-
ness, which the pipelined circuit generated by PDL refines.

RTL languages have no such canonical sequentialization;
many hardware designs do not implement a sequential spec-
ification and thus may exploit the unfettered parallelism of
RTL. However, PDL’s one-instruction-at-a-time semantics
greatly simplify reasoning and can likely alleviate the scal-
ability problems of traditional RTL testing and verification.
For instance, to achieve soundness, bounded model checking
of RTL pipelines requires considering instruction sequences
long enough to saturate the pipeline [20]; applying this tech-
nique to PDL programs would only require analyzing se-
quences of length 1. Sequential software proof techniques,
such as Hoare logic [10], which are not easily adapted to RTL
languages, can also be applied to sequential PDL programs.

Assumptions PDL’s correctness relies on the correctness
of the compiler itself, and the RTL implementations of the
lock API. Namely, locks must ensure that reads and writes
must be stalled (via block) if they would produce observa-
tions inconsistent with the reservation order. We plan to
formalize this verification requirement, as well as the cor-
rectness of PDL’s overall design, in future work.
Locks can be verified using existing hardware verifica-

tion techniques [3, 13]. However, unlike verifying bypassing
networks in RTL processors, locks enable modular verifi-
cation: they can be verified in isolation, since PDL checks
that they are used correctly by the main pipeline. Modular-
ity also implies that locks may be reused across processor
designs, amortizing the effort of correctness proofs. Impor-
tantly, a verifier (human or tool) only needs to reason about
the software-visible architectural state, and does not need to
supply any global invariants about a pipeline’s microarchi-
tectural state, a notoriously difficult verification task [5, 33].

3.1 Extracting a Sequential Specification
A PDL pipeline can be understood as a sequential program
through a straightforward translation procedure. This pro-
gram effectively defines the behavior of the given PDL pipeline
as a sequence of updates to, and observations of, architectural
state. As an example, Figure 3 includes a simple pipeline, its
sequential interpretation, and a graph describing the circuit
structure. The steps for this translation are straightforward:

• Erase stage separators, speculation checks, initiation
and invalidation, and lock operations.

• Replace verify statements with call statements
• Delay memory write and recursive call statements to
the end of the pipeline.

A High-Level HDL for Pipelined Processors PLDI ’22, June 13–17, 2022, San Diego, CA, USA

1 pipe ex1(in)[m]: {
2 spec_barrier ();
3 s <- spec call ex1(in + 1);
4 reserve(m[in], R);
5 acquire(m[in], W);
6 m[in] <- in; release(m[in], W);
7 ---
8 block(m[in], R);
9 a1 = m[in]; release(m[in], R);
10 verify(s, a1);
11 }

(a) Original PDL Code

1 pipe ex1(in)[m]: {
2 a1 = m[in];
3 m[in] = in;
4 call ex1(a1);
5 // Erased ---
6 // Erased Spec Operations
7 // Erased Lock Operations
8 // Delayed Write Operation
9 // Replaced verify () with

tail call
10 }

(b) Code representing sequential
semantics

S1

spec

S2

verify

(c) Stage Graph
Representing the Pipelined

Circuit

Figure 3. Interpretations of a Sample PDL Pipeline

Erasing microarchitecure-controlling primitives is intu-
itive; by design they should have no impact on the intended
functional behavior of the pipeline. Verifying speculation
is the exception, as it does imply functionality; however,
without any speculative events it reduces to unconditionally
spawning a child thread (i.e., a recursive call).
We also apply reordering transformations on memory

writes and recursive calls. Memory writes are delayed un-
til after all reads, and recursive call statements are moved
to the end of the program to become tail calls. In the real-
ized pipeline, the placement of these statements have per-
formance impact (and often placing them earlier is better);
functionally, their location in the program should have no
impact. For call statements, this property is obvious; since
call initiates the next instruction, its behavior should be
sequenced after all of the operations for the current thread.
For memory writes, we made a simplifying design decision
to declare that their effects are not visible to the current
thread. This decision simplifies locks so that they do not
need to consider dependencies between reads and writes
from the same thread, as no thread may read its own writes.
Conveniently, this transformation also produces programs
that align with typical ISA semantics; when a location is
both read and written by an instruction, the read appears to
occur before the write.

The obvious operational interpretation of these sequential
specifications (such as Figure 3b), yields a definition of cor-
rectness for the generated circuit; the effects on memories
referenced by the pipeline appear to happen one iteration
at a time, in sequence. Thus, each iteration corresponds to a
single instruction that may read and write shared memory,
and lastly determines which instruction to execute next.

3.2 Informal Correctness of PDL
We briefly justify why the PDL compiler only generates
pipelines whose concurrent execution is consistent with the
behavior of their sequential interpretation.

Preventing Data Hazards In PDL, locks do the “heavy
lifting” to prevent data hazards. As explained in Section 2.3,
locks implement stall, bypass, and commit logic for each
memory that the pipeline accesses, and expose this logic
through the lock interface in Table 1. PDL confirms that
this interface is used appropriately, and rejects pipelines
in which data hazards could still occur. Specifically, lock
implementations need to assume that:

• Reservations are made in the intended program order.
• Stages check that block returns true before accessing
memory.

