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Abstract
Recent work has introduced class sharing as a mechanism for adapting a family of related classes with new func-

tionality. This paper introduces homogeneous family sharing, implemented in the J&h language, in which the sharing
mechanism is lifted from class-level sharing to true family-level sharing. Compared to the original (heterogeneous)
class sharing mechanism, homogeneous family sharing provides useful new functionality and substantially reduces
the annotation burden on programmers by eliminating the need for masked types and sharing declarations. This is
achieved through a new mechanism, shadow classes, which permit homogeneous sharing of all related classes in
shared families. The new sharing mechanism has a straightforward semantics, which is formalized in the J&h calcu-
lus. The soundness of the J&h type system is proved. The J&h language is implemented as an extension to the J&
language. To demonstrate the effectiveness of family sharing, the Polyglot compiler framework is ported to J&h.

1 Introduction
The goal of adaptation is to add new functionality to existing objects without modifying the original class definition.
The premise of this work is that language support for adaptation provides expressiveness needed for the extension,
evolution, and reuse of software systems, so programmers can build extensible systems from code that is simpler and
clearer.

The adapter design pattern [17] supports limited forms of adaptation, but it adapts only a single object at a time.
In general, program behavior is implemented by data structures composed of interacting objects. Adapting program
behavior to add new functionality therefore requires coordinated changes to objects in multiple, related classes. How-
ever, most language mechanisms that support adaptation, such as open classes [10], aspect binders [23], classboxes [3],
and expanders [44] operate on individual classes and consequently cannot support these coordinated changes.

In the context of inheritance rather than adaptation, coordinated changes to multiple classes are supported by family
inheritance mechanisms developed in recent work, e.g., [22, 15, 28, 30, 20]. Family inheritance enables a group of
classes contained in a common namespace—the base family—to be extended together to form a new group of new
classes—the derived family—while preserving the relationships that the classes had in the base family. In this work,
we build on the family inheritance mechanism of nested inheritance [28].

However, family inheritance does not support adaptation, because inheritance does not affect the objects of the
base family. The new mechanism introduced in this paper, homogeneous family sharing, does support adaptation at
the family level. With homogeneous family sharing, a derived family may be declared to share with a base family. Just
as with nested inheritance, the derived family inherits from the base family. Unlike nested inheritance, the base family
also inherits from the derived family, acquiring any new functionality that the derived family adds. Thus, sharing is
a bidirectional inheritance mechanism. New functionality, new state, and even new classes introduced in the derived
family are also present in the base family.

Homogeneous family sharing gives the ability to adapt families of interacting classes in a type-safe, modular way.
It enables new ways to safely extend software systems, even at run time as dynamic updates. This paper introduces
homogeneous family sharing in the J&h language1, which extends the J& language [30].

Class sharing as an adaptation mechanism was first introduced in the J&s language [36]. In J&s, sharing is
a relationship between individual classes, with some coordination at the family level. Unlike with homogeneous
sharing, J&s families need not share all of their nested classes; we call this heterogeneous sharing because classes are
not uniformly shared between families. This work addresses some of the shortcomings of heterogeneous sharing.

1pronounced “jet-h”
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class Button {

void draw(...) { ... }

}

class PrettyButton extends Button {

void draw(...) { . . . draw the shadow . . . }

}

Figure 1: A GUI button class and its extension

The principle of scalable extensibility [28] says that the code needed to make a change should be proportional to
the change in functionality. One shortcoming of heterogeneous sharing is a lack of scalability that arises because, in
general, sharing must be declared for each class individually. Homogeneous family sharing is more scalable because
sharing can be declared at the family level.

A second shortcoming of heterogeneous sharing is that to handle unshared classes safely, additional type-level
mechanisms are needed: masked types [35] and sharing constraints. By contrast, in homogeneously shared families,
all classes and all inheritance and sharing relationships are shared. As a result, J&h programs have lighter-weight type
annotations than in J&s; in particular, J&h dispenses with masked types and sharing constraints.

The contributions of this paper are, in summary:

• A clean generalization of sharing to families of classes. Compared to the previous work on heterogeneous
class sharing, homogeneous family sharing offers simpler typing mechanisms, requires simpler reasoning from
programmers, and improves scalable extensibility.

• Shadow classes, a new mechanism needed for safe homogeneous sharing. Shadow classes also provide a new
kind of extensibility unavailable in previous work: analogously to open classes [10], families become open,
allowing nested classes to be added without modifying the code of the family.

• A core language for homogeneous sharing, which is significantly simpler than the J&s calculus, and a proof of
the soundness of its type system.

• An efficient implementation of homogeneous sharing, supporting shadow classes.

• An description of how to use J&h to implement various kind of extensibility, and a report on experience using
J&h to build a version of the Polyglot compiler framework [29].

The rest of the paper is organized as follows. Section 2 introduces sharing for individual classes. Section 3 de-
scribes the core mechanisms underlying homogeneous family sharing. Section 4 formalizes the semantics of family
sharing, and sketches the proof of soundness. Full proofs are available elsewhere [37]. Section 5 presents the lan-
guage implementation, and Section 6 describes experience with it. Section 7 discusses related work, and Section 8
concludes.

2 Sharing and adaptation

2.1 From inheritance to sharing
In an object-oriented language, inheritance offers a way to reuse and extend existing code. For example, in the
Java code of Figure 1, a graphical user interface (GUI) library contains a Button class with a method draw for
drawing the button. Suppose the programmer wants buttons with a shadow underneath. The programmer could
declare a PrettyButton class that extends the original Button class through inheritance. In Figure 1, the subclass
PrettyButton overrides the draw method, originally introduced in the superclass Button, so that when the draw

method is called on an object of PrettyButton, the overriding version in the subclass is executed.
However, inheritance does not make the new shadow functionality available to the objects of the existing Button

class. An application that creates instances of the Button class cannot enjoy the prettier GUI element without code
changes, nor can a running application with Button objects be easily upgraded to the new look.
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Adaptation is the ability to augment existing objects with new functionality. The adapter design pattern [17] uses
wrappers to implement adaptation, but in general, it requires the programmer to write error-prone code relying on
statically unsafe type casts. The programmer also has to manually manage the relationship between the wrapper and
the adapted object, which becomes especially awkward for data structures made of objects requiring adaptation.

Sharing provides a language-based solution to the problem of adaptation. In J&h, the new PrettyButton class
may be declared to share with the Button class, rather than to inherit it:

class PrettyButton shares Button { ... }

The meaning of the declaration is twofold: first, that PrettyButton is a subtype of Button, just as with ordi-
nary inheritance; but second, that every Button object is also an object of PrettyButton. Because Button and
PrettyButton share the same set of object instances, the functionality implemented in PrettyButton is available
to every object of Button—even to objects created before PrettyButton was loaded into a running program—when
the programmer explicitly changes the view from Button to PrettyButton on the object.

An object of either of the two classes inherits functionality from the other class, and each class may also override
the other. Although classes share the same instances, the behavior of an object depends on which class an object is
being viewed from. If viewed as a Button, an object created as a PrettyButton may still access the original version
of the draw method. Sharing provides bidirectional adaptation while preserving object identity.

A sharing declaration establishes a sharing relationship between the two classes. All the sharing declarations
together induce an equivalence relation on classes that is the reflexive, symmetric, and transitive closure of the declared
sharing relationships. We write T1↔ T2 for two types that are (transitively) shared. To represent a sharing relationship
that holds between just the two classes A and B but not between any subclasses of A or B, we use exact types [5].
The exact type A! represents just A, but not its subclasses. Therefore Button!↔ PrettyButton! signifies a sharing
relationship on just these two classes.

Class sharing was introduced in J&s [36], but its original, heterogeneous form has limitations: first, J&s only allows
sharing between corresponding classes—classes of the same name and related through overriding—from different
families. Second, unlike family sharing in J&h, class sharing in J&s is a relationship on the shared classes themselves;
it does not cause sharing of classes nested inside the sharing classes. The homogeneous sharing mechanism proposed
in this paper removes both of these limitations, and thereby adds expressive power.

2.2 Views and view changes
When two classes are shared, an instance of either is also an instance of the other. Each class is a distinct view of that
object, which defines the run-time behavior of the object. At run time, an object reference may be modeled as a pair
〈`,C!〉 of a heap location ` and an exact type C! specifying the view.

The view controls how methods are dispatched on the object being accessed through the reference. For example,
an object created as a Button would use the overriding version of the draw method if accessed through a reference
with the view PrettyButton!.

One object may simultaneously have several references, each with a different view. For an object to obtain a new
reference with a new view, we use a view change operation, written (view T )e, where T is the target type, and e is
the source expression. For example, a Button object may obtain a new reference b2, through which the new draw

method can be called, although the receiver object is still the same:

Button! b1 = new Button(...);

PrettyButton! b2 = (view PrettyButton!)b1;

b1.draw(...); // the old draw method in Button
b2.draw(...); // the new draw method in PrettyButton

Although view changes look like dynamic type casts, view change operations are type-safe. They are type-checked
statically using the sharing relation.

In J&h, a reference 〈`,C!〉 is a first-class value whose view component C! is determined dynamically. For example,
after the view change above, if the value in b2 is passed to code expecting type Button, the value will still behave as
an object of PrettyButton:
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package GUI;

class Button {...}

class RadioButton extends Button {...}

class Window { Button close; ... }

...

package xlucentGUI extends GUI;

class Button {

void draw(...) {...}

}

class Window { void draw(...) {...} }

...

Figure 2: A base GUI family and an extension

class Renderer {

void render(Button b) { b.draw(...); }

}

...

Renderer r;

r.render(b2); // the PrettyButton draw method is called
// from render()

Therefore, view changes may update the behavior of an existing object, even when, as in the body of render, the
new shared class is not statically in scope.

In both J&s and J&h, a concrete (i.e., not abstract) class cannot be declared to share with an abstract class or an
interface. This restriction ensures that an object has only concrete views, and therefore view-based method dispatch
does not have message-not-understood errors.

3 Homogeneous family sharing

3.1 Family inheritance
Homogeneous family sharing builds on prior family-level extensibility mechanisms: nested inheritance [28] and nested
intersection [30]. Nested inheritance is inheritance at the granularity of a namespace (a package or a class), which
defines a family in which related classes are grouped. When a namespace inherits from another (base) namespace,
all the namespaces nested in the base namespace are inherited, and the derived namespace can override, or further
bind [21] inherited namespaces, changing nested class declarations, similarly to virtual classes [21, 22, 13, 16, 9].
Nested intersection supports composing families with generalized intersection types [38, 11] — a mechanism for
multiple inheritance at the family level.

Family inheritance is useful, because in real software systems, the functionality that needs to be extended often
spans multiple classes that are related to each other through either inheritance or mutual references. For example,
as in Figure 2, the GUI library should also include classes for various GUI elements, including the Button class of
Figure 1. Suppose we want to extend the entire GUI library to support translucent widgets. With the J&h language,
the extension can be declared at the family level, as shown on the bottom of Figure 2. Every class in the base package
GUI has a corresponding subclass with the same class name in the derived package xlucentGUI.

J&h supports scalable extensibility [28], because there is no need to declare cross-family inheritance for individual
classes, and the code that needs to be written in the derived family is proportional to the changes in functionality.

