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Abstract
We introduce a general way to locate programmer mistakes that are
detected by static analyses such as type checking. The program anal-
ysis is expressed in a constraint language in which mistakes result
in unsatisfiable constraints. Given an unsatisfiable system of con-
straints, both satisfiable and unsatisfiable constraints are analyzed,
to identify the program expressions most likely to be the cause of un-
satisfiability. The likelihood of different error explanations is eval-
uated under the assumption that the programmer’s code is mostly
correct, so the simplest explanations are chosen, following Bayesian
principles. For analyses that rely on programmer-stated assump-
tions, the diagnosis also identifies assumptions likely to have been
omitted. The new error diagnosis approach has been implemented
for two very different program analyses: type inference in OCaml
and information flow checking in Jif. The effectiveness of the ap-
proach is evaluated using previously collected programs containing
errors. The results show that when compared to existing compilers
and other tools, the general technique identifies the location of pro-
grammer errors significantly more accurately.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Diagnostics; D.4.6 [Security and Protection]: Information
flow controls; F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis.

Keywords Error diagnosis; static program analysis; type inference;
information flow

1. Introduction
Sophisticated type systems and other program analyses enable ver-
ification of complex, important properties of software. Advances in
type inference, dataflow analysis, and constraint solving have made
these verification methods more practical by reducing both analy-
sis time and annotation burden. However, the impact on industrial
practice is disappointing.

We posit that a key barrier to adoption of sophisticated analy-
ses is that debugging is difficult when the analysis reports an error.
When deep, non-local software properties are being checked, the
analysis may detect an inconsistency in a part of the program far
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from the actual error, resulting in a misleading error message. De-
termining from this message where the true error lies can require an
unreasonably complete understanding of how the analysis works.

We are motivated to study this problem based on experience with
two programming languages: ML, whose unification-based type in-
ference algorithm sometimes generates complex, even misleading
error messages [36], and Jif [31], a version of Java that statically an-
alyzes the security of information flow within programs but whose
error messages also confuse programmers [20]. Prior work has ex-
plored a variety of methods for improving error reporting in each of
these languages. Although these methods are usually specialized to
a single language and analysis, they still frequently fail to identify
the location of programmer mistakes.

In this work, we take a more general approach. Most program
analyses, including type systems and type inference algorithms, can
be expressed as systems of constraints over variables. In the case of
ML type inference, variables stand for types, constraints are equali-
ties between different type expressions, and type inference succeeds
when the corresponding system of constraints is satisfiable.

When constraints are unsatisfiable, the question is how to report
the failure indicating an error by the programmer. The standard prac-
tice is to report the failed constraint along with the program point
that generated it. Unfortunately, this simple approach often results
in misleading error messages—the actual error may be far from that
program point. Another approach is to report all expressions that
might contribute to the error (e.g., [8, 15, 35, 36]). But such reports
are often verbose and hard to understand [17].

Our insight is that when the constraint system is unsatisfiable,
a more holistic approach should be taken. Rather than looking at a
failed constraint in isolation, the structure of the constraint system as
a whole should be considered. The constraint system defines paths
along which information propagates; both satisfiable and unsatisfi-
able paths can help locate the error. An expression involved in many
unsatisfiable paths is more likely to be erroneous; an expression that
lies on many satisfiable paths is more likely correct. This approach
can be justified on Bayesian grounds, under the assumption, cap-
tured as a prior distribution, that code is mostly correct.

In some languages, the satisfiability of constraint systems de-
pends on environmental assumptions, which we call hypotheses.
The same general approach can also be used to identify hypothe-
ses likely to be missing: a small, weak set of hypotheses that makes
constraints satisfiable is more likely than a large, strong set.

Contributions This paper presents the following contributions:

1. A general constraint language that can express a broad range of
program analyses. We show that it can encode both ML type
inference and Jif information flow analysis, as well as other
analyses, including many dataflow analyses (Section 3).