• Write locks are released (committed) in program order.

The PDL compiler rejects any pipeline description inwhich
these three requirements may not be satisfied. To enforce
them, it checks that each lock is used in the intended se-
quence (i.e., reserve; block; access; release), and that the reserve
and release operations are guaranteed to execute in thread
order. The former is easily checked with a path-sensitive
analysis (see Section 4.3). The latter requirement necessitates
reasoning about the possible parallelism in the compiled de-
sign. PDL does not reason about concrete timing of stage
execution. Instead, by examining the structure of the stage
graph, it proves that all threads must traverse, in thread order,
the stages that contain reserve and release write statements
for a given memory. For example, if all reserve statements
for a given memory only occur in a single stage, in-order
reservation is trivially satisfied. Section 4 discusses how the
PDL compiler implements these checks in more detail.

Speculation Correctness We also argue that speculation
does not influence the observations of threads in PDL pipelines.
PDL guarantees this by validating the following conditions:

• All speculative calls are verified or killed accurately.
• Misspeculated threads are rolled back before commit-
ting writes

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

PDL Compiler

Program
checker

Z3 SMT Solver

PDL Program

Pipeline

RTL Lock

Figure 4. Each PDL program is checked for well-formedness
and correct lock usage, relying on Z3 for its path-dependent
analyses. If successful, it produces a BSV pipeline. Locks are
implemented in RTL and not checked for correctness.

PDL establishes a key invariant that simplifies correctness
reasoning around speculation: all speculative calls are re-
solved in thread order. PDL enforces this by restricting verify
statements to non-speculative threads. If speculation were
resolved out of order, then a verified threadmight still be spec-
ulative and PDL would need a more complicated speculation
tracking and resolution mechanism. Instead, PDL guarantees
that each verify statement fully determines the speculative
status of its child thread: either it was correctly predicted,
or it and its children were all misspeculated. Through an-
other path-sensitive analysis, the compiler ensures that all
speculation is eventually resolved by the parent.
Intuitively, PDL checks that reservations to write locks

(i.e., those that can change the observations of other threads)
are rolled back before they can influence non-speculative
threads, if they were misspeculated. Since speculation verifi-
cation happens in order, the rollback event associated with
that verification resets all speculatively updated locks to
a point right after the parent’s reservations. Effectively, in
addition to terminating all speculative threads, verification
signals for locks to undo all speculative modifications to
their state. We also require that write locks are not released
by speculative threads; this prevents writes from becoming
permanent before misspeculation is discovered.

4 Rule Checking
This section expands on the details of the PDL compiler’s pro-
gram checking process which defends the intuition outlined
in Section 3. Figure 4 visualizes the end-to-end checking and
compilation process.

4.1 Lock Checking
In addition to standard type checking rules, PDL has a unique
set of restrictions for locks to ensure that the realized, parallel
design accesses locks correctly.

• Locks must be reserved in thread order.

• Each threadmust use locks in the appropriate sequence:
reserve; block; read/write; release.

• Write locksmust be released non-speculatively in thread
order.

The first and third restrictions are checked by proving that all
of the reserve and release operations occur during in-order
stages of the pipeline.We establish in-orderness by construct-
ing the stage graph for the pipeline; if a stage is ordered with
respect to all other stages, then it will be executed by threads
in order. We slightly relax this restriction, allowing these
operations for a given memory to occur inside at most one
branch of an out-of-order region. For instance, in Figure 2
it is safe if all reservations for access to data memory occur
in the DMEM stage. Although it is unordered with respect to
the DIV stage, DIV does not make any reservations and thus
races to reserve locks cannot occur.
Reservations must also happen atomically, meaning that

thread i makes all of its reservations for a given memory
before thread i + 1 makes any. The PDL compiler ensures
atomicity by annotating the start and end of a lock region: the
set of stages in which the reservations for a given memory
occur 3.
reserve(m[a], R); //Start Lock Region m

reserve(m[b], W); //End Lock Region m

The compiler inserts control logic to ensure that only a single
thread may execute inside a lock region at a time. However,
in practice the region is usually only a single stage and no
extra logic is needed or used. The main use of multi-stage
reservation is for indirect references:
acquire(m[a], R); //Start Lock Region m
b <- m[a];

acquire(m[b], W); //End Lock Region m

This pipeline cannot reserve all aliasable memory locations
in a single stage, because it must read from m before knowing
all the addresses to reserve. While this pattern can arise in
certain pipelined circuits, it is uncommon for processors.
Importantly, atomicity is only required for all of the reser-
vations of a given memory; reservations for two different
memories may occur in different stages without synchro-
nization penalty, since those reservations cannot possibly
alias each other.