The relationships between classes in GUI are preserved in xlucentGUI with late binding of type names. For
example, the Window class has a field for a button named close, with type Button. In GUI.Window, the name
Button refers to the Button class in GUI, whereas in xlucentGUI.Window, it refers to the corresponding class of
xlucentGUI. Even classes that are not mentioned explicitly in the derived namespace are inherited as implicit classes
to which late binding applies. For example, package xlucentGUI contains an implicit class RadioButton whose
superclass is the Button in xlucentGUI rather than the one in GUI.
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The type safety of late-bound type names is ensured with prefix types and dependent classes: in GUI.Window, the
unqualified field type Button is sugar for the prefix type GUI[this.class].Button, which means that the package
containing Button is a subtype of GUI that encloses the run-time class of the special variable this. By indexing the
class of close by the Window object that points to it, we ensure that the window and its close button always come
from the same family.

J&h preserves all three kinds of relationships in the derived family: referencing, subclassing, and sharing. Because
class sharing in J&s is heterogeneous, sharing relationships are not guaranteed to be preserved; therefore, J&s requires
sharing constraints for type safety.

3.2 Family sharing
Homogeneous family sharing generalizes sharing to family granularity analogously to the way that nested inheritance
generalizes inheritance to the family granularity. For example, in order to adapt existing objects from the GUI family
with the new drawing methods declared in xlucentGUI, the following family sharing declaration may be used, with
the rest of the code shown in Figure 2 remaining the same:

package xlucentGUI shares GUI;

With the sharing declaration, xlucentGUI is a derived family of GUI, just as with the inheritance declaration
in Figure 2. Therefore, the shared derived family xlucentGUI inherits all the nested classes from the base family
GUI, and preserves all the relationships among them, including sharing relationships. If the GUI package contains a
PrettyButton class that shares with Button, then they are still shared in the xlucentGUI package.

The difference from nested inheritance is that corresponding classes from the two families (e.g., GUI.Button and
xlucentGUI.Button) also become shared, and therefore objects of classes from one family are also instances of
classes from the other family. View changes can be used to move an object from one family to another. For example,
a Window object from the GUI family acquires translucency when viewed from the xlucentGUI family:

GUI!.Window w1 = ...;

xlucentGUI!.Window w2 = (view xlucentGUI!.Window)w1;

Moreover, field accesses in J&h automatically and lazily trigger implicit view changes. Therefore, any object
reachable from the Window object (e.g., the one stored in the field close in the Window class) will also obtain a view
in xlucentGUI, when it is accessed.

In J&h, a sharing relationship between two namespaces recursively applies to all their corresponding nested name-
spaces. Thus family sharing is homogeneous. This compares to the heterogeneous class sharing [36], which is declared
for individual pairs of classes between two families. The J&s language does provide an adapts declaration as syntac-
tic sugar for declaring sharing between all corresponding classes of two families, but this only causes sharing one level
down, rather than recursively, and can only be used when the families agree completely on the set of nested classes.

Having homogeneous sharing at the family level allows the J&h type system to be modularly type-safe without
complicated mechanisms like masked types and sharing constraints [36], simplifying programming.

3.3 Shadow classes and shadow methods
Shadow classes are the key to homogeneous sharing. In the J&h language, a derived family may introduce new nested
classes not present in a shared base family. In order to keep view changes type-safe, these new nested classes in general
need to be shared as well. Shadow classes are introduced in the base family to make this possible.

Figure 3 shows a simple example that illustrates the situation. The derived family enclosed in A2 is shared with
the base family in A1. Class A2 inherits the nested class B from A1, and introduces a new class C that is a subclass of
A2.B. Because sharing is homogeneous, the two types A1!.B and A2!.B are shared, and therefore a view change from
A2!.B to A1!.B is allowed. But as shown in following code, the source expression b2 with static type A2!.B may
actually refer to an object of class A2.C at run time.

A2!.B b2 = new A2.C();

A1!.B b1 = (view A1!.B)b2;

b1.m(); // invokes the shadow method
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class A1 {

class B {

void m() {...}

}

}

class A2 shares A1 {

class C extends B { // adds shadow class in A1
shadow void m() {...} // a shadow method

}

}

Figure 3: Shadow classes and shadow methods

For the view change to work, A1 must contain a class shared with A2.C.
J&h introduces shadow classes to enable view changes like this one. When a shared derived family (e.g., A2)

adds a new nested class (e.g., A2.C), the base family also acquires a class with the same name (here, A1.C). The
derived family introducing the new nested class is called the originating family for the shadow class, and the nested
class is called the originating class. The shadow class is shared with its originating class, and inherits all the fields
and relationships from the originating family. Thus, the shadow class is a class that the base family inherits from the
derived family.

The J&h language not only supports enhancing the shared base family with new shadow classes, but also allows
the programmer to define how the shadow class should behave in the base family. The originating class may declare
shadow methods, with the modifier shadow. The semantics of a shadow method is as if it were defined within an
explicit declaration of the shadow class in the base family. As a result, A2.C in Figure 3 could also declare its own
version of method m() without the shadow keyword. This vesion would override the shadow method as if it had been
inherited from the shadow class A1.C.

On the other hand, there is no need to declare “shadow fields”, because the shadow class shares all fields declared
in the originating class.

3.4 Modular type checking of shadow classes
Because shadow classes are not explicitly declared with a class body, the type system needs to know the originating
class before a shadow class is mentioned. For example, inside class A1 in Figure 3, the type name C is meaningless
if A2 has not been created. Modularity of the type system requires that a base family can be type-checked without
knowing derived families, unless they are used explicitly by the base family. Therefore, if the code in A1 does not
explicitly use the shadow class, the compiler should be able to type-check A1 without knowing about A2.C.

J&h ensures the modularity of the type system by disallowing direct naming of a shadow class in source code. For
example, given the declarations in Figure 3, one cannot mention A1.C, the fully qualified name of the shadow class,
anywhere in the source code, nor can one mention just C in the context of A1. Instead, the language overloads the
disambiguation usage of prefix types [30] to provide an indirect way of naming a shadow class that embeds the name
of the originating class. In the J&h source code, a shadow class is referred to as P[T].C, where P is the originating
family, T is a type in the same family as the shadow class, including the family itself, and C is the simple name of the
originating class. Therefore, the shadow class in Figure 3 may be denoted as A2[A1.B].C or just A2[A1].C.

This scheme also solves the problem of accidental name conflicts between shadow classes. Suppose that in addition
to the declarations in Figure 3, there is another shared derived family A3, which introduces a new nested class that
happens to be named C as well:

class A3 shares A1 { class C extends B {...} }

Then there will be two different shadow classes in A1 with the same name C—it is not sensible to combine them into
one shadow class—and there is no modular way to detect this situation. However, indirect naming in J&h prevents the
potential name conflict, by naming the two shadow classes differently, as A2[A1.B].C and A3[A1.B].C respectively.
Therefore, the two (unrelated) shadow classes can be used independently of each other. (The J&h compiler also
mangles the names of the two shadow classes differently.)
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IMP
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Exp Stmt
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IMP_while
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If For While
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Figure 4: Sketch of the IMP compiler structure. Shadow classes in dashed boxes.

Although the syntax for naming shadow classes looks somewhat heavy, it is unlikely to be used frequently (see
Section 3.5 for an example of the syntax). We expect shadow classes normally to be used as a way to introduce new
subclasses of some known, ordinary class in the base family. The base family would generally use objects of the
shadow class through the known superclass, without explicitly mentioning the shadow class. The prefix syntax is
also not necessary in the originating family, including inside the declaration of a shadow method, where the syntax
coincides with the automatic desugaring of unqualified type names.

3.5 Open families
Shadow classes and shadow methods provide a new kind of extensibility: open families, which are analogous to open
classes [10]. An existing family can be extended in a modular way with new functionality, including new classes,
without modifying the code of the family. This contrasts both with heterogeneous sharing [36] and with nested
inheritance [30], where families are locally closed worlds that cannot be extended with new nested classes without
modifying existing code.

This kind of extensibility is different from sharing-based adaptation, which modularly adds new functionality to
objects that belong to an existing family, but makes new behavior accessible only by viewing the objects in the shared
derived family. By contrast, shadow classes are available in the base family. For example, the shadow method m()

declared by A2.C in Figure 3 may be invoked through a receiver object of static type A1!.B—definitely in the base
family—if the receiver object is an instance of the shadow class A2[A1.B].C.

3.6 Example: in-place translation
To show the extensibility provided by homogeneous sharing and open families, let us consider using them to build a
simple language translation. A compiler built using many passes often includes translation passes that leave most of
the abstract syntax tree (AST) alone. One would like to avoid creating an entirely new AST for the target language,
but this is not possible if the source and target of the translation have different AST types.

In-place translation solves this problem. If the source family and the target family are shared, one can simply apply
view changes to objects that do not need translation, avoiding the generation of many new objects, while still ensuring
the entire data structure behaves consistently in the target family.

Figure 4 sketches the class hierarchy of a compiler for a small imperative language and two extensions. The
base family IMP describes a simple core language without any loop construct. The two derived families IMP for and
IMP while respectively extend IMP with for-loops and while-loops. The compiler translates a program from IMP for

to IMP while, rewriting for-loops to while-loops.
Figure 5 illustrates J&h code that does in-place translation from IMP for to IMP while. The two derived families

are both shared with the base family IMP, and by transitivity, they are also shared with each other. The class For in
IMP for and the class While in IMP while both introduce shadow classes in IMP, which are then inherited by the
other derived family. On line 31, with the syntax described in Section 3.4, the type IMP while[this.class].While
represents the shadow class While in the IMP for family. This allows the translation code to safely generate an While
object still in the IMP for family. Translation of If (lines 19–24) lazily generates a new If node only if its children
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1 package IMP;

2 abstract class Node { ... }

3 ...

4 class If extends Stmt {

5 Exp cond; Stmt body;

6 If(cond, body) {

7 this.cond = cond; this.body = body;

8 }

9 }

10
11 package IMP_for shares IMP;

12 abstract class Node {

13 Node translate() {

14 return this; // by default, no translation
15 }

16 }

17 class If extends Stmt {

18 Stmt translate() { // covariant return type
19 Exp cond = this.cond.translate();

20 Stmt body = this.body.translate();

21 if (cond != this.cond || body != this.body)

22 return new If(cond, body);

23 else

24 return this;

25 }

26 }

27 class For extends Stmt {

28 Exp init, cond, inc;

29 Stmt body;

30 Stmt translate() {

31 ... new IMP_while[this.class].While(...); ...

32 }

33 }

Figure 5: In-place translation for loop statements

have changed. After the recursive translation is done on an AST, a single view change operation applied to the root
moves the entire AST to the IMP while family:

IMP_for!.Node source = ...;

IMP_for!.Node temp = source.translate();

IMP_while!.Node target = (view IMP_while!.Node)temp;

In this example, the use of shadow classes facilitates the translation, which goes directly between two “sibling”
families. Heterogeneous sharing, and other adaptation mechanisms, cannot support in-place translation across the
hierarchy of familes.

3.7 Homogeneous vs. heterogeneous sharing
Homogeneous family sharing has several advantages over heterogeneous sharing:

Scalable sharing. There is no need to declare sharing for individual pairs of classes from two different families,
which can be tedious and result in errors. This also makes the sharing mechanism more scalable, because if a class
only needs to be shared but not overridden, its declaration may be omitted from the source code of the derived family.