2. A general algorithm for identifying likely program errors, based
on the analysis of a constraint system extracted from the pro-



1 let f(lst: move list): (float*float) list =
2 ...
3 let rec loop lst x y dir acc =
4 if lst = [] then
5 acc
6 else
7 print string "foo"
8 in
9 List.rev (loop lst 0.0 0.0 0.0 [(0.0,0.0)] )

Figure 1. OCaml example. Line 9 is blamed for a mistake at line 7.

gram. Using a Bayesian posterior distribution [14], the algorithm
suggests program expressions that are likely errors and offers
hypotheses that the programmer is likely to have omitted (Sec-
tions 4 and 5).

3. An evaluation of this new error diagnosis algorithm on two dif-
ferent sets of programs written in OCaml and Jif. As part of
this evaluation we use a large set of programs collected from
students using OCaml to do programming assignments [23]
(Section 6). Appealingly, high-quality results do not rely on
language-specific tuning.

2. Approach
Our general approach to diagnosing errors can be illustrated through
examples from two languages: ML and Jif.

2.1 ML type inference
The power of type inference is that programmers may omit types.
But when type inference fails, the resulting error messages can be
confusing. Consider Figure 1, containing (simplified) OCaml code
written by a student working on a programming assignment [23].
The OCaml compiler reports that the expression [(0.0, 0.0)] at line 9
is a list, but is used with type unit. However, the programmer’s
actual fix shows that the error is the print string expression at
line 7.

The misleading report arises because currently prevalent error re-
porting methods (e.g., in OCaml [32], SML [29], and Haskell [18])
unify types according to type constraints or typing rules, and report
the last expression considered, the one on which unification fails.
However, the first failed expression can be far from the actual error,
since early unification using an erroneous expression may lead type
inference down a garden path of incorrect inferences.

In our example, the inference algorithm unifies (i.e., equates) the
types of the four highlighted expressions, in a particular order built
into the compiler. One of those expressions, [(0.0, 0.0)], is blamed
because the inconsistency is detected when unifying its type.

Prior work has attempted to address this problem by reporting
either the complete slice of the program relating to a type inference
failure, or a smaller subset of unsatisfiable constraints [8, 15, 35,
36]. Unfortunately, both variants of this approach can still require
considerable manual effort to identify the actual error within the
program slice, especially when the slice is large.

2.2 Jif label checking
Confusing error messages are not unique to traditional type infer-
ence. The analysis of information flow security, which checks a dif-
ferent kind of nonlocal code property, can also generate confusing
messages when security cannot be verified.

Jif [31] is a Java-like language whose static analysis of informa-
tion flow often generates confusing error messages [20]. Figure 2
shows a simplified version of code written by a Jif programmer. Jif
programs are similar to Java programs except that they specify se-
curity labels, shadowed in the example. Omitted labels (such as the

1 public final byte[ {} ] {this} encText;
2 ...

3 public void m(FileOutputStream[ {this} ] {this}
4 encFos) throws (IOException) {
5 try {
6 for (int i=0; i<encText.length; i++)
7 encFos.write(encText[i]);
8 } catch (IOException e) {}
9 }

Figure 2. Jif example. Line 3 is blamed for a mistake at line 1.

label of i at line 6) are inferred automatically. However, Jif label
inference works differently from ML type inference algorithms: the
type checker generates constraints on labels, creating a system of
inequalities that are then solved iteratively. For instance, the com-
piler generates a constraint {} ≤ {this} for line 7, bounding the
label of the argument encText[i] by that on the formal parameter
to write(), which is {this} because of encFos’s type.

Jif error messages are a product of the iterative process used
to solve these constraints. The solver uses a two-pass process that
involves both raising lower bounds and lowering upper bounds on
labels to be solved for. Errors are reported when the lower bound on
a label cannot be bounded by its upper bound.

As with ML, early processing of an incorrect constraint may
cause the solver to detect an inconsistency later at the wrong loca-
tion. In this example, Jif reports that a constraint at line 3 is wrong,
but the actual programmer mistake is the label {} at line 1.