4.2 Speculation Checking
PDL limits the use of speculation to ensure that the final
design is equivalent to a non-speculative version. First, we
check that all speculative calls are eventually verified across
any program path; this uses the same machinery as checking

3The designer may also manually place these annotations and compiler will
check that they actually wrap all of the reservation operations for the given
memory.

A High-Level HDL for Pipelined Processors PLDI ’22, June 13–17, 2022, San Diego, CA, USA

UNKNOWN

SPECULATIVE NONSPECULATIVE

spec_check

spec_barrier

Figure 5. A state machine representation of the typestate
used to check speculative status of pipeline threads.

that lock operations are called in the correct sequence and is
described in more detail in Section 4.3. Second, PDL prevents
speculative effects from being observable by non-speculative
threads via restricting the set of operations that speculative
threads may execute. We adapt typestate [26] to determine
the speculative status of threads in any given stage. Threads
can transition between three states: Unknown, Speculative,
and Nonspeculative4, beginning in state Unknown and using
the speculation primitives to transition to other states. Fig-
ure 5 illustrates the relationship between typestates and
these primitives.
The non-blocking check spec_check transitions to Spec-

ulative, only establishing that the thread is not definitely
misspeculated. After a stage separator, if Speculative, the
typestate is reset to Unknown since its status may have been
resolved by the time the thread executes the next stage. The
only way to establish that a thread is Nonspeculative is to
use a blocking check spec_barrier. Unknown threads may not
make speculative calls or reserve locks, as these operations
(if made by an already misspeculated thread) could cause
races on starting new threads, and inconsistent lock state,
respectively. Neither Unknown nor Speculative threads may
verify their own speculation or release write locks, lest they
permanently update lock state and write data that some
non-speculative thread may read before they are rolled back.

4.3 Path-Sensitive Checking
PDL cannot rely on purely syntactic type checking to prove
that locks transition through the correct sequence of states.
Since the placement of operations and stage separators in-
side conditional branches can influence the structure of the
pipeline, it is important to allow flexible placement of lock
operations. For example, a purely syntactic type checker
could not prove the following code snippet reserves the lock
before blocking on it:
if (writerd) { reserve(rf[rd], W); }

if (writerd) {

block(rf[rd]); rf[rd] <- wdata; release(rf[rd]);
}

4We do not need a Misspeculated state since misspeculated threads
will automatically be terminated and will not execute code following the
speculation check operations.

To permit such programs, we generate constraints to prove
that locks are in the necessary state when they are used. The
compiler runs an abstract interpretation over the program
that approximates branch conditions using variable equality
and boolean logic. To allow the compiler to precisely check
lock usage, designers need only to simplify branch conditions
into booleans or comparisons between variables. We then
employ the Z3 SMT solver [8] to verify that the constraints
are satisfied. The same code snippet follows, annotated with
the information derived by our compiler and checked by Z3:

if (writerd) { // LockState: free
reserve(rf[rd], W);

} // Lockstate: writerd => reserved
// ^ !writerd => free

if (writerd) {

block(rf[rd]); rf[rd] <- wdata; release(rf[rd]);
} // Lockstate: writerd => released

// ^ !writerd => free

PDL also uses this technique to confirm that speculative
calls are resolved and that pipeline call statements are well-
formed: each thread either makes a single recursive call, or
outputs a value. In other words, each thread may either
spawn a single child thread or terminate.

5 Implementation
Our prototype implementation of the PDL compiler is writ-
ten in 10K lines of Scala; the lock implementations are writ-
ten in 1.7K lines of Bluespec System Verilog (BSV) [17] and
1K lines of Verilog5. Given a PDL source program, the PDL
compiler produces a BSV module that implements the speci-
fied design. From this module, the open-source BSV simula-
tor and compiler can be used to run simulations or produce
synthesizable Verilog. We chose BSV as a target language
since it provides a natural translation from PDL stages to
BSV rules. While this choice simplified code generation, it
is not a fundamental requirement; it is certainly possible to
implement a different back end for the PDL compiler target-
ing Verilog or another similar HDL. We implement locks in
a combination of BSV and Verilog; the Queue Lock is imple-
mented in BSV and the others are written in Verilog. The
language choice at this level is for convenience; in principle,
locks can be implemented in any RTL language.

5.1 Code Generation
In BSV, each rule is guaranteed to execute atomically in a
single clock cycle; additionally, one can provide conditions
that prevent BSV rules from executing. Given these con-
ditional rules, BSV will automatically generate the control
logic necessary to execute as many each cycle as possible.
The PDL compiler’s strategy is to represent each pipeline

5The PDL compiler is open-source and can be found at: https://github.com/
apl-cornell/PDL.

https://github.com/apl-cornell/PDL
https://github.com/apl-cornell/PDL

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

Table 3. Performance in Cycles-Per-Instruction of multiple processor configurations on a selection of integer benchmark
kernels. All processors implement the RV32I ISA, except for the PDL 5Stg RV32IM configuration.