8



Modular type checking with reduced annotation burden. In particular, homogeneous sharing does not require
sharing constraints, because it is easier to prove that two types are shared. If two types T1 and T2 are shared, all
corresponding nested types are also shared, that is, T1.C↔ T2.C.

For example, a variable b1 of type GUI!.Button might point to an object of the GUI.RadioButton class or to
one of the GUI.PrettyButton class. In either case, the view change (view xlucentGUI!.Button)b1 is type-safe,
because sharing is declared between GUI and xlucentGUI—and therefore, all classes in GUI that are subtypes of
GUI!.Button have shared counterparts in xlucentGUI.

On the contrary, with heterogeneous sharing, in order to prove that a view change (view T )e is valid, the type
system has to inspect all the subclasses of both the source type (the type of e) and the target type T , and it has to
recheck the view change every time the code is inherited by a different family. Therefore, heterogeneous sharing
in J&s uses sharing constraints to make type-checking modular. With homogeneous sharing, these constraints are
superfluous.

Straightforward support for coordinated view changes on interconnected objects. As in heterogeneous sharing,
field accesses in J&h trigger implicit view changes, which allows a data structure consisting of multiple interconnected
objects to safely change its view from one family to another.

However, in heterogeneous sharing, a shared class may contain a field with an unshared type—often as the result
of a new class in the derived family (e.g., the For class in Figure 18)—in which case the field actually has several
duplicates, one for each class that is shared with the class that declares the field. Masked types are used to ensure
unshared objects stored in these fields do not leak into incompatible families. This adds to the annotation burden, and
complicates reasoning about the code. Homogeneous family sharing does not need masked types for this purpose,
because shadow classes ensure that a data structure can always be homogeneously moved to a shared family.

The compiler example of Section 3.6 shows that J&h presents a different trade-off in language design than J&s. The
type system of heterogeneous sharing in J&s does more checking to prevent objects from leaking into other families
by mistake. For example, if a translation from IMP for to IMP is implemented in J&s, the type system would ensure
that no For object is left untranslated in the target AST. However, J&s achieves this family-closedness guarantee at
the expense of heavyweight language mechanisms like sharing constraints and masked types.

J&h instead introduces shadow classes to ensure that shared families always have homogeneous structures. Al-
though a view change is guaranteed to move a data structure completely into the new family from the type perspective,
the type system no longer checks for unfinished translation. For example, if a For object is left untranslated, it will
end up as an object of the shadow class For in the target family—either IMP or IMP while—but this is still type-safe
in J&h. The payoff is a simpler, easier-to-use language. Moreover, shadow classes also introduces a new kind of
extensibility, as shown in Section 3.5. Therefore, we believe homogeneous sharing makes a better trade-off for most
applications.

4 Formal semantics
This section formalizes homogeneous family sharing in the J&h calculus. Not all the features of the J&h language are
modeled in J&h calculus, in order to focus on sharing. For example, virtual types, explicit multiple inheritance and
intersection types are omitted.

4.1 Syntax
Figure 6 shows the syntax of the J&h calculus. The notation a is used for both the list a1, . . . ,an and the set {a1, . . . ,an},
for n≥ 0, and #(a) represents the size of a.

A program Pr is a pair 〈L,e〉 of a set of class declarations L and an expression e (the main method). Each class
C has a superclass declaration, which is either a normal superclass declaration extends T , or a shared superclass
declaration shares T . Note that there is only one superclass, because J&h only models single inheritance. There are
two special classes: > is the superclass of all the other classes, similar to Object in Java; ◦ is the single top-level class
that all other classes are nested within.

Method declarations may have an extra modifier shadow for declaring shadow methods. Fields may be declared
final, which means they cannot be changed after initialization, as in Java.
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programs Pr ::= 〈L,e〉
class declarations L ::= class C ES {L F M}
superclass declarations ES ::= extends T | shares T
field declarations F ::= [final] T f = e
method declarations M ::= [shadow] T m(T x) {e}
types T ::=> | ◦ | T.C | p.class | P[T] | T !
classes P ::=> | ◦ | P.C
values v ::= 〈`,P!〉
access paths p ::= v | x | p. f
expressions e ::= v | x | e. f | e0. f = e1 | e0.m(e)

| e1; e2 | new T ( f = e) | (view T )e
typing environments Γ ::= /0 | Γ,x:T | Γ, p1 = p2

Figure 6: Syntax of J&h

J&h supports explicit exact types, and exactness applies to the entire type preceding the symbol “!”. T !.C! is
considered equivalent to T.C!, and T ! is equivalent to T if T is already exact.

A value v, also called a reference, is a pair of a heap location ` and the associated view P!, which is a class in its
exact form. Expressions are mostly standard, with the addition of a view change operation (view T )e.

For simplicity, we omit the null value from the J&h calculus, and require that all field declarations come with
default initializations.

The typing environment contains aliasing information about access paths. An entry p1 = p2 means p1 and p2 are
aliases that also have the same run-time view. As in [9], this kind of information is just used by the soundness proof.

4.2 Sharing and subclassing
Subclassing relationships among classes are defined in Figure 7. The judgment ` P1@↔ P2 states that P1 is a shared
subclass of P2. With homogeneous family sharing, when two classes are declared to be shared, all the nested classes
are also automatically shared, according to SHARE-FB. On the other hand, ` P1@P2 states that P1 is a subclass of
P2, either shared or not.

4.3 Lookup functions
The class table CT , defined in Figure 8, contains the declaration for any explicit or implicit class that is not a shadow
class. The extended class table CT ′ contains synthesized declarations for all the shadow classes, in addition to the
declarations in CT . CT′-SHADOW introduces a shadow class P.C in every shared superclass P of P′, if P′ declares a
nested class C. Note that the originating class P′.C must not be inherited from any (direct or overriding) superclass of
P′. CT′-PROP states that shadow classes are also inherited, which allows them to be propagated to “sibling” families,
as illustrated in Section 3.5. Both CT and CT ′ are assumed to be global information.

Figure 9 shows auxiliary functions for looking up various class members like fields and methods: super(P) gives
the superclass declaration of P, either a normal superclass or a shared one; shadowMethods(P) collects all the shadow
method declarations from P, with the shadow modifier removed; the functions fields(P) and methods(P) collect all the
field and method declarations from P and its superclasses; fnames(F) is the set of all field names in field declarations
F ; ftypedecl(Γ,T, f ) returns the declared type of field f , which might be a type dependent on this, and whether the
field is final or not; ftype(Γ,T, f ) substitutes the receiver type T for this.class; mbodies(P,m) looks up all the
declarations of a method m that are not overridden; mtype(Γ,T,m) looks up the method signature. For any well-typed
class P, mbodies(P,m) never contains more than one element (see L-OK in Figure 13).

Note that although shadow methods do not appear in ownMethods(P) of their declaring class P, they are concep-
tually treated as normal methods declared in shadow classes originated from P, and then inherited and invoked just as
normal methods. This is specified in CT′-SHADOW, where the synthesized shadow class P.C contains all the shadow
method declarations from its originating class P′.C, as if they are normal method declarations in P.C.

CT′-SHADOW also states that the originating family P′ of the shadow class P.C must be the class that introduces C,
i.e., the originating class P′.C cannot override any non-shadow class. This ensures that every shadow class has exactly
one originating class, and therefore no conflict between shadow method declarations may happen.
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Shared subclassing ` P1@↔ P2

super(P.C) = shares T
` P1@∗ P T{{ /0; P1/this}}= P2

` P1.C@↔ P2
(SHARE-DECL)

` P1@↔ P2

` P1.C@↔ P2.C
(SHARE-FB)

Subclassing ` P1@P2

super(P.C) = extends T
` P1@∗ P T{{ /0; P1/this}}= P2

` P1.C@P2
(SC-DECL)

` P1@P2

` P1.C@P2.C
(SC-FB)

` P1@↔ P2

` P1@P2
(SC-SHARE)

Figure 7: Sharing and subclassing

For simplicity, we assume there are no accidental name conflicts in J&h, that is, all the field declarations use
different field names, unrelated methods have different names, and classes that do not override each other also have
different names. This can be achieved with name mangling. In particular, shadow classes introduced by different
originating classes are always treated as unrelated, different classes, as described in Section 3.4, and their names are
assumed to have been mangled differently.

4.4 Prefix types
A non-dependent prefix type P[P′] signifies either a subclass of P in which P′ is nested, or a shared superclass of P
in which P′ is nested, as captured in the auxiliary function prefix(P,P′). J&h generalizes prefix types to include the
second case, for naming shadow classes (see Section 3.4).

prefix(P,P′) =


P′′ if P′ = P′′.C∧ ` P′′@∗ P
P′′ if P′ = P′′.C∧ ` P@↔

∗ P′′

⊥ otherwise

As in [31], we only consider prefix types P[T] where the index T is exactly one level deeper in the nesting
hierarchy than the bound P. However, more general prefix types can be encoded.

4.5 Type substitution
The rules for type substitution are shown in Figure 11. Type substitution T{{Γ; Tx/x}} substitutes Tx for x.class in T
in the context of Γ. The typing context Γ is used to look up field types when substituting a non-dependent class into a
field-path dependent class.

For type safety, type substitutions on the right-hand side of a field assignment or on the parameters of method
calls must preserve the exactness of the declared type. Therefore, only values from the family that is compatible with
the receiver are assigned to fields or passed to method code. Exactness-preserving type substitution T{{Γ; Tx/x!}}
substitutes Tx for x.class in T and preserves the exactness of T :
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Class table CT(P)

Pr = 〈L,e〉
CT(◦) = class ◦ extends > {L}

(CT-OUT)

CT(P) = class C′ ES {L F M}
Li = class C . . .

CT(P.C) = Li
(CT-EXP)

CT(P) = class C′ . . . {L F M} class C . . . 6∈ L
` P@P′ CT(P′.C) = class C ES {. . .}

CT(P.C) = class C ES {}
(CT-IMP)

Extended class table CT ′(P)

CT(P) 6=⊥
CT ′(P) = CT(P)

(CT′-NORM)

` P′@↔
∗ P

CT(P′.C) = class C ES {L F M}
∀P′′ . ` P′@P′′⇒CT (P′′.C) =⊥

M′ = shadowMethods(P′.C)

CT ′(P.C) = class C ES {M′}
(CT′-SHADOW)

CT(P.C) =⊥ ` P@∗ P′

CT ′(P′.C) = class C ES {. . .}
CT ′(P.C) = class C ES {}

(CT′-PROP)

Figure 8: Class lookup

T{{Γ; Tx/x}}= T ′

∀k. prefixExactk(T )⇒ prefixExactk(T ′)
T{{Γ; Tx/x!}}= T ′

Exactness is defined using prefixExactk(T ), as in Figure 10, which means that the k-th prefix of T is an exact type.

4.6 Static semantics
The static semantics of J&h is summarized in Figure 12 and Figure 13. Figure 12 shows rules for type well-formedness
Γ` T , non-dependent type bound Γ` T EP, final path typing Γ`final p:T , final path equality Γ` p1 = p2, type sharing
Γ ` T1↔ T2, subtyping Γ ` T1≤T2, and expression typing Γ ` e:T . Figure 13 defines program well-formedness.

Sharing relationships between types. The sharing judgment Γ ` T1↔ T2, shown in Figure 12, states that a value
of type T1 may become a value of T2 through a view change, and vice versa. SH-NEST states that sharing is between
families: when two classes are shared, all the corresponding nested types are also shared. SH-DECL collects sharing
relationships from class declarations.