Jif permits programmers to specify assumptions, capturing trust
relationships that are expected to hold in the environment in which
the program is run. A common reason why label checking fails in Jif
is that the programmer has gotten these assumptions wrong (sharing
constraints on ML functor parameters are also assumptions, but are
simpler and less central to ML programming).

For instance, an assignment from a memory location labeled
with a patient’s security label to another location with a doctor’s
label might fail to label-check because the crucial assumption is
missing that the doctor acts for the patient. That assumption would
imply that an information flow from patient to doctor is secure.

In this paper, we propose a unified way to infer both program
expressions likely to be wrong and assumptions likely to be missing.

2.3 Overview of the approach
As a basis for a general way to diagnose errors, we define an
expressive constraint language that can encode a large class of
program analyses, including not only ML type inference and Jif
label checking, but also dataflow analyses.

Constraints in this language assert partial orderings on constraint
elements. These constraints are then converted into a representation
as a directed graph. In that graph, a node represents a constraint
element, and a directed edge represents an ordering between the two
elements it connects.

For example, Figure 3 is part of the constraint graph generated
from the OCaml code of Figure 1. Each node represents either the
type of a program expression or a declared type; in the figure,
nodes are annotated with the line numbers of that expression or
declaration. Each solid edge represents one constraint generated by
an OCaml typing rule. For example, the leftmost node represents the
type of the result of print string, which is unit. Since function
loop can return this result, the leftmost node is connected by edges
to the node representing the result type of loop (at line 9).

Type inference fails if there is at least one unsatisfiable path
within the constraint graph, indicating a sequence of unifications
that generate a contradiction. Consider, for example, the three paths
P1, P2, and P3 in the figure. The end nodes of each path must



print_string
unit
(7)

acc (5)

loop ret (9)

acc (3)

List.rev
'a list (9)

f ret
(float*float) list (1)

[(0.0,0.0)]
(float*float) list (9)

P2

P1

P3

Figure 3. Part of the constraint graph for the OCaml example

represent the same types. Other such inferred paths exist, such as
between the node for unit and the node for variable acc(3), but
these paths are not shown since a path with at least one variable on
an end node is trivially satisfiable. We call paths that are not trivially
satisfiable, such as P1, P2, and P3, the informative paths.

In this example, the pathsP1 andP2 are unsatisfiable because the
types at their endpoints are different. Note that path P2 corresponds
to the expressions highlighted in the OCaml code. By contrast, path
P3 is satisfiable.

The constraints along unsatisfiable paths form a complete expla-
nation of the error, but one that is often too verbose. Our goal is to
be more useful by pinpointing where along the path the error occurs.
The key insight is to analyze both satisfiable and unsatisfiable paths.

In Figure 3, the strongest candidate for the real source of the
error is the leftmost node of type unit, rather than the lower-
right expression of type (float*float) list that features in the
misleading error report produced by OCaml. Two general heuristics
help us identify unit as the culprit:

1. All else equal, an explanation for unsatisfiability in which pro-
grammers have made fewer mistakes is more likely. This is an
application of Occam’s Razor. In this case, the minimum expla-
nation is a single expression (the unit node) which appears on
both unsatisfiable paths.

2. The unit node appears only on unsatisfiable informative paths,
but not on the informative, satisfiable path P3. Since erroneous
nodes are less likely to appear in satisfiable paths, the unit node
is a better error explanation than any node lying on path P3.

Appealingly, these two heuristics rely only on graph structure,
and are oblivious to the language and program being diagnosed. The
same generic approach can therefore be applied to very different
program analyses: our tool correctly and precisely points out the
actual error in both the OCaml and Jif examples above.

In addition to helping identify incorrect expressions, the con-
straint graph also provides enough information to identify assump-
tions that are likely to be missing.

3. Constraint language
Central to our approach is a general core constraint language that
can be used to capture a large class of program analyses. In this
constraint language, constraints are inequalities using an ordering
≤ that corresponds to a flow of information through a program.
The constraint language also has constructors and destructors cor-
responding to computation on that information.