Processor coremark aes gemm gemm-block ellpack kmp nw queue radix GeoMean

Sodor 1.441 1.201 1.530 1.525 1.380 1.496 1.355 1.332 1.282 1.37
PDL 5Stg 1.436 1.230 1.529 1.525 1.380 1.496 1.376 1.332 1.282 1.39
PDL 3Stg 1.205 1.101 1.265 1.262 1.190 1.247 1.188 1.118 1.108 1.18
PDL 5Stg BHT 1.367 1.154 1.413 1.414 1.269 1.255 1.306 1.231 1.202 1.28
PDL 5Stg RV32IM 1.384 1.230 1.421 1.226 1.280 1.496 1.376 1.332 1.282 1.32

stage as a single BSV rule, and to supply conditions to stall
or kill a stage’s execution when necessary, according to the
appropriate PDL primitives.

We split the original PDL program into a DAG of pipeline
stages as described in Section 2.1. Live variable analysis
is used to annotate the edges between the stages with all
variables needed by a later stage. Each stage translates to a
single BSV rule, guaranteeing that all of its state-modifying
operations occur in the same cycle. Each edge translates
to a FIFO which stores the data communicated between
stages. The FIFO is an abstraction over pipeline registers; the
current compiler uses the default BSV FIFO implementation
(which employs 2 registers), but it could be replaced with a
single-register implementation. The only exception to this
generation mechanism are the coordination edges generated
to control out-of-order regions of the graph; these send only
a single value, used by the downstream stage to determine
which other input FIFOs to read from.

The combinational logic associated with each stage can be
generated in a straightforward fashion and placed outside of
the rules. The rule bodies contain all of the state-modifying
or inter-stage operations: FIFO en/dequeues, lock operations,
memory writes (and reads for synchronous memories), and
updating speculation status. Lastly, we generate PDL’s stall
conditions to prevent BSV from scheduling rules erroneously.
BSV automatically ensures rules do not execute when there
is no valid data or there is back pressure from a later stage
(i.e., the input FIFO is empty or the downstream one is full).
Thus we only need to add stall conditions for spec_check,
spec_barrier, and block commands and for stages that re-
ceive data from a variable-latency operation (e.g., responses
from synchronous memories or other PDL pipelines).
BSV automatically generates a schedule that executes as

many rules as possible within a single clock cycle; this cor-
responds to the control logic for stage activation. PDL does
not guarantee that this schedule is optimal. PDL does auto-
matically include two scheduling directives necessary for
high performance. One indicates to BSV that it is safe to exe-
cute all stages that send data to the beginning of the pipeline
(i.e., recursive call and verify statements) and appropriately
muxes the correct values based on misprediction logic. The

second ensures that BSV will make speculation results com-
binationally available to earlier stages (i.e., the misprediction
signal is propagated immediately to early stages that contain
spec_check or spec_barrier statements). With these direc-
tives, PDL can generate speculative pipelines that execute
one instruction per cycle.

6 Evaluation
To demonstrate PDL’s expressivity and efficiency, we present
a number of different implementations of the RISC-V32 ISA,
and compare their performance and area to a baseline im-
plemented in Chisel [2]. To measure software-visible perfor-
mance (cycles per instruction—CPI), we use RTL simulations
for the designs that simulate cache hits for every memory ac-
cess (single-cycle responses). To measure processor area, we
target a 100 MHz clock frequency using 45nm FreePDK [25]
technology and execute synthesis and place-and-route. In
our measurements we consider only the processor cores and
exclude caches and any other parts of the memory hierar-
chy since PDL was not used to generate that part of the
microarchitecture.

We compare the PDL-designed processors with the Sodor
processor in its fully bypassed configuration. Sodor is imple-
mented in Chisel and represents a standard 5 stage RV32I
processor [21]. First, we show that our processors can im-
plement a similar architecture. The PDL 5 Stage processor
divides functionality across stages in the same way as Sodor
and uses the Bypass Queue lock (see Section 2.3) to bypass
write data. The PDL processor also implements the same
speculation logic as Sodor, always predicting that branches
are not taken and suffering a 2-cycle stall on taken branches
and jumps. Both processors also experience the same stalls
for data hazards thanks to their bypassed designs; they stall
for 1 cycle, but only on load–use dependencies6.
The first two rows of Table 3 present the CPI of the de-

signs when executing a number of small benchmarks. The
first benchmark, coremark, is from the eembc [7] embedded
benchmark suite. The remainder of the benchmarks are the
selection of integer kernels from the MachSuite [19] that we
could successfully execute on the Sodor processor. There is
a small variance between Sodor and PDL 5Stg, especially in

6A load instruction whose value is used by the subsequent instruction.