Shadow classes ensure that the two shared families are symmetric in the sharing relation, and therefore J&h does
not need directional sharing relationships as in the J&s calculus, simplifying the semantics.

The sharing relation is reflexive, symmetric, and transitive, as shown by SH-REFL, SH-SYM, and SH-TRANS.
This implies that although each class in J&h or the J& language can only declare at most one shared superclass, it is
still possible to encode any sharing relation among classes.
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Member lookup

CT ′(P) = class C ES {L F M}
super(P) = ES

ownFields(P) = F
ownMethods(P) = M− shadowMethods(M)
shadowMethods(P) = {M′ | shadow M′ ∈M}

fields(P) =
⋃

`P@∗Pi

ownFields(Pi)

methods(P) =
⋃

`P@∗Pi

ownMethods(Pi)

F = [final] T f = e

fnames(F) = f

Γ ` T E P fields(P) = F
Fi = [final] Tf f = e

ftypedecl(Γ,T, f ) = [final] Tf

[final] T decl
f = ftypedecl(Γ,T, f )

ftype(Γ,T, f ) = T decl
f {{Γ; T/this}}

Mi = . . . m(. . .) . . .
Mi ∈ ownMethods(Pi)

∀P′. P@∗ P′@+ Pi⇒ . . . m(. . .) . . . 6∈ ownMethods(P′)

mbodies(P,m) = M

Γ ` T E P mbodies(P) = {M}
M = Tn+1 m(T x) {e}

mtype(Γ,T,m) = (x:T )→ Tn+1

Figure 9: Class member lookup

prefixExactk(>) = false

prefixExactk(◦) = true

prefixExactk(T.C) =

{
false if k = 0
prefixExactk−1(T ) otherwise

prefixExactk(p.class) = true

prefixExactk(P[T]) = prefixExactk+1(T )

prefixExactk(T !) = true

Figure 10: Prefix exactness

Subtyping. The subtyping judgment Γ ` T1≤T2 states that T1 is a subtype of T2 in context Γ, and type equivalence
Γ ` T1 ≈ T2 is sugar for a pair of subtyping judgments.

Most subtyping rules are similar to those in the J&s calculus, but without any rule about masked types or intersec-
tion types. S-SHARE states that the subtyping relationships are preserved by a shared family, and implies that shadow
classes in the base family inherit subtyping relationships from the originating family.

Expression typing. The rules for expression typing Γ ` e:T (Figure 12) are mostly standard, with the addition of
T-VIEW, which states a view change expression is valid when the source and the target types are shared.

Several rules (T-SET, T-NEW, and T-CALL) use exactness-preserving type substitution T{{Γ; Tx/x!}}. See Sec-
tion 4.5 for its definition.

Program typing. Program typing rules are shown in Figure 13. P-OK states the rule for a program to be well-formed;
L-OK, F-OK, and M-OK are the rules for declarations of classes, fields, and methods to be well-formed, respectively.
EXT-OK and SH-OK are the well-formedness rules for inheritance and sharing declarations. For simplicity, covariant
return types are not modeled.

The rules in Figure 13 uses a simple auxiliary function paths(T ), which represents the set of all the access paths p
in dependent types p.class that are part of type T . For example, paths(P[this.class].C) = {this}.
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>{{Γ; Tx/x}}=>

◦{{Γ; Tx/x}}= ◦

T.C{{Γ; Tx/x}}= T{{Γ; Tx/x}}.C

T{{Γ; Tx/x}}= T ′

P[T]{{Γ; Tx/x}}= P[T ′]

T{{Γ; Tx/x}}= T ′

T !{{Γ; Tx/x}}= T ′!

x.class{{Γ; Tx/x}}= Tx

x 6= y

y.class{{Γ; Tx/x}}= y.class

v.class{{Γ; Tx/x}}= v.class

p.class{{Γ; Tx/x}}= p′.class

p. f .class{{Γ; Tx/x}}= p′. f .class

p.class{{Γ; Tx/x}}= Tp
Tp 6= p′.class ftype(Γ,Tp, f ) = Tf

p. f .class{{Γ; Tx/x}}= Tf

Figure 11: Type substitution

4.7 Operational semantics
A small-step operational semantics for J&h is shown in Figures 14 and 15. A heap H is a function mapping pairs 〈`, f 〉
of memory locations and field names to values v. Heap updates are represented as H[〈`, f 〉 := v].

A reference set R, which contains all the references v that have been generated during evaluation, no matter whether
or not they are reachable from references in e, is also part of the evaluation configuration e,H,R. The set R is only for
the proof of soundness: it prevents us from losing path equalities needed in the proof.

The evaluation rules (Figure 15) take the form e,H,R −→ e′,H ′,R′. Most of them are standard. R-GET shows
that field accesses implicitly trigger view changes, which ensures that objects that reference each other always behave
consistently.

Type evaluation. Types in new expressions and view change expressions may be dependent, and therefore need to
be evaluated according to the type evaluation contexts TE (Figure 14) and the type equivalence rules (Figure 12). A
fully evaluated type has the form P!.C, which is a simple class that has an exact prefix and is not dependent on any
access path. There is always an exact prefix, because ◦ is exact. Dependent class 〈`,P!〉.class evaluates to P!. Prefix
types are evaluated according to rules S-PRE-E1 and S-PRE-E2, which can be seen as normalization rules, reducing
the types on the left-hand side of ≈ to those on the right-hand side.

View changes. The auxiliary function view defines the operational semantics for view changes. Because sharing
is homogeneous, the generated run-time view P′.C′! is well defined, shares with the original view P′′.C′!, and is a
subtype of the target type P′!.C. Therefore, as long as the source type and the target type are shared, a view change
expression is well-formed.

view(〈`,P!〉,P′!.C) = 〈`,P′.C′!〉
where P = P′′.C′ and ` P′!↔ P′′!

4.8 Soundness
In the soundness proof, expressions are typed using a typing environment bH,Rc constructed from the heap H and the
reference set R, which contains aliasing information for fields. Figure 19 shows the definition of bH,Rc.

A run-time configuration is well-formed, represented as ` e,H,R, shown in Figure 20, if e has no free variables,
all the references in e are included in R, references with the same location in R have shared views, and the type of the
value stored in a field is consistent with at least one view of the containing object.

We prove the following soundness theorem of the J&h core language, using the standard technique of proving
progress and subject reduction [45].

Theorem 4.1 (Soundness) If ` 〈L,e〉 ok, and ` e:T , and e, /0, /0→∗ e′,H,R, then either ∃v, such that e′ = v and
bH,Rc ` v:T , or ∃e′′,H ′,R′, such that e′,H,R−→ e′′,H ′,R′.

Lemma 4.2 (Progress) If ` e,H,R, and bH,Rc ` e:T , then either ∃v, such that e = v, or ∃e′,H ′,R′, such that
e,H,R−→ e′,H ′,R′.
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Type well-formedness Γ ` T

CT ′(P) 6=⊥
Γ ` P

(WF-SIMP)
Γ `final p:T
Γ ` p.class

(WF-FIN)
Γ ` T
Γ ` T !

(WF-EXACT)

Γ ` T Γ ` T E P CT ′(P.C) 6=⊥
Γ ` T.C

(WF-NEST)
Γ ` P Γ ` T Γ ` T E P′ prefix(P,P′) 6=⊥

Γ ` P[T]
(WF-PRE)

Non-dependent type bound Γ ` T E P

Γ ` PE P (BD-REFL)
Γ ` T E P

Γ ` T.C E P.C
(BD-NEST)

Γ ` P[T] Γ ` T E P′

Γ ` P[T]E prefix(P,P′)
(BD-PRE)

Γ ` T E P
Γ ` T !E P

(BD-EXACT)
Γ `final p:T Γ ` T E P

Γ ` p.classE P
(BD-FIN)

Final path typing Γ `final p:T

Γ `final 〈`,P!〉:P! (F-REF)
x:T ∈ Γ

Γ `final x:T
(F-VAR)

Γ `final p:T Tf = ftype(Γ,T, f )
Γ `final p. f :Tf

(F-GET)

Final path equality Γ ` p1 = p2

Γ `final p:T
Γ ` p = p

(A-REFL)
Γ ` p2 = p1

Γ ` p1 = p2
(A-SYM)

Γ ` p1 = p2 Γ ` p2 = p3

Γ ` p1 = p3
(A-TRANS)

p1 = p2 ∈ Γ

Γ ` p1 = p2
(A-ENV)

Γ ` p1 = p2 Γ `final p1. f :Tf Γ `final p2. f :Tf

Γ ` p1. f = p2. f
(A-FIELD)

Type sharing Γ ` T1↔ T2

Γ ` T ↔ T (SH-REFL)
Γ ` T1↔ T2

Γ ` T2↔ T1
(SH-SYM)

Γ ` T1↔ T2 Γ ` T2↔ T3

Γ ` T1↔ T3
(SH-TRANS)

Γ ` T1↔ T2

Γ ` T1!↔ T2!
(SH-EXACT)

Γ ` T1↔ T2
Γ ` T2.C

Γ ` T1.C↔ T2.C
(SH-NEST)

Γ ` T E P
super(P.C) = shares T ′

T ′{{Γ; T/this}}= T ′′

Γ ` T.C!↔ T ′′!
(SH-DECL)

Subtyping Γ ` T1≤T2

Γ ` T ≤> (S-TOP) Γ ` T ≤T (S-REFL)
Γ ` T1≤T2 Γ ` T2≤T3

Γ ` T1≤T3
(S-TRANS)

Γ `final p:T
Γ ` p.class≤T

(S-FIN)
Γ `final p:T !

Γ ` p.class≈ T !
(S-FIN-EXACT)

Γ ` p1 = p2

Γ ` p1.class≈ p2.class
(S-ALIAS)

Γ ` T.C!≤T !.C (S-EXACT)
Γ ` P[T.C]

Γ ` P[T.C]≈ T
(S-PRE-E1)

Γ ` P[T]= T ′

Γ ` P[T !]≈ T ′!
(S-PRE-E2)

Γ ` T Γ ` T E P
Γ ` T ≤P

(S-BOUND)
Γ ` T1≤T2 Γ ` T2.C

Γ ` T1.C≤T2.C
(S-NEST)

Γ ` T1↔ T2 Γ ` T1.C≤T1.C′

Γ ` T2.C≤T2.C′
(S-SHARE)

Γ ` T1≤T2
Γ ` P[T1] Γ ` P[T2]

Γ ` P[T1]≤P[T2]
(S-PRE-I)

` P1@P2
Γ ` P1[T] Γ ` P2[T]

Γ ` P1[T]≈ P2[T]
(S-PRE-B)

Γ ` T E P super(P.C) = . . . T ′

T ′{{Γ; T/this}}= T ′′

Γ ` T.C≤T ′′
(S-DECL)

Expression typing Γ ` e:T

Γ `final p:T
Γ ` p:p.class

(T-FIN)
Γ ` e:T Γ ` T ≤T ′

Γ ` e:T ′
(T-SUB)

Γ ` e1:T1 Γ ` e2:T2

Γ ` e1;e2:T2
(T-SEQ)

Γ ` e:T
Γ ` T ↔ T ′

Γ ` (view T ′)e:T ′
(T-VIEW)

Γ ` e:T
ftype(Γ,T, f ) = Tf

Γ ` e. f :Tf
(T-GET)

Γ ` x:T ftypedecl(Γ,T, f ) = T decl
f

T decl
f {{Γ; T/this!}}= Tf Γ ` e:Tf

Γ ` x. f = e:Tf
(T-SET)

Γ ` T Γ ` e:T
ftypedecl(Γ,T, f ) = [final] T ′

T = T ′{{Γ; T !/this!}}
Γ ` new T ( f = e):T !