3.1 Syntax
The syntax of the constraint language is formalized in Figure 4.

G ::= G1 ∧G2 | A A ::= C1 ` C2

C ::= I1 ∧ ... ∧ In (n≥0) I ::= E1 ≤ E2

E ::= α | c(E1, . . . , Ea(c)) | ci(E) | E1tE2 | E1uE2 | ⊥ | >

Figure 4. Syntax of constraints

The top-level goal G to be solved is a conjunction of assertions
A, each with the form C1 ` C2, where constraint C1 is the hypoth-
esis (that is, assumption) and constraint C2 is a conclusion to be
satisfied.

A constraint C, serving either as the hypothesis or as the conclu-
sion of an assertion, is a possibly empty conjunction of inequalities
I over elements from E, based on the ordering ≤. We denote an
empty conjunction as ∅, and abbreviate ∅ ` C2 as ` C2.

An element E may be a variable α ∈ Var whose value is to
be solved for, an application of constructor c ∈ Con or the i-th
argument to a constructor application, represented by ci(E). The
arity of constructor c is represented as a(c). Constants c are nullary
constructors, with arity 0.

The ordering ≤ is treated abstractly, but it must define a lattice
with the usual join (t) and meet (u) operators, which can be used
as syntax. The bottom and top of the element ordering are⊥ and>.

Example To model ML type inference, we can represent the type
int->bool as a constructor application fn(int, bool), where int and
bool are constants. Its first projection fn

1
(fn(int, bool)) is int.

Consider the expressions acc (line 5) and print string (line 7)
in Figure 1. These are branches of an if statement, so one as-
sertion is generated to enforce that they have the same type:
` acc(5) ≤ unit ∧ unit ≤ acc(5). Section 3.4.1 describes in more
detail how assertions are generated for ML.

3.2 Interpretation of constraints
The partial ordering on two applications of the same constructor
is determined by the variances of that constructor’s arguments. For
each argument, the ordering of the applications is either covariant
with respect to that argument (denoted by +), contravariant with
respect to that argument (-), or invariant with respect to it.

More general partial ordering rules on constructors (e.g., a rule
c1(x, y) ≤ c2(y, x) can also be handled by our inference algorithm
in 4.3 in a manner similar to the handling of u and t, though with
increased complexity.

With these abstract definitions, the validity of variable-free con-
straints can be defined in a natural way. A variable-free goal G is
valid if all assertions it contains are valid. An assertion C1 ` C2

is valid if the partial orderings in C2 are entailed from C1, using
just the lattice properties of the relation ≤ and the variances of the
various constructor arguments.

Example Let A,B,C be three distinct constants. Then A ≤ B ∧
B ≤ C ` A ≤ C is valid by the transitivity of ≤. Assertion
` A ≤ AtB is valid by the definition of join. Assertion ` A ≤ B
is invalid: the empty assumption does not entail the conclusion.

3.3 Satisfiability
Validity as defined so far works for constraints without variables.
When constraints mention variables, they are satisfiable if there
exists a valuation of all variables such that the goal after value
substitution is valid.

Satisfiability depends on the ground terms T that a variable can
map into. Let T be the greatest fixed point of the following rules:

• All constants are in T .
• c(t1, . . . , ta(c)) ∈ T if ∀i∈{1,...,a(c)} ti ∈ T and c ∈ Con.



Notice that ground terms may be infinite. This feature is essential
for modeling recursive types.

A valuation Φ : Var→ T is a function from variables to ground
terms. A goal is satisfiable when there exists a valuation Φ such that
the goal is valid after substitution using Φ.

Example Let α ∈ Var, A,B,C ∈ T . Then ` α ≤ A is trivially
satisfiable by the valuation Φ(α) = A or Φ(α) = ⊥. However,
` α ≤ A ∧ B ≤ α is unsatisfiable since otherwise, B ≤ A by the
transitivity of ≤, yet this ordering on A and B is not entailed.

3.4 Expressiveness
The constraint language is the interface between various program
analyses and our diagnostic tool. To use this tool, the program
analysis implementer must instrument the compiler or analysis to
express a given program analysis as a set of constraints in the
constraint language.