A High-Level HDL for Pipelined Processors PLDI ’22, June 13–17, 2022, San Diego, CA, USA

14470 14624

19018 19581

Processor Configuration

A
re

a
(μ

m
2)

0

5000

10000

15000

20000

Sodor - No
Bypass

Sodor PDL 5 Stage - No
Bypass

PDL 5 Stage

Noncombinational Combinational

5 Stage Processor Design Area

Figure 6. Design cell area for 5 Stage processors both with
andwithout bypassing logic. Sodor is a baseline implemented
in Chisel. Results achieved using 45nm technology targeting
a 100 MHz clock frequency.

the aes benchmark; this is the result of a minor difference
in the benchmark binaries, which was required to be com-
patible with the test benches. We manually confirmed that
exactly the same stalls occurred in both pipelines and that
this CPI difference does not signal a difference in processor
performance.
Figure 6 shows the synthesis results for the Sodor and

PDL 5 stage processors. We also include the areas for non-
bypassed versions of both processors to measure the over-
head caused by including bypassing logic. The PDL processor
requires more area than the Sodor processor, and bypassing
induces a larger percentage overhead than in Sodor (2.96% in-
crease vs. 1.06%). Some of this area is due to less efficient stall
logic and pipeline register representation. Specifically, the
FIFO implementations consume significant combinational
and non-combinational area. These overheads are all artifacts
of the immaturity of the PDL compiler, and are not funda-
mental to PDL’s language design. Bypassing, on the other
hand, is more expensive in PDL than in the hand-written
version, because PDL assumes nothing about the timing or
coordination of stages and pays for this generality. In particu-
lar, the Bypass Queue requires a dynamic priority calculation
to determine which write is the most recent, and stores some
information redundant with data in pipeline registers.

Nevertheless, we are not concerned with this overhead for
two reasons. First, these cores are small and thus cache areas
would likely dominate costs in a complete chip. We used
CACTI [30] to estimate the area overhead when using even
tiny (4KB, 2-way associative) L1 data and instruction caches.
For this configuration, PDL induces only a 5% overhead when
considering the total area of core and L1 caches together;
this provides an upper bound on chip area overhead, as real

systems often use significantly larger caches. Second, in de-
signs that support any out-of-order execution (even mostly
in-order CPUs such as Ariane [31]), the complexity of PDL
locks is required by the implementation. The bypass logic
in Sodor is simple because the designer can statically know
which stages might contain the bypass data and in which
order to prioritize them. As soon as out-of-order behavior
is introduced, a dynamic mechanism (such as those imple-
mented in the PDL Bypass Queue and Renaming Register
File) becomes required to correctly forward write data.

6.1 Expressivity
Lastly, we highlight the expressivity of, and design explo-
ration enabled by, PDL. In addition to the 5 stage RV32I
processor, we present:

• A 3-stage RV32I core
• A 5-stage RV32I core with a branch history table
• An RV32IM core with parallel, pipelinedmultiplication
and division units

To demonstrate their microarchitectural differences, Table 3
also contains performances results for these three processors.
Deriving these other designs from the original required far
less effort than in a conventional design process. Reducing
the number of stages from 5 to 3 required eliminating two
stage separators, and modifying read locks to be reserved
and acquired in the same cycle; we used a slightly simpli-
fied version of the Bypass Queue to support this efficiently.
Adding a custom branch predictor required almost no change
to the PDL design since the same speculation primitives can
be linked with an external, RTL-implemented predictor. This
did involve changing some logic to update predictions in the
second pipeline stage once we determined an instruction
was a branch. We needed to modify only about 20 lines of
code from the original 5-stage design to implement each of
these microarchitectures.

The RV32IM processor required noticeably more effort—it
introduced new functionality and made the pipeline struc-
ture not fully linear. Similar to the design of the Ariane [31]
processor, the execute stages of this processor are split based
on functional unit (multiply, divide, ALU/memory), can ex-
ecute in parallel, and write back data out of order (when
using the Bypass Queue or Renaming Register File locks).
The multi-cycle divider and multiplier are both also imple-
mented as PDL pipelines. The former computes 1 bit of an
integer division per cycle and supports only 1 concurrent
operation; the latter takes two stages to implement integer
multiplication and is fully pipelined, supporting 2 concur-
rent operations. Together, these were written in 32 lines of
PDL code. A non-linear pipeline allows all execution units to
run in parallel without increasing pipeline depth, providing
a slight CPI benefit over a 5-stage in-order CPU, and this
structure reflects the microarchitecture necessary for high
performance in deeper and/or wider pipelines. Modifying

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

pipe cache(addr , dataIn , isWr)[entry , main]: int {
idx = getIdx(addr);
acquire(entry[idx], R);
cline = entry[idx]; release(entry[idx]);
hit = // cline is valid and matches addr
if (!hit || isWr) { reserve(entry[idx], W); }
if (hit || isWr) {

dout = // cline data for rd, else default val
output(dout); // enqueue response

}
maddr = alignAddr(addr);
if(!hit) { newline <- main[maddr]; }

if (!hit || isWr) { // update cache entry

newCline = // construct from newline and data
block(entry[idx]);
entry[idx] <- newCline; release(entry[idx]);

}
// queue response for cache miss
if (!hit && !isWr) {

output shiftOut(newline , getOffset(addr));
}}

Figure 7. Abbreviated PDL code for a direct mapped, write-
allocate, write-through cache.

the decode logic to support these new instructions and alter-
ing the pipeline structure required an additional 30 lines of
PDL code.