(T-NEW)

n = #(e) = #(x) Γ ` e0:T0 Γ ` e:T ′
mtype(Γ,T0,m) = (x:T )→ Tn+1
∀i ∈ 1..n+1. Ti{{Γ; T0/this!}}= T ′i

Γ ` e0.m(e):T ′n+1
(T-CALL)

Figure 12: Static semantics
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◦ ` L ok /0 ` e:T /0 ` T @+ acyclic
` 〈L,e〉 ok

(P-OK)

∀C′. CT ′(P.C.C′) 6=⊥⇒ P.C ` CT ′(P.C.C′) ok
P.C ` F ok P.C ` ownMethods(P.C) ok P ` ES ok

∀Pi. ` P.C@+ Pi⇒` P.C conforms to Pi
∀m. #(mbodies(P,m))≤ 1

P ` class C ES {L F M} ok
(L-OK)

T 6= ◦ this:P ` T paths(T )⊆ {this}
¬prefixExact0(T )

P ` extends T ok
(EXT-OK)

this:P ` T T{{ /0; P/this}}= P.C

P ` shares T ok
(SH-OK)

CT ′(P) = class C ES {L F M}
CT ′(P′) = class C′ ES′ {L′ F ′ M′}

∀i, j.
(

Li = class D ESi . . .
∧L′j = class D ES′j . . .

)
⇒ ESi = ES′j

∀i, j.
(

Mi = Tn+1 m(T x) {e}
∧M′j = T ′n+1 m(T ′ x′) {e′}

)
⇒ P `Mi overrides M′j

` P conforms to P′

M = Tn+1 m(T x) . . . {e}
M′ = T ′n+1 m(T ′ x′) . . . {e′}

#(x) = #(x′) = #(y) y∩ (x∪ x′) = /0

Γ = this:P,y:T{y/x} ` Γ ok

Γ ` T{y/x} ≈ T ′{y/x′} Γ ` Tn+1{y/x} ≈ T ′n+1{y/x′}
P `M overrides M′

this:P ` T paths(T )⊆ {this}
¬prefixExact0(T ) this:P ` e:T

P ` [final] T f = e ok
(F-OK)

Γ = this:P,x:T ` Γ ok n = #(x) x0 = this

Γ ` Tn+1 Γ ` e:Tn+1 FV(e)⊆ {x0,x}
paths(T ,Tn+1)⊆ {this}
P ` Tn+1 m(T x) {e} ok

(M-OK)

Figure 13: Program typing

Lemma 4.3 (Subject reduction) If ` e,H,R, and bH,Rc ` e:T , and e,H,R −→ e′,H ′,R′, then ` e′,H ′,R′ and
bH ′,R′c ` e′:T .

Lemma 4.2 is proved by structural induction on e. In order to prove Lemma 4.3, we need to first prove several
preliminary lemmas, some of which are more related to sharing than others.

J&h contains dependent types, and a value substitution (substituting a value for a variable, e.g., for evaluating a
method call) might affect the types as well. Lemma 4.4 states that value substitutions do not change sharing relation-
ships between types.

Lemma 4.4 If Γ,x:Tx ` T1↔ T2, and Γ,x:Tx ` v:Tx, then Γ{v/x} ` T1{v/x}↔ T2{v/x}.

PROOF: By induction on the derivation of Γ,x:Tx ` T1↔ T2. �

As mentioned in Section 4.7, the auxiliary function view that implements the semantics of view changes works
when the source type and the target type are shared. For explicit view change operations, this is ensured by T-VIEW.
For implicit view changes that are triggered by field accesses (see R-GET in Figure 15), Lemma 4.5 ensures that they
are also safe.
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heaps H ::= /0 | H,〈`, f 〉 7→ v
reference sets R ::= /0 | R,v
evaluation contexts E ::= [·] | E. f | E. f = v | E; e

| E.m(e) | v.m(v,E,e)
| new TE( f = e)
| new P!.C( f = v, f = E, f ′ = e)
| (view TE)e | (view P!.C)E

type evaluation contexts TE ::= TE.C | E.class | P[TE] | T E!

Figure 14: Definitions for operational semantics

e,H,R−→ e′,H ′,R′

e,H,R−→ e′,H ′,R′

E[e],H,R−→ E[e′],H ′,R′
(R-CONG)

H(`, f ) = v ftype( /0,P!, f ) = P′!.C
R′ = R,view(v,P′!.C)

〈`,P!〉. f ,H,R−→ view(v,P′!.C),H,R′
(R-GET)

H ′ = H[〈`, f 〉 := v]

〈`,P!〉. f = v,H,R−→ v,H ′,R
(R-SET)

mbodies(P,m) = {Tn+1 m(T x) {e}} n = #(v) = #(x)
〈`,P!〉.m(v),H,R−→ e{〈`,P!〉/this,v/x},H,R

(R-CALL)

` fresh H ′ = H[(`, f ) := v] R′ = R,〈`,P.C!〉
new P!.C( f = v),H,R−→ 〈`,P.C!〉,H ′,R′

(R-ALLOC)

v; e,H,R−→ e,H,R (R-SEQ)

R′ = R,view(v,P!.C)

(view P!.C)v,H,R−→ view(v,P!.C),H,R′
(R-VIEW)

Figure 15: Small-step operational semantics

Lemma 4.5 If ` P!↔ P′!, and ftype( /0,P!, f ) = Tf , and ftype( /0,P′!, f ) = T ′f , then ` Tf ↔ T ′f .

PROOF: It is trivial, if the declared type of field f is not dependent. Otherwise, it can be proved using Lemma 4.6. �

Lemma 4.6 If ` P1!.C1↔ P2!.C2, and ` P[P1!.C1], and ` P[P2!.C2], then ` P[P1!.C1]↔ P[P2!.C2].

PROOF: By induction on the derivation of ` P1!.C1↔ P2!.C2. �

With these lemmas, subject reduction (Lemma 4.3) is proved by induction on the derivation of bH,Rc ` e:T . Then
the soundness theorem follows directly. See Appendix A for the proofs.

5 Implementation
We have implemented a prototype compiler for the J&h language using the Polyglot compiler framework [29]. The
compiler is a 4700-LOC (lines of code, excluding empty lines, comments, and automatically generated parser code)
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〈`,P!〉 ∈ R ` ftype( /0,P, f )E Pf
〈`′,P′!〉= view(H(`, f ),Pf ) final Tf f = e ∈ fields(P)

〈`,P!〉. f = 〈`′,P′!〉 ∈ bH,Rc

Figure 16: Runtime typing environments

FV(e) = /0 refs(e)⊆ R
〈l,P!〉,〈l,P′!〉 ∈ R⇒` P!↔ P′!

H(`, f ) = v⇒∃P . 〈`,P!〉 ∈ R∧ ` v:ftype( /0,P!, f )

` e,H,R

Figure 17: Runtime configuration well-formedness

extension of the J& compiler [30]. The target language of the compiler is Java. There is also a 4600-LOC run-time
system, most of which is a custom classloader implemented using the ASM bytecode manipulation framework [7].

The compiler and the run-time system are generally similar to those of the J&s language, though simplified by the
absence of masked types and sharing constraints. Synthesis of shadow classes by the run-time system is a new feature
but is similar to the synthesis of implicit classes [28].

5.1 Type checking
Type checking is similar to that in the J& compiler, except that the type system needs to prove sharing relationships
between types. The type system collects sharing relationships from sharing declarations, recursively establishes shar-
ing relationships to all known nested classes and packages, and forms the sharing relation via the reflexive, symmetric,
and transitive closure. Type checking is modular and sound. It is also conservative: a true sharing relationship might
not be recognized by the type system if it requires knowing the declarations in some derived family that has not been
checked yet. In that case, the programmer must break a complex view change operation into multiple view changes
that take smaller steps. This arguably has some documentation value.

5.2 Synthesizing shadow classes
Translation in the J&h compiler is scalable, in the sense that the amount of code generated by the compiler is propor-
tional to the size of the source code. Therefore, no Java target code is produced for shadow classes. Instead, this is
done lazily at run time.

When a nested class is loaded at run time, the classloader in the run-time system checks whether it is an originating
class. If so, code for a shadow class is synthesized in each base family that is shared with the originating family. The
implementation does not copy shadow-method code into shadow classes, but only generates one-line dispatch methods
that call corresponding shadow methods contained in the originating class.

Recall from Section 3.4 that shadow classes are named specially in the source code, with the name of the origi-
nating class embedded in the syntax. For each explicit occurrence of a shadow class, the compiler generates code that
calls the run-time system to load the originating class, triggering run-time synthesis of the shadow class. Moreover,
the name of a shadow class is mangled to include the name of the originating class, to avoid name conflicts.

5.3 Supporting views
The compiler and run-time system supports views and view changes in a way that is almost identical to J&s. Each
J&h object is referenced indirectly through a reference object, which contains a pointer to the run-time representation
of the view associated with the reference. A view change operation is translated to generating a new reference object
pointing to the same J&h object, with a new view that is compatible with the target type. Reference objects are cached
to improve performance.

The behavior of the J&h object is determined by the view. Method calls are dispatched on the views, and run-time
type inspection is also based on the views. The only exception is field accesses. With heterogeneous sharing, a field
with an unshared type has multiple copies, each for a view of the containing object, and therefore field accesses depend
on views. However, with homogeneous sharing, every field is shared, and there is only one copy to access regardless
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of the view. Therefore field accesses in J&h are faster, while other operations have performance similar to that in J&s.
See Section 6.1 for some performance results.

5.4 Optimization of field accesses
As formalized in R-GET in the operational semantics, field accesses in J&h may trigger implicit view changes. How-
ever, not every access requires a view change, so the J&h compiler implements a static analysis to identify implicit
view changes that may be elided without breaking type safety.

A field access does not need an implicit view change in several cases:

• The field type does not depend on the view of the container object.

• An explicit view change is applied immediately after the field access.

• The field is used at a place where its exact view is not important. For example, in an expression x.f.g, the field
access x.f may not need an implicit view change, as long as the second field g is declared in a class that does
not have a shared superclass.

5.5 Run-time type inspection
Sharing allows an object to have several different views at run time. J&h supports view casts and the viewableas

operator, which are similar to type casts and the instanceof operator, to dynamically inspect different views of a
J&h object. These operators are illustrated in the following code based on the example from Section 2.1:

List l = new ArrayList();

l.add(new Button());

Object o = l.get(0);

if (o viewableas PrettyButton!) {

PrettyButton! b = (viewcast PrettyButton!)o;

b.draw(); // the new method in PrettyButton
}

The static type of the object stored in the list is Object, which is not a shared type of PrettyButton!, so a view
cast has to be used for the J&h run-time system to attempt the view change to PrettyButton!. Like type casts in
Java, view casts in J&h can fail at run time with an exception if the current view of the object and the target type are
not shared. By contrast, a statically type-checked view change never fails at run time, whether explicitly written or
implicitly triggered by a field access.