As we now show, the constraint language is expressive enough
to capture a variety of different program analyses. Of course, the
constraint language is not intended to express all program analyses,
such as analyses that involve arithmetic. We leave incorporating a
larger class of analyses into our framework as future work.

3.4.1 ML type inference
ML type inference maps naturally into constraint solving, since
typing rules are usually equality constraints on types. Numerous
efforts have been made in this direction (e.g., [2, 15, 17, 27, 37]).

Most of these formalizations are similar, so we discuss how
Damas’s Algorithm T [9] can be recast into our constraint language,
extending the approach of Haack and Wells [15]. We follow that ap-
proach since it supports let-polymorphism. Further, our evaluation
builds on an implementation of that approach.

For simplicity, we only discuss the subset of ML whose syntax
is shown in Figure 5. However, our implementation does support a
much larger set of language features, including match expressions
and user-defined data types.

In this language subset, expressions can be variables (x), inte-
gers (n), binary operations (+), functions abstractions fn x → e ,
function applications (e1 e2), or let bindings (let x = e1 in e2).
Notice that let-polymorphism is allowed, such as an expression
(let id = fn x→ x in id 2)

The typing rules that generate constraints are shown in Figure 5.
Types t can be type variables to be inferred (α), the predefined
integer type int, and function types constructed by→.

The typing rules have the form e : 〈Γ, t, C〉. Γ is a typing
environment that maps a variable x to a set of types. Intuitively,
Γ tracks a set of types with which x must be consistent. Let [ ] be an
environment that maps all variables to ∅, and Γ{x 7→ T} be a map
identical to Γ except for variable x. Γ1∪Γ2 is a pointwise union for
all type variables: ∀x.(Γ1 ∪ Γ2)(x) = Γ1(x) ∪ Γ2(x). As before,
C is a constraint in our language. It captures the type equalities that
must be true in order to give e the type t. Note that a type equality
t = t ′ is just a shorthand for the assertion ` t ≤ t ′ ∧ t ′ ≤ t .

Most of the typing rules are straightforward. To type-check
fn x→ e , we ensure that the type of x is consistent with all appear-
ances in e , which is done by requiring αx = t′ for all t′ ∈ Γ(T ).
The mapping Γ(x) is cleared since x is bound only in the function
definition. The rule for let-bindings is more complicated. Because
of let-polymorphism, the inferred type of e1 (t1) may contain free
type variables. To support let-polymorphism, we generate a fresh
variant of 〈Γ1, t1, C1〉, where free type variables are replaced by
fresh ones, for each use of x in e2. These fresh variants are then
required to be equal to the corresponding uses of x.

Creating one variant for each use in the rule for let-bindings
may increase the size of generated constraints, and hence make
our error diagnosis algorithm more expensive. However, we find

e ::= x | n | e1 + e2 | fn x→ e | e1 e2 | let x = e1 in e2

t ::= α | int | t → t

x : 〈[ ]{x 7→ {αx}}, α, αx = α〉 n : 〈[ ], α, int = α〉

e1 : 〈Γ1, t1, C1〉 e2 : 〈Γ2, t2, C2〉
e1 + e2 : 〈Γ1 ∪ Γ2, α, int = t1 ∧ int = t2 ∧ int = α ∧ C1 ∧ C2〉

e : 〈Γ, t , C〉 Γ(x) = T

fn x→e : 〈Γ{x 7→∅}, α,
∧
{αx = t ′ | t ′∈T} ∧ α = αx→ t ∧ C〉

e1 : 〈Γ1, t1, C1〉 e2 : 〈Γ2, t2, C2〉
e1 e2 : 〈Γ1 ∪ Γ2, α, t1 = t2 → α ∧ C1 ∧ C2〉

e1 : 〈Γ1, t1, C1〉 e2 : 〈Γ2, t2, C2〉 Γ2(x) = {t ′1, . . . , t ′n}
let x = e1 in e2 : 〈Γ′1 ∪ Γ2{x 7→ ∅}, α, α = t2 ∧ C ∧ C′1 ∧ C2〉

where 〈Γ1,1, t1,1, C1,1〉 . . . 〈Γ1,k, t1,k, C1,k〉, k = max(1, n), are fresh
variants of 〈Γ1, t1, C1〉, Γ′1 =