Non-processor Designs PDL is not inherently limited to
building processors; as described above, the multiplier and
divider in our RV32IM CPU were also implemented in PDL
as pipelines to which the main CPU issued requests. Further-
more, PDL can express pipelined modules that carry their
own state, and guarantees that requests make updates and
observations to that state in order. To demonstrate this fea-
sibility, we built a 2-stage direct-mapped data cache with a
write-allocate, write-through policy, in PDL. An abbreviated
version of the cache is shown in Figure 7. The cache con-
tains two memory references, its entry array of cache lines,
which would typically be implemented with SRAM, and a
main interface to DRAM. The first stage is responsible for
reading the appropriate cache line and issuing a request to
main memory on a cache miss, or responding to the “caller”
on a hit. The second stage waits for the response from main
memory and then updates the appropriate cache line. We
use the PDL Queue Lock to protect the data cache entries,
effectively stalling concurrent accesses to the same cache
line. We expressed this design in about 50 lines of PDL code.

7 Future Work
PDL provides the foundation for a new methodology of pro-
cessor development that can provide high-level semantics as

well as low-level control over hardware design. One poten-
tial opportunity enabled by PDL is to explore the develop-
ment of high-assurance microcontrollers for safety-critical
systems, such as pacemakers [24]. While PDL’s current fea-
tures are not extensive enough to implement a modern high-
performance processor, it should enable rapid but safe mi-
crocontroller development.

We also believe the PDL approach of abstracting common
microarchitectural structures can be extended to support
more advanced designs. For instance, PDL currently only al-
lows out-of-order execution inside branches; new extensions
that abstract reorder buffers and instruction schedulers could
enable instruction reordering at any point in the pipeline. An-
other potential extension would be to generalize speculation
from branch prediction to arbitrary value speculation.
To increase confidence in PDL’s claims, the semantics

and correctness guarantees of PDL could be formalized pre-
cisely, and the compilation strategy (or compiler itself) could
be proven correct. We also believe that PDL’s correctness
guarantees could be extended to provide security guaran-
tees. PDL’s explicit treatment of speculation as a language
construct may allow simpler reasoning about hardware spec-
ulation security properties, such as strictness-ordering [1]
or non-interference [32] of speculative state.

8 Related Work
An old but short line of work aims to automatically generate
pipelined processors from sequential specifications. Paul and
Kroening [14] generated the stall and forwarding logic for
an ordered list of stages with register assignments and com-
binational logic. Similarly, Nurvitadhi et al. [18] translate
“transactional specifications” into pipelines; their work sup-
ports speculation and allows developers to selectively enable
bypass paths via an iterative design tool. More recently, Liu
et al. [15] demonstrated, with their ASSIST framework, how
to synthesize high-performance, customized RISC architec-
tures from a micro-op language. All of these projects are
limited to strictly in-order pipelines, and can only generate
specific implementations of speculation and bypassing.
Although the ASSIST framework can search through dif-

ferent timings with varied number of stages and bypass
paths, it operates at a higher level of abstraction than PDL;
the designer has no control over pipeline organization or
optimization. This design makes autotuning tractable, but
greatly limits the space of possible processor designs. PDL,
on the other hand, admits more general pipeline DAGs that
do not require fully in-order execution, and is a language,
rather than a one-off tool. This enables static analysis and
other techniques to improve PDL and provide further guaran-
tees about PDL pipelines. PDL’s hazard locks and speculation
API offer more flexibility, demonstrating that processor com-
ponents with a variety of implementations can be abstracted
behind a single checkable interface.

A High-Level HDL for Pipelined Processors PLDI ’22, June 13–17, 2022, San Diego, CA, USA

TL-Verilog [11] is a language for designing pipelines with
abstract timing. As with PDL’s stage separators, TL-Verilog
allows the designer to split combinational logic into sequences
of stages with annotations. However, TL-Verilog’s focus is
on ensuring an equivalent semantics between the abstractly
timed design and the physically timed implementation. TL-
Verilog provides designers with low-level control of timing
but unlike PDL, does not prevent data hazards.
BSV [17], Koika [4] and the BSV-based Kami [5] are con-

sidered high-level HDLs, because their transactional “one-
rule-at-a-time” semantics can simplify correctness reasoning.
Rules in these languages must execute in a single cycle, and
thus their atomicity guarantees cannot automatically provide
the one-instruction-at-a-time semantics of PDL; in particular,
their compilers cannot automatically detect data hazards
like PDL can. However, PDL is targeted more specifically at
pipeline development, and thus these languages are more
general-purpose.
High-level synthesis (HLS) tools [6] might appear simi-

lar but aim to solve a very different problem: automatically
generating a timed hardware implementation from a sequen-
tial, untimed algorithm description. Because HLS primarily
focuses on statically scheduling dataflow operations across
hardware resources, it is unsuitable for synthesizing proces-
sors, which exhibit dynamic data dependencies. There are
some recent examples of simple HLS processors [23], but
these require the designer to explicitly denote bypassing
logic as if they were writing RTL. Researchers have recently
proposed using dynamic scheduling to improve the perfor-
mance of HLS pipelines [12], using load–store queues to both
enforce dynamic data dependencies and schedule memory
operations. Unlike all of these tools, which rely on automatic
scheduling, PDL gives hardware designers direct control
over pipeline design and timing. Additionally, PDL supports
integration with custom RTL implementations for breaking
data dependencies via its lock API, rather than requiring a
fixed implementation.