5.6 Java compatibility
The J&h implementation has roughly the same Java compatibility as the J&s implementation. A J&h program may use
existing Java code, and a J&h class may extend a Java class or implement Java interfaces. However, shared classes in
J&h must extend the same Java class, due to the absence of multiple inheritance in Java.

Arrays of J&h objects are treated as objects having fields of the same type, and therefore, array accesses may also
trigger implicit view changes.

The current J&h implementation does not support most of the Java 1.5 features, which seem to be orthogonal to
sharing. Covariant return types are supported, partly because the underlying Java standard library already has covariant
return types. Support for generics would help replace view casts with type-safe view changes. In the previous code
example, if the list l were declared with type List〈Button!〉, the view cast operation could then be replaced with a
statically type-safe view change operation. Adding support for generics to J&h appears feasible, but we leave this as
future work.
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view
change

virtual
call

static
call

field
read

field
write

allo-
cation

J&s 17.6 10.3 1.09 5.92 5.31 26.1
J&h 18.3 9.26 1.09 3.13 2.97 26.3

Table 1: Microbenchmarks: average time per operation, in ns.

bh bisort em3d health mst perimeter power treeadd tsp voronoi
Java 1.30 0.34 0.16 0.26 0.63 0.21 0.64 0.14 0.08 0.29
J& [30] 13.39 1.48 0.33 6.11 4.06 2.93 2.10 2.10 0.22 6.96
J& with 1.78 0.45 0.24 0.55 0.93 0.47 0.83 0.21 0.12 0.57
classloader
J&s [36] 2.20 0.58 0.24 0.85 1.26 0.45 0.89 0.38 0.14 0.75
J&h 2.01 0.55 0.22 0.79 1.21 0.47 0.82 0.37 0.13 0.64

Table 2: Results for the jolden benchmarks. Average time over ten runs, in seconds.

6 Experience

6.1 Performance results
Microbenchmarks. We compare the performance of the J&h implementation against J&s, using some microbench-
marks to measure individual object operations. Every microbenchmark runs one operation 108 times in a loop. Table 1
shows the results. The testing hardware is a Thinkpad X200 with Intel L9400 CPU and 2GB memory, and the software
environment consists of Windows Vista, Cygwin, and JVM 1.6.0 13.

The results confirm that object operations in the implementations of J&s and J&h have similar performance, but
field accesses with homogeneous sharing are almost twice as fast as J&s field accesses. With homogeneous sharing,
field accesses are no longer view-dependent, and therefore accessor methods can be implemented in the same class
where fields are located.

Jolden benchmarks. We tested the J&h implementations with the jolden benchmarks [8] to study the performance
overhead for code that does not use the new extensibility features of class sharing. All ten benchmarks, with few
changes, are tested with five language implementations: Java, J& [30], J& with the custom classloader, J&s [36], and
J&h with homogeneous family sharing. Table 2 compares the results. The testing environment is the same as that for
the microbenchmarks.

The results of the jolden benchmarks confirm that homogeneous family sharing has a lower performance overhead
compared to heterogeneous sharing. The J&s times show a 25% slowdown versus the classloader-based J& (without
sharing) implementation, and 100% versus Java. On the other hand, J&h has a better performance compared to J&s:
the two overhead numbers drop to 17% and 88%. This is consistent with the microbenchmarking results.

The current implementation of J&h still introduces noticeable overhead compared to Java, because of more com-
plex subtyping relationships, indirections through reference objects, and the translation of field accesses into accessor
method calls. Having Java as a target language does limit performance. For J&s [36], we suggested that performance
could be improved with a lower-level target language, allowing implementation techniques similar to those used for
C++; the same should also apply to the J&h implementation.

6.2 Lambda compiler
We experimented with in-place translation in a λ-calculus compiler. This is not a large example, but uses the language
features in a sophisticated way—combining multiple levels of sharing and family-level intersection. The example is
inspired by the Polyglot framework, and it encapsulates most of the interesting issues that arise in making Polyglot
extensible, while demonstrating the advantages of homogeneous family sharing.

20



base
Exp

Abs

pair
Exp

AbsPair

sum
Exp

Abs Case

sumpair
Exp

Abs CasePair

base
Exp

Abs

pair
Exp

AbsPair

sum
Exp

Abs Case

sumpair
Exp

Abs CasePair

shares shares

CasePair

PairCase

s
h

a
re

s

Figure 18: Compiler structure with heterogeneous (left) and homogeneous sharing (right). Translator and some AST
nodes not shown.

Implementing translations for sums and pairs. The compiler example translates the λ-calculus extended with
sums and pairs to the simple lambda calculus. A way to accomplish this goal as an in-place translation was first
demonstrated for heterogeneous sharing [36], so this example offers a way to compare the expressive power of homo-
geneous and heterogeneous sharing.

The compiler is implemented as four families of classes. The base family describes simple λ-calculus as the
target language. Two derived families, sum and pair, share AST classes with the base family but extend it with sums
and pairs respectively. They also implement in-place translation to the simple λ-calculus. The last derived family,
sumpair, composes the sum and pair families, leading to a compiler that supports both sums and pairs.

Homogeneous vs. heterogeneous sharing Figure 18 shows the structures of the compiler when implemented with
heterogeneous sharing and with homogeneous sharing.

The J&s version has about 250 lines. Sharing is declared between individual pairs of classes, represented with
dashed arrows that go across family boundaries. The class hierarchy is more complex with these interfamily relation-
ships, and several class declarations have to be written just to declare sharing, making the code less scalable. Out of
the 23 class declarations, 12 are just for sharing declarations. Moreover, the existence of new subclasses (Pair and
Case) in the pair and sum families means the Exp type cannot be shared. Therefore, all subexpression fields with
type Exp must be masked in sharing relationships. There are in total 17 masked types in the J&s code, and 3 sharing
constraints. The extra syntax increases the annotation burden for the programmer.

The J&h version has about 200 lines. There are only three sharing declarations, shown in the right-hand side of
Figure 18, and they are all between families. None of the 12 class declarations in the J&s version that were needed for
declaring sharing are necessary, so extending is simpler and more scalable. For example, the declaration of sumpair
is reduced to just one line:

class sumpair extends pair & sum shares base { }

In addition, none of the masked types and sharing constraints from the J&s version are needed.
The sharing declaration shares base enables sumpair to share with base, as well as with pair and sum, because

of transitivity. Without this declaration, sumpair would inherit from pair and sum, but would not adapt them.
The comparison shows that homogeneous sharing is simpler and more scalable, and has a lower annotation burden.

The annotation burden is low even in an absolute sense given what is achieved. Therefore, homogeneous sharing seems
more likely to be adopted by ordinary programmers.

6.3 Polyglot
Following the same implementation strategy just outlined, we ported the Polyglot compiler framework version 2.4.0,
originally written in Java, to J&h. We also ported two small Polyglot-based language extensions to explore using
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homogeneous sharing to implement compiler translations. (Previous work [30] presents a port of Polyglot 1.x to the
J& language, for the purpose of demonstrating extension composition, but it cannot support in-place translation).

The Java version of the base Polyglot compiler has 59 kLOC. The J&h port is substantially shorter, at 48 kLOC. The
code becomes shorter through the elimination of the delegate and extension-object design patterns [29] that support
extensibility. With family inheritance and homogeneous sharing, even more extensibility is obtained than from these
design patterns, because the extensibility mechanism applies throughout the compiler rather than just where the design
patterns were used.

As in the lambda compiler example, homogeneous sharing allows us to declare an extension that is shared with
the base compiler. For example, we implemented a covarRet extension, which extends the base compiler with
covariant return types. Because it extends the type system, this extension makes a particularly interesting example.
The extension is implemented by the covarRet package, declared to share with the base compiler:

package covarRet shares polyglot;

The covarRet extension parses source code, which may include methods declared with covariant return types,
generates an AST (built of source family objects), type-checks it, and then translates away any covariant return types
to obtain an AST in the base language (the target family), which is Java 1.4. The translated AST is then type-checked
in the base language, and finally output is generated.

As in the IMP example of Section 3.5, the translation from covarRet to the base language happens in two steps.
First, the AST is transformed to remove covariant return types, but the generated objects remain in the covarRet

family. Shadow classes ensure this can always be done, even if the target language is a “sibling” family with additional
AST nodes not present in the source language. Second, a view change from the source family to the target family is
applied to the root of the translated AST. The view change lazily moves the whole AST, including type annotations, to
the target family. Subsequent type checking and post-processing in the compiler uses the base language view, which
(correctly) does not support covariant returns.

Homogeneous sharing offers some advantages for implementing this extension. First, the extension is somewhat
shorter than the original Java implementation of the same extension: 166 rather than 226 lines for covarRet, as the
result of eliminating design patterns. Second, the Java implementation must reconstruct the types of all expressions
after translation, in order to type-check the translated AST. This reconstruction is avoided in the J&h implementation,
because the final view change automatically shifts source-language objects representing types to the corresponding
target language classes. This shows that homogeneous sharing provides more scalable extensibility than was possible
through the Polyglot design patterns, which apply mainly to AST nodes.

Another ported extension was carray, which supports constant arrays. Compared to covarRet, which
just extends the type system, carray also extends the grammar, and introduces a new AST node class
ConstArrayTypeNode. If we were to port carray with J&s, this new AST node class would make the code much
more complicated. All the fields that might store an instance of ConstArrayTypeNode would have to be masked,
because heterogeneous sharing does not allow two corresponding types to be shared if one of them has a new subclass.
By contrast, with a shadow class implicitly added into the base family, homogeneous sharing makes porting carray

quite simple: the J&h version has 214 LOC, and the Java version has 217 LOC, both excluding comments, empty lines,
and automatically generated parser code. In the case the J&h code does not become significantly shorter, because the
original extension does not implement any translation.

The performance of the J&h version of Polyglot is reasonable. Because Polyglot has many classes, and the current
J&h run-time system needs to produce bytecode for generated classes, startup overhead for class loading in the current
system is high compared to Java. To ignore this artificial discrepancy, we compared the compile time of the two
compilers on some small programs after class loading was complete. The Java version took 149ms on average to
compile these programs, whereas the J&h version took 207ms. The performance hit is modest, while writing the
compiler in J&h adds even more extensibility.

7 Related work

7.1 Heterogeneous sharing
The most closely related work is our previous work on the J&s language, which has heterogeneous class sharing [36].
Section 3.7 compares the two approaches to sharing in detail.
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7.2 Adaptation
The adapter design pattern [17] is a protocol for implementing adaptation. However, this and other related patterns
are tedious and error-prone to implement, rely on statically unsafe type casts, and do not preserve object identity or
provide bidirectional adaptation, as sharing does.

Expanders [44] are a mechanism for adaptation. New fields, methods, and superinterfaces can be added into
existing classes. Expanders are more expressive than open classes [10], which can only add methods. Method dispatch
is statically scoped, so expanders do not change the behavior of existing clients. J&h supports upgrading existing
clients without code change by allowing the shared derived family to override classes in the base family, and by
providing shadow classes in the base family.

CaesarJ [23, 1] is an aspect-oriented language that supports adaptation with wrappers called aspect binders. Wrap-
pers and expanders are similar. They both can extend wrapped classes with new states, operations, and superinterfaces;
no duplicate wrappers are created for objects; and dynamic wrapper selection is similar to expander overriding. They
also share the similar limitation that existing client code cannot acquire the extended behavior without code change.
Multiple inheritance in CaesarJ makes wrapper selection ambiguous; J&h disambiguates via views.