⋃
1≤i≤k

Γ1,i, C′1 =
∧

1≤i≤k

C1,i and

C = {t1,1 = t ′1, . . . , t1,n = t ′n}

Figure 5. Constraint generation for a subset of ML. α and αx are
fresh variables in typing rules.

performance is still reasonable with this approach. One way to
avoid this limitation is to add polymorphically constrained types,
as in [13]. We leave that as future work.

3.4.2 Information-flow control
In information-flow control systems, information is tagged with
security labels, such as “unclassified” or “top secret”. Such security
labels naturally form a lattice [10], and the goal of such systems is
to ensure that all information flows upward in the lattice.

To demonstrate the expressiveness of our core constraint lan-
guage, we show that it can express the information flow checking in
the Jif language [31]. To the best of our knowledge, ours is the first
general constraint language expressive enough to model the chal-
lenging features of Jif.

Label inference and checking Jif [31] statically analyzes the se-
curity of information flow within programs. All types are anno-
tated with security labels drawn from the decentralized label model
(DLM) [30].

Information flow is checked by the Jif compiler using constraint
solving. For instance, given an assignment x := y, the compiler
generates a constraint L(y) ≤ L(x), meaning that the label of x
must be at least as restrictive as that of y.

The programmer can omit some security labels and let the com-
piler generate them. For instance, when the label of x is not speci-
fied, assignment x := y generates a constraint L(y) ≤ αx, where
αx is a label variable to be inferred.

Hence, Jif constraints are broadly similar in structure to our gen-
eral constraint language. However, some features of Jif are challeng-
ing to model.

Label model The basic building block of the DLM is a set of
principals representing users and other authority entities. Principals
are structured as a lattice with respect to a relation actsfor . The
proposition A actsfor B means A is at least as privileged as B.

Security policies on information are expressed as labels that
mention these principals. For example, the confidentiality label



{patient → doctor} means that the principal patient permits
the principal doctor to learn the labeled information. Principals
can be used to construct integrity labels as well.

For example, consider the following Jif code:

1 int {patient→ >} x;
2 int y = x;
3 int {doctor→ >} z;
4 if (doctor actsfor patient) z = y;

The two assignments generate two satisfiable assertions:

` conf(patient,>) ≤ αy

∧ patient ≤ doctor ` αy ≤ conf(doctor,>)

The principals patient and doctor are constants, and the covariant
constructor conf(p1, p2) represents confidentiality labels.

A DLM confidentiality policy can be treated as a covariant con-
structor on principals. Integrity policies are dual to confidentiality
policies, so they can be treated as contravariant constructors on
principals. The proof can be found in the associated technical re-
port [39].

Label polymorphism Label polymorphism makes it possible to
write reusable code that is not tied to any specific security pol-
icy. For instance, consider a function foo with the signature int
foo(bool{A→A} b). Instead of requiring the parameter b to have
exactly the label {A→A}, the label serves as an upper bound on the
label of the actual parameter.

Modeling label polymorphism is straightforward, using hypothe-
ses. The constraint C b ≤ {A→ A} is added to the hypotheses of all
constraints generated by the method body, where the constant C b
represents the label of variable b.

Method constraints Methods in Jif may contain “where clauses”,
explicitly stating constraints assumed to hold true during the execu-
tion of the method body. The compiler type-checks the method body
under these assumptions and ensures that the assumptions are true at
all method call sites. In the constraint language, method constraints
are modeled as hypotheses.

3.4.3 Dataflow analysis
Dataflow analysis is used not only to optimize code but also to check
for common errors such as uninitialized variables and unreachable
code. Classic instances of dataflow analysis include reaching defini-
tions, live variable analysis and constant propagation.