Type systems have been used in recent HLS languages [6]
to provide other forms of static guarantees, focusing on per-
formance rather than correctness. Dahlia [16] uses affine
types to ensure predictable performance and to avoid synthe-
sizing complex arbitration logic. Aetherling [9] automatically
compiles data-parallel programs to streaming accelerators,
using a type-directed search for hardware scheduling. Both
of these tools target development of statically scheduled
hardware accelerators rather than processors.

The Jade [22] language for distributed computing contains
primitives similar to PDL’s hazard lock reserve(). While
they are also used to manage concurrent access to shared
state, Jade locks do not support speculation and are not
statically checked for correct use.

9 Conclusion
PDL is a Pipeline Description Language that raises the abstrac-
tion of RTL to provide one-instruction-at-a-time semantics
while enabling efficient, parallel execution by modularizing
bypassing and speculation logic. PDL still gives architects
low-level control over the microarchitecture and timing of
their processor, and is compatible with RTL implementations
of modules for branch prediction and hazard resolution. We
have shown that a variety of RISC-V microarchitectures can
be implemented in PDL with acceptable overhead. Through
its flexible abstractions for hazard resolution and speculation,
PDL promises to ease the burden of processor verification
while still allowing out-of-order and speculative microarchi-
tectures.

Acknowledgments
This work was supported by the Department of Defense
(DoD) through the National Defense Science & Engineering
Graduate (NDSEG) Fellowship Program, and by NSF grants
1513797 and 1717554. We are grateful to Coşku Acay, Ryan
Doenges, Rolph Recto, Rachit Nigam, Adrian Sampson, our
reviewers, and our shepherd, James Bornholt, for their in-
valuable feedback on the paper. We also appreciate Kevin
Zhang’s contributions to the early development and testing
of the PDL compiler. Finally we would like to thank Muham-
mad Umar and Coşku Acay for their assistance in evaluating
the processor implementations and preparing the software
artifact for evaluation, respectively.

References
[1] Sam Ainsworth. 2021. GhostMinion: A strictness-ordered cache sys-

tem for Spectre mitigation. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’21). Association
for Computing Machinery, 592–606. https://doi.org/10.1145/3466752.
3480074

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: constructing hardware in a Scala embedded language. In
DAC Design Automation Conference 2012. IEEE, 1212–1221.

[3] Gregor V Bochmann. 1982. Hardware specificationwith temporal logic:
An example. IEEE Transactions on Computers 31, 03 (1982), 223–231.

[4] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. 2020. The
Essence of Bluespec: A core language for rule-based hardware design.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 243–257.

[5] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, and
Adam Chlipala. 2017. Kami: A platform for high-level parametric
hardware specification and its modular verification. In Int’l Conf on
Functional Programming (ICFP). 1–30.

[6] Cong, Jason and Liu, Bin and Neuendorffer, Stephen and Noguera,
Juanjo and Vissers, Kees and Zhang, Zhiru. 2011. High-level synthesis
for FPGAs: From prototyping to deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 30, 4 (2011),
473–491.

[7] Embedded Microprocessor Benchmark Consortium. 2021. EEMBC.
https://www.eembc.org/coremark/index.php. Accessed: 2021-08-01.

[8] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT
solver. In Proceedings of the Theory and Practice of Software, 14th Int’l

https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1145/3466752.3480074
https://www.eembc.org/coremark/index.php

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Drew Zagieboylo, Charles Sherk, Edward Suh, and Andrew Myers

Conf. on Tools and Algorithms for the Construction and Analysis of
Systems. Springer-Verlag, Berlin, Heidelberg, 337–340. https://doi.org/
10.1007/978-3-540-78800-3_24

[9] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat
Hanrahan. 2020. Type-directed scheduling of streaming accelerators.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 408–422.

[10] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (1969), 576–580.

[11] Steven F Hoover. 2017. Timing-abstract circuit design in transaction-
level Verilog. In 2017 IEEE Int’l Conf. on Computer Design (ICCD). IEEE,
525–532.

[12] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically
scheduled high-level synthesis. In 2018 ACM/SIGDA Int’l Symp. on
Field-Programmable Gate Arrays (FPGA). 127–136.

[13] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,
Jesse Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher
Taylor, Vladimir Frolov, Erik Reeber, et al. 2009. Replacing testing with
formal verification in Intel® CoreTM i7 processor execution engine
validation. In Int’l Conf. on Computer Aided Verification (CAV). 414–
429.