FickleIII [12] has a re-classification operation for objects to change their classes. Re-classifications are similar to
view changes in J&h, but directly change the behavior of all existing references to the object; therefore, effects are
needed to track the change, adding to the annotation burden. FickleIII does not support class families.

Chai3 [40] allows traits to be dynamically substituted to change object behaviors, similar to view changes. How-
ever, Chai3 does not support families, and the fact that traits do not have fields makes it harder to support manipulation
of data structures.

Some previous work on adaptation, including pluggable composite adapters [24], object teams [18], and delegation
layers [34], also has some notion of families of classes. However, these mechanisms either do not support method
overriding and dynamic dispatch between the adapter and adaptee families [24], or have a weaker notion of families in
which programmers have to manually “wire” relationships between the base family and the delegation family [18, 34].
These mechanisms all use lifting and lowering, introduced in [24], to convert between adapter and adaptee classes.
Lifting and lowering are similar to view changes, but are not symmetric and do not support late binding, as they are
based on the static type of the object.

7.3 Family inheritance
Several different mechanisms have been proposed to support family inheritance, including virtual classes, nested
inheritance, variant path types, mixin layers, etc. In all these mechanisms, families of classes are disjoint, and in-place
extensibility is not provided.

Virtual classes [21, 22, 13, 16, 9] are inner classes that can be overridden just like methods. Path-dependent types
are used to ensure type safety, proved in [16] and [9].

Nested inheritance [28] supports overriding of nested classes, which are similar to virtual classes. Nested inter-
section [30] adds and generalizes intersection types [38, 11] in the context of nested inheritance to provide the ability
to compose extensions. A family-level multiple inheritance mechanism based on virtual classes has been explored by
Ernst in the context of gbeta [14].

Variant path types [20] support family inheritance without dependent types, using a different style of exact types
and relative path types to ensure type safety.

Mixin layers [39] generalize mixins [4], which are classes that can be instantiated with different superclasses.
Mixin layers are mixins that encapsulate other mixins. Mixin layers support family inheritance: when a mixin layer is
instantiated, all the inner mixins are instantiated correspondingly. However, they do not provide family polymorphism.

Virtual types [42, 6, 43, 19] are type declarations that can be overridden. Virtual types are more limited than virtual
classes: they provide family polymorphism but not family inheritance. Scala [32, 33] supports family polymorphism
and composition through virtual types, path-dependent types, and mixin composition. Views in Scala do not provide
adaptation; they are implicitly-called conversion functions that create new instances in their target types.

Nielsen and Ernst [27] present a virtual machine that natively supports family inheritance. It would also be inter-
esting to explore native implementation of family sharing.

7.4 Dynamic software updating
J&h supports safe dynamic software updating without downtime, in much the same way as in J&s. Objects of the base
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family may be upgraded to new views in the derived family, and therefore obtain new behaviors while the software
system is still running. Usually only a few root objects need to be explicitly upgraded, while other objects that are
reachable from them will be automatically updated when they are accessed. This makes the updating code easier to
write.

On the other hand, mechanisms for dynamic software updating [2, 41, 26, 25], by design do not preserve the old
behavior of the software before the update, whereas sharing captures both the existing and the updated behaviors in
the form of views. Sharing therefore provides additional functionality: safe switching between different behaviors at
run time.

Barr and Eisenbach [2] propose a framework for dynamic update of Java components, which also includes a custom
classloader. The goal is to provide a tool that keeps Java libraries up to date, rather than to improve the extensibility
of the language.

JVOLVE [41] supports dynamic software updating with no overhead during steady-state execution, but it requires
changes to many different components of the Java virtual machine, rather than to just the classloader as in J&h.

Ginseng [26] uses static analysis to find proper timing for a given global update, and is later generalized to work
with multi-threaded programs [25]. Abstract and concrete types in Ginseng bear some resemblance to inexact and
exact types in J&h: abstractly typed variables allow values of different concrete types, and inexactly typed variables
may store objects with different exact views.

8 Conclusions
Homogeneous family sharing generalizes class sharing so that it operates at the level of families of interacting classes,
analogously to the way nested inheritance generalizes ordinary class inheritance. Shadow classes and other new
mechanisms enable a derived family to safely and homogeneously share with a base family, while still extending
the base family with new classes. Shadow classes also make families open, providing new kinds of extensibility.
Homogeneous sharing is formalized in a simplified language that focuses on sharing, and the type system is proved
sound. Homogeneous sharing avoids complicated language mechanisms like masked types or sharing constraints that
were needed by the previous heterogeneous sharing mechanism. This ease of use made it feasible to port and evaluate
some substantial software and extensions to it. Our experience is that homogeneous family sharing gives expressive
power comparable to that of heterogeneous sharing, but is simpler, more concise, and easier to reason about.
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〈`,P!〉 ∈ R ` ftype( /0,P, f )E Pf
〈`′,P′!〉= view(H(`, f ),Pf ) final Tf f = e ∈ fields(P)

〈`,P!〉. f = 〈`′,P′!〉 ∈ bH,Rc

Figure 19: Runtime typing environments

FV(e) = /0 refs(e)⊆ R
〈l,P!〉,〈l,P′!〉 ∈ R⇒` P!↔ P′!

H(`, f ) = v⇒∃P . 〈`,P!〉 ∈ R∧ ` v:ftype( /0,P!, f )

` e,H,R

Figure 20: Runtime configuration well-formedness

A Proof of soundness

A.1 Run-time configurations
In the soundness proof, expressions are typed using a typing environment bH,Rc constructed from the heap H and the
reference set R, which contains aliasing information for fields. Figure 19 shows the definition of bH,Rc.

A run-time configuration is well-formed, represented as ` e,H,R, shown in Figure 20, if e has no free variable, all
the references in e are included in R, references with the same location in R have shared views, and the type of the
value stored in a field is consistent with at least one view of the containing object.

A.2 Extensions of typing environments
A typing environment Γ′ is an extension of Γ, if Γ ⊆ Γ′. Extensions preserve almost all the typing judgments, as
described in Lemma A.1.

Lemma A.1 If Γ2 is an extension of Γ1, then the following statements are true:

• If Γ1 ` T , then Γ2 ` T .

• If Γ1 ` T E P, then Γ2 ` T E P.

• If ftype(Γ1,T, f ) = Tf , then ftype(Γ2,T, f ) = Tf .

• If mtype(Γ1,T,m) = (x:T )→ Tn+1, then mtype(Γ2,T,m) = (x:T )→ Tn+1.

• If Γ1 ` p = p′, then Γ2 ` p = p′.

• If T{{Γ1; Tx/x}}= T ′, then T{{Γ2; Tx/x}}= T ′.

• If Γ1 ` T1≤T2, then Γ2 ` T1≤T2.

• If Γ1 ` v:T , then Γ2 ` v:T .

PROOF: The proof is by induction on the derivation of these judgments. �

A.3 Substitutions
This section describes several preliminary lemmas about both type and value substitutions.

The typing of field accesses and that of method calls both depend on the typing of their receivers, although the
static type of the receiver might not be as precise of the dynamic type of the receiver object. Therefore, we need
Lemma A.2, which states that type substitution is covariant.

Lemma A.2 If Γ ` T1≤T2, then for any type T , we have Γ ` T{{Γ; T1/x}}≤T{{Γ; T2/x}}.
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PROOF: The proof is by structural induction on T . Note that there is no arrow type in J&h. �

As a corollary of Lemma A.2, we can prove Lemma A.3, since the ftype function basically just involves a type
substitution.

Lemma A.3 If Γ ` T1≤T2, and ftype(Γ,T1, f ) = Tf , and ftype(Γ,T2, f ) = T ′f , then Γ ` Tf ≤T ′f .

J&h supports dependent types, and therefore value substitution may also apply to types. The following lemma
states that value substitution preserves subtyping.

Lemma A.4 If Γ,x:Tx ` T1≤T2, and Γ ` v:Tx, then Γ{v/x} ` T1{v/x}:T2{v/x}.

PROOF: The proof is by induction on the derivation of Γ,x:Tx ` T1≤T2. �

Lemma A.5 states that sharing is preserved by value substitutions.

Lemma A.5 If Γ,x:Tx ` T1↔ T2, and Γ ` v:Tx, then Γ{v/x} ` T1{v/x}↔ T2{v/x}.

PROOF: The proof is by induction on the derivation of Γ,x:Tx ` T1↔ T2. �

Now we can proof the value substitution lemma:

Lemma A.6 (Value substitution) If Γ,x:Tx ` e:T , and Γ ` v:Tx, then Γ{v/x} ` e{v/x}:T{v/x}.

PROOF: The proof is by induction on the derivation of Γ,x:Tx ` e:T , using Lemma A.4 and Lemma A.5. �

The following lemma helps make the value substitution lemma applicable to the case of proving preservation for
method calls, since T-CALL uses exactness-preserving substitution.

Lemma A.7 If Γ,x:Tx ` T , and Γ ` v:Tx, then Γ{v/x} ` T{v/x}≤T{{Γ; Tx/x!}}.

PROOF: Note that T{v/x} is actually T{{Γ; v.class/x!}}, and Γ ` v:Tx implies that Γ ` v.class≤Tx. Then we can
apply Lemma A.2 to get the proof. �

A.4 Sharing of field types
Unlike the J&s calculus, the homogeneous sharing J&h core language ensure that field types are always shared for all
the shared views of the containing object. Therefore, there is no need to duplicate fields or to use masked types. This
property is proved in Lemma A.8 (Lemma 4.5 in the text).

Lemma A.8 If ` P!↔ P′!, and ftype( /0,P!, f ) = Tf , and ftype( /0,P′!, f ) = T ′f , then ` Tf ↔ T ′f .

PROOF: It is easy to see that both ftype( /0,P!, f ) and ftype( /0,P′!, f ) are obtained from the same declared field type
T decl

f , where ftypedecl( /0,P!, f ) = [final] T decl
f .

If T decl
f is not dependent, then the proof is trivial. If T decl

f is a dependent type without any prefix types in it, that
is, this.class.C, the proof is also not hard, by SH-NEST. The interesting case is when T decl

f is a prefix type, which
can be proved using Lemma A.9. �

Lemma A.9 If ` P1!.C1↔ P2!.C2, and ` P[P1!.C1], and ` P[P2!.C2], then ` P[P1!.C1]↔ P[P2!.C2].

PROOF: By induction on the derivation of ` P1!.C1↔ P2!.C2. There are several cases:

• SH-REFL

Trivial.
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• SH-SYM

Proved by directly using the induction hypothesis.

• SH-TRANS

Proved by directly using the induction hypothesis.

• SH-EXACT

Then both prefix types are evaluated using S-PRE-E2, P1!.C1 = P1!, and P2!.C2 = P2!. By SH-EXACT, we have
` T1 ↔ T2, and T1! = P1! and T2! = P2!, i.e., T1 and T2 are just P1 and P2 with exactness inserted somewhere.
Then by the induction hypothesis, ` P[T1]↔ P[T2]. By S-PRE-E2, we know that P[P1!] evaluates to P[T1]!,
and P[P2!] evaluates to P[T2]!. Therefore, by SH-EXACT, the proof follows.