Aiken [1] showed how to formalize dataflow analysis algorithms
as the solution of a set of constraints with equalities over the follow-
ing elements (a subclass of the more general set constraints in [1]):

E ::= A1 | . . . | An | α | E1 ∪ E2 | E1 ∩ E2 |¬E

whereA1, . . . , An are constants, α is a constraint variable, elements
represents sets of constants, and ∪,∩,¬ are the usual set operators.

Consider live variable analysis. Let Sdef and Suse be the set of
program variables that are defined and used in a statement S, and
let succ(S) be the statement executed immediately after S. Two
constraints are generated for statement S:

Sin = Suse ∪ (Sout ∩ ¬Sdef)

Sout =
⋃

X∈succ(S)

Xin

where Sin, Sout, Xin are constraint variables.
Our constraint language is expressive enough to formalize com-

mon dataflow analyses since the constraint language above is nearly
a subset of ours: set inclusion is a partial order, and negation can be
eliminated by preprocessing in the common case where the number
of constants is finite (e.g., ¬Sdef is finite).

3.5 Errors and explanations
Recall that the goal of this work is to diagnose the cause of errors.
Therefore we are interested not just in the satisfiability of a set of
assertions, but also in finding the best explanation for why they are
not satisfiable. Failures can be caused by both incorrect constraints
and missing hypotheses.

Incorrect constraints One cause of unsatisfiability is the existence
of incorrect constraints appearing in the conclusions of assertions.
Constraints are generated from program expressions, so the pres-
ence of an incorrect constraint means the programmer wrote the
wrong expression.

Missing hypotheses A second cause of unsatisfiability is the ab-
sence of constraints in the hypothesis. The absence of necessary hy-
potheses means the programmer omitted needed assumptions.

In our approach, an explanation for unsatisfiability may consist
of both incorrect constraints and missing hypotheses. To find good
explanations, we proceed in two steps. The system of constraints is
first converted into a representation as a constraint graph (Section 4).
This graph is then analyzed using Bayesian principles to identify the
explanations most likely to be correct (Section 5).

4. Constraint graph
The core constraint language has a natural graph representation
that enables analyses of the system of constraints. In particular,
the satisfiability of the constraints can be tested via context-free-
language reachability in the graph.

4.1 Running example
We use the following example throughout this section to illustrate
the key ideas behind the constraint graph representation.

Example Consider the following set of constraints.

` α ≤ fn(ty1, bool) ∧ ty1 ≤ ty2 ` β ≤ α ∧ ` fn(ty2, int) ≤ β

We interpret ≤ here as the subtyping relation. The constructor
fn(E1, E2) represents the function type E1 → E2. Note that the
constructor fn is contravariant in its first argument and covariant in
its second. The identifiers ty1, ty2, bool, int are distinct constants
and α, β are type variables to be inferred.

The first assertion claims that α is a subtype of fn(ty1, bool),
with no hypotheses. The third assertion is similar. The second asser-
tion says that β is a subtype of α under the assumption that ty1 is a
subtype of ty2.

To determine whether this goal is satisfiable, we construct a
constraint graph to infer partial orderings that must hold based on
these constraints and the built-in, language-independent inference
rules associated with the relation ≤, the constructors used, and the
operators t and u.

4.2 Constraint graph construction
The graph contains a node for each distinct element in the constraint
system. For each partial ordering E1 ≤ E2 appearing in assertion
conclusions, a directed edge exists from E1 to E2, representing the
legal flow of information. We call this edge an LEQ edge.

Hypotheses of assertions are recorded on the LEQ edges gener-
ated by the corresponding conclusions. We denote an edge annotated
by hypothesis H as LEQ{H}. For instance, the second constraint
in our running example, ty1 ≤ ty2 ` β ≤ α, generates an edge
LEQ{ty1 ≤ ty2} from node β to node α.

Additional constructor edges in the constraint graph represent
the action of constructors. Constructor edges connect the construc-
tor’s arguments to the element representing its result. For example,
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Figure 6. Constraint graph generated from unsatisfiable constraints

there would be a constructor edge to the node representing the el-
ement fn(ty1, bool) from each of the nodes for ty1 and bool, as
illustrated in Figure 6(a).