[14] Daniel Kroening and Wolfgang J. Paul. 2001. Automated pipeline
design. In 38th annual Design Automation Conf. (DAC). 810–815.

[15] Gai Liu, Joseph Primmer, and Zhiru Zhang. 2019. Rapid generation
of high-quality RISC-V processors from functional instruction set
specifications. In 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[16] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore
Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang.
2020. Predictable accelerator design with time-sensitive affine types.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 393–407.

[17] R. Nikhil. 2004. Bluespec System Verilog: Efficient, correct RTL from
high level specifications. InACMand IEEE Int’l Conf. on FormalMethods
and Models for Co-Design (MEMOCODE). 69–70.

[18] Eriko Nurvitadhi, James C Hoe, Timothy Kam, and Shih-Lien L Lu.
2011. Automatic pipelining from transactional datapath specifications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 3 (2011), 441–454.

[19] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and
David Brooks. 2014. MachSuite: Benchmarks for accelerator design
and customized architectures. In Proceedings of the IEEE International
Symposium on Workload Characterization. Raleigh, North Carolina.

[20] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David
Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and

Ali Zaidi. 2016. End-to-end verification of processors with ISA-Formal.
In Int’l Conf. on Computer Aided Verification (CAV). 42–58.

[21] Berkeley Architecture Research. 2021. Sodor Core. https://chipyard.
readthedocs.io/en/dev/Generators/Sodor.html. Accessed: 2021-08-01.

[22] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. 1993. Jade: A
high-level, machine-independent language for parallel programming.
Computer 26, 6 (1993), 28–38.

[23] Simon Rokicki, Davide Pala, Joseph Paturel, and Olivier Sentieys. 2019.
What you simulate is what you synthesize: Designing a processor core
from C++ specifications. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–8.

[24] Mostafa Sayahkarajy, E Supriyanto, MH Satria, and Hasri Samion. 2017.
Design of a microcontroller-based artificial pacemaker: An internal
pacing device. In 2017 International Conference on Robotics, Automation
and Sciences (ICORAS). IEEE, 1–5.

[25] James E Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love,
W Rhett Davis, Paul D Franzon, Michael Bucher, Sunil Basavarajaiah,
Julie Oh, et al. 2007. FreePDK: An open-source variation-aware design
kit. In 2007 IEEE international conference on Microelectronic Systems
Education (MSE’07). IEEE, 173–174.

[26] Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming
Language Concept for Enhancing Software Reliability. IEEE Transac-
tions on Software Engineering (TSE) 12, 1 (Jan. 1986), 157–171.

[27] Donald Thomas and Philip Moorby. 2008. The Verilog® hardware
description language. Springer Science & Business Media.

[28] Robert M Tomasulo. 1967. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development 11, 1
(1967), 25–33.

[29] Andrew Waterman and Krste Asanović. 2017. The RISC-V instruction
set manual, volume I: User-level ISA, Version 2.2. (2017).

[30] Steven JE Wilton and Norman P Jouppi. 1996. CACTI: An enhanced
cache access and cycle time model. IEEE Journal of solid-state circuits
31, 5 (1996), 677–688.

[31] F. Zaruba and L. Benini. 2019. The Cost of application-class processing:
Energy and performance analysis of a Linux-ready 1.7-GHz 64-Bit
RISC-V core in 22-nm FDSOI technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 27, 11 (Nov 2019), 2629–2640.
https://doi.org/10.1109/TVLSI.2019.2926114

[32] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers.
2015. A Hardware Design Language for Timing-Sensitive Information-
Flow Security. In Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 503–516. http://www.cs.
cornell.edu/andru/papers/asplos15

[33] Hongce Zhang, Weikun Yang, Grigory Fedyukovich, Aarti Gupta, and
Sharad Malik. 2020. Synthesizing environment invariants for modular
hardware verification. In International Conference on Verification, Model
Checking, and Abstract Interpretation. Springer, 202–225.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://chipyard.readthedocs.io/en/dev/Generators/Sodor.html
https://chipyard.readthedocs.io/en/dev/Generators/Sodor.html
https://doi.org/10.1109/TVLSI.2019.2926114
http://www.cs.cornell.edu/andru/papers/asplos15
http://www.cs.cornell.edu/andru/papers/asplos15

	Abstract
	1 Introduction
	2 Pipeline Description Language
	2.1 Language Design
	2.2 Preventing Data Hazards with Hazard Locks
	2.3 Refining the Hazard Lock Abstraction
	2.4 Speculation
	2.5 Supporting Speculative Reservation

	3 Sequential Pipeline Behavior
	3.1 Extracting a Sequential Specification
	3.2 Informal Correctness of PDL

	4 Rule Checking
	4.1 Lock Checking
	4.2 Speculation Checking
	4.3 Path-Sensitive Checking

	5 Implementation
	5.1 Code Generation

	6 Evaluation
	6.1 Expressivity

	7 Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