• SH-NEST

Then both P[P1!.C1] and P[P2!.C2] can be evaluated according to S-PRE-E1, since they are not exact. By
SH-NEST, P1!.C1 = T1.C, P2!.C2 = T2.C, and ` T1 ↔ T2. By S-PRE-E1, P[P1!.C1] evaluates to T1, and
P[P2!.C2] evaluates to T2. Then the proof follows.

• SH-DECL

Then there exists P′ and C, such that P1!.C1 =P1!=P′.C!, and P2!.C2 =P2!, and CT ′(P′.C) = . . . shares T ′ . . .,
and T ′{{ /0; P′/this}}= P2. By SH-OK in Figure 13, T ′{{ /0; P′/this}}= P′.C′. Now we can see that P2 = P′.C′.
Therefore P[P1!]= P′! = P[P2!]. Then the proof follows by SH-REFL.

�

A.5 Progress
We first prove the progress lemma (Lemma A.10), which is easier than proving subject reduction.

Lemma A.10 (Progress) If ` e,H,R, and bH,Rc ` e:T , then either ∃v, such that e = v, or ∃e′,H ′,R′, such that
e,H,R−→ e′,H ′,R′.

PROOF: The proof is by structural induction on e. There are the following cases:

• e = v

Trivial.

• e = x

Vacuously true, since e has no free variable.

• e = e0. f

There are two cases:

– e0 6= v
Then by the induction hypothesis, ∃e′0,H ′,R′ . e0,H,R−→ e′0,H

′,R′. Then R-CONG applies.

– e0 = 〈`,P!〉
Then by R-GET, e′= view(H(`, f ), ftype( /0,P!, f )), and H ′=H, and R′=R,view(H(`, f ), ftype( /0,P!, f )).

• e = (e0. f = e1)

There are again two cases:

– e0 6= v or e1 6= v
Then the induction hypothesis and R-CONG applies.

– e0 = v0 and e1 = v1

The proof is similar to that for the second case with e = e0. f , using R-SET instead of R-GET.
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• e = e0.m(e)

There are two cases:

– ei 6= v for some i (0≤ i≤ n)
The proof follows from the induction hypothesis and R-CONG.

– ei = vi (0≤ i≤ n)
Suppose v0 = 〈`,P!〉. By T-CALL, we know that mtype(P,m) is well-defined. Then mbodies(P,m) is a
singleton set according to the definition of mtype(P,m). Therefore R-CALL applies.

• e = e1; e2

There are two cases:

– e1 6= v
The proof follows from the induction hypothesis and R-CONG.

– e1 = v
Then R-SEQ applies.

• e = new T ( f = e)

There are three cases:

– T 6= P!.C
Then we should continue evaluating the type T , as described in Section 4.7.

– T = P!.C and ei 6= v for some i (1≤ i≤ n)
The proof follows from the induction hypothesis and R-CONG.

– T = P!.C and ei = vi (1≤ i≤ n)
Then R-ALLOW applies.

• e = (view T )e0

There are again three cases:

– T 6= P!.C
Then we need to continue evaluating the type T .

– T = P!.C and e0 6= v
The proof follows from the induction hypothesis and R-CONG.

– T = P!.C and e0 = v
Then R-VIEW applies.

�

A.6 Subject reduction
Before proving that typing is preserved by evaluating an expression, we first prove that evaluation of a final access
path preserves the typing.

Lemma A.11 If ` e,H,R, and bH,Rc `final p:T , and p,H,R−→ p′,H ′,R′, then ` p′,H ′,R′, and bH ′,R′c `final p′:T ′,
and bH ′,R′c ` T ′≤T .

PROOF: The proof is by induction on the derivation of bH,Rc `final p:T . Since the final access path p can take a step,
it must be of the form p0. f . There are then two cases:
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• p0 6= v

Then R-CONG applies, and p0,H,R−→ p′0,H
′,R′. By F-GET, bH,Rc `final p0:T0, and T = ftype(bH,Rc,T0, f ).

Then by the induction hypothesis, bH ′,R′c `final p′0:T ′0 , and bH ′,R′c ` T ′0 ≤T0. Then by F-GET, bH ′,R′c `final

p′0. f :ftype(bH ′,R′c,T ′0 , f ), that is, T ′ = ftype(bH ′,R′c,T ′0 , f ). Then by Lemma A.3, bH ′,R′c ` T ′≤T .

• p0 = 〈`,P!〉
Then R-GET applies. Let H(`, f ) = v, and ftype( /0,P!, f ) = P′!.C, and 〈`′,P′′!〉 = view(v,P′!.C). Then p′ =
〈`′,P′′!〉. By F-REF, bH,Rc `final p0:P!. By F-GET, T = ftype(bH,Rc,P!, f ). By S-FIN, bH,Rc ` p.class≤T ,
and by the definition of run-time typing environment, bH,Rc ` p= p′. Thus by S-ALIAS, bH,Rc ` p′.class≤T .
Since H ′ = H and R′ = R, p′, bH ′,R′c is an extension of bH,Rc. By Lemma A.1, bH ′,R′c ` p′.class≤ T .
By F-REF, bH ′,R′c `final p′:P′′!, that is, T ′ = P′′!. By S-FIN-EXACT, bH ′,R′c ` p′.class ≈ P′′!. Therefore
bH ′,R′c ` P′′!≤T by S-TRANS, that is, bH ′,R′c ` T ′≤T .

�

Lemma A.12 (Subject reduction) If ` e,H,R, and bH,Rc ` e:T , and e,H,R −→ e′,H ′,R′, then ` e′,H ′,R′ and
bH ′,R′c ` e′:T .

PROOF: It is not hard to prove that the resulting run-time configuration e′,H ′,R′ is still well-formed, by inspecting
the definition of configuration well-formedness, and how the configuration can change for each of the operational
semantic rule.

Now let us prove bH ′,R′c ` e′:T , by induction on the derivation of bH,Rc ` e:T .
First, if the derivation ends with T-SUB, we can use the induction hypothesis and the extension lemma to do the

proof. Therefore, let us now only consider the case without T-SUB as the last rule in the derivation. We also consider
different cases for e. (Note that most of the congruence cases are very easy to prove, just using the induction hypothesis
and the appropriate typing rules).

• e = v

Vacuously true, because there is no step to take.

• e = x

Vacuously true, because e contains no free variables.

• e = e0. f

There are several cases for e0:

– e0 = 〈`,P!〉
There are again two cases for the rule used for typing e, depending on whether f is a final field or not.

∗ T-FIN
Then by R-GET, e,H,R −→ v,H,R′, where H(`, f ) = v′, and v = view(v′, ftype( /0,P!, f )), and R′ =
R,v.
We can still use T-FIN to type v. According to Lemma A.11, the proof follows.

∗ T-GET
Then operationally, it is still R-GET, the same as in the previous case. We still have e,H,R−→ v,H,R′,
where H(`, f ) = v′, and v = view(v′, ftype( /0,P!, f )), and R′ = R,v.
Although the typing of 〈`,P!〉 might not be as precise as P!, by Lemma A.3, we only need to consider
P! as the receiver type.
Let ftype( /0,P!, f ) = Tf . We need to prove bH,R′c ` v:Tf .
By the definition of ` e,H,R, we have H(`, f ) = v′ ⇒ ∃〈`,P′′!〉 ∈ R∧ ` v:ftype( /0,P′′!, f ). Since
〈`,P!〉,〈`,P′′!〉 ∈ R, we have ` P!↔ P′′!. Then by Lemma A.8, ` ftype( /0,P!, f )↔ ftype( /0,P′′!, f ).
Then by the definition of the auxiliary function view, ` view(v′,Tf ):Tf , and therefore bH,R′c ` v:Tf .

– e0 6= v
Then R-CONG applies. There are two cases for deriving bH,Rc ` e0. f :T .
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∗ T-FIN
The proof is similar to the corresponding case above, using Lemma A.11.

∗ T-GET
Then bH,Rc ` e0:T0, and ftype(bH,Rc,T0, f ) = T . By the induction hypothesis, bH ′,R′c ` e′0:T0.
Also, bH ′,R′c is an extension of bH,Rc. Therefore, ftype(bH ′,R′c,T0, f )= T . Then bH ′,R′c ` e′0. f :T .

• e = (e0. f = e1)

There are several cases for e0.

– e0 = 〈`,P!〉
Again, there are two cases for e1:

∗ e1 = v
Then R-SET applies. By T-SET, bH,Rc ` v:T , where T = ftype(bH,Rc,P!, f ). Here, we still only
consider P! with the same reason mentioned before for the case of e = 〈`,P!〉. f . Since bH ′,Rc is an
extension of bH,Rc, we still have bH ′,Rc ` v:T .

∗ e1 6= v
This is the congruence case.

– e0 6= v
This is the congruence case.

• e = e0.m(e)

There are two cases:

– ei 6= v for any i (0≤ i≤ n)
This is the congruence case.

– e0 = 〈`,P!〉, and e = v
Then R-CALL applies, and H ′ = H, R′ = R, and e′ = em{〈`,P!〉/this,v/x}, where mbodies(P,m) =
{Tn+1 m(T x) {em}}. We also have bH,Rc ` e:T ′n+1, where T ′i = Ti{{bH,Rc; P!/this}} (i = 1, . . . ,n+1).
According to M-OK, this:P′,x:T ` em:Tn+1, where ` P!≤P′. Then the proof follows from Lemma A.6
and Lemma A.7.

• e = e1; e2

There are two cases:

– e1 6= v
This is the congruence case.

– e1 = v
Then R-SEQ applies. We also have e′ = e2, H ′ = H, and R′ = R. The proof follows easily.

• e = new P!.C( f = e)

There are two cases:

– ei 6= v for any i (1≤ i≤ n)
This is the congruence case.

– e = v
Then R-ALLOC applies, and e′ = 〈`,P.C!〉. By T-NEW, T = P.C!. Then by T-FIN, bH ′,R′c ` 〈`,P.C!〉:P.C!.

• e = (view P!.C)e0

By T-VIEW, T = P!.C. There are two cases for e0:

– e0 6= v
This is the congruence case.
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– e0 = 〈`,P0!〉
Then R-VIEW applies. We have e′ = view(〈`,P0!〉,P!.C). By T-VIEW, there exists T` such that bH,Rc `
〈`,P0!〉:T` and bH,Rc ` T`↔ P!.C. Now it is easy to see that T` has the form of P′!.C, otherwise it cannot
be shared with P!.C. Therefore bH,Rc ` P0!≤P′!.C, and ` P!↔ P′!. Since bH ′,R′c is an extension of
bH,Rc, bH ′,R′c ` P0!≤P′!.C. By the definition of the view function, e′ = 〈`,P.C′!〉, where P0 = P′.C′. By
S-SHARE, bH ′,R′c ` P!.C′≤P!.C. Therefore bH ′,R′c ` P.C′!≤T , which implies that bH ′,R′c ` e′:T .

�

A.7 Soundness
Finally, the soundness theorem (Theorem A.13, also Theorem 4.1) can be proved.

Theorem A.13 (Soundness) If ` 〈L,e〉 ok, and ` e:T , and e, /0, /0→∗ e′,H,R, then either ∃v, such that e′ = v and
bH,Rc ` v:T , or ∃e′′,H ′,R′, such that e′,H,R−→ e′′,H ′,R′.

PROOF: Follows from Lemma A.10 and Lemma A.12. �
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