Constructor edges include the following annotations: the con-
structor name, the argument position, and the variance of the pa-
rameter (covariant, contravariant or invariant). For instance, the edge
labeled (−fn1) connects the first argument to the constructor appli-
cation. For each constructor edge there is also a dual decomposition
edge that connects the constructor application back to its arguments.
It is distinguished by an overline above the constructor name in the
graph, and has the same variance: for example, (−fn

1
).

To simplify reasoning about the graph, LEQ edges are also
duplicated in the reverse direction, with negative variance. Thus, the
first assertion in the example, ` α ≤ fn(ty1, bool), generates a
(+LEQ) edge from α to fn(ty1, bool), and a (−LEQ) edge in the
other direction, as illustrated in Figure 6(a).

The constraint graph generated using all three assertions from
the example is shown in Figure 6(b), excluding the dotted arrow.

Formal construction of the constraint graph Figure 7 formally
presents a function A that translates a set of assertions A1 ∧ . . . ∧
An into a constraint graph with annotated edges. The graph is
represented in the translation as a set of edges defined by the set
Edge. The nodes of the constructed graph are implicitly defined
by their connecting edges. Nodes are drawn from the set Node,
which consists of the legal elementsE modulo the least equivalence
relation ∼ that satisfies the commutativity of the operations t and
u and that is preserved by the productions in Figure 4.

As shown, there are three kinds of edges. The LEQ edges, an-
notated with hypotheses, are generated by the translation rule for
A[[C ` E1 ≤ E2]] and by the rules for meets and joins. Construc-
tor edges are generated by the rules E [[cons(E1, . . . , En)]]C and
E [[consi(E)]]C, which connect a constructor application to its argu-
ments. Invariant arguments generate edges as though they were both
covariant and contravariant, so twice as many edges are generated.

4.3 Inferring node orderings
The constraint graph facilitates inferring all ≤ relationships that
can be proved using the corresponding constraints. The idea is
to construct a context-free grammar, shown in Figure 8, whose
productions correspond to inference rules for “≤” relationships.

To perform inference, each production is interpreted as a re-
duction rule that replaces the right-hand side with the single LEQ
edge appearing on the left-hand side. For instance, the transitivity
of ≤ is expressed by the first grammar production, which derives
(pLEQ{H1∧H2}) from consecutive LEQ edges (pLEQ{H1}) and
(pLEQ{H2}), where p is some variance. The inferred LEQ edge has
hypotheses H1 and H2 since the inferred partial ordering is valid
only when both H1 and H2 hold.

n : Node (Node = Element/∼)
e : Edge ::= (pLEQ){C}(n1 7→ n2)

| (piconsi)(n1 7→ n2) | (piconsi)(n1 7→ n2)

Graph = ℘(Edge) A[[G]] : Graph E[[E]]C : Graph

A[[A1 ∧ . . . ∧An]] =
⋃

i∈1..n

A[[Ai]]

A[[C ` I1 ∧ . . . ∧ In]] =
⋃

i∈1..n

A[[C ` Ii]]

A[[C ` E1 ≤ E2]] = E[[E1]]C ∪ E[[E2]]C
∪ {(+LEQ){C}(E1 7→ E2), (−LEQ){C}(E2 7→ E1)}

E[[α]]C = E[[c]]C = E[[⊥]]C = E[[>]]C = ∅

E[[cons(E1, . . . , En)]]C =
⋃

i∈1..n

(
{(piconsi)(Ei 7→cons(E1, . . . , En)))}

∪ {(piconsi)(cons(E1, . . . , En) 7→ Ei)} ∪ E[[Ei]]C
)

E[[consi(E)]]C = {(piconsi)(consi(E) 7→ E)}
∪ {(piconsi)(E 7→ consi(E))} ∪ E[[E]]C

(where pi is the variance of argument i to constructor cons)

E[[E1 t E2]]C =
⋃

i∈1..2

(
{(+LEQ){C}(Ei 7→ E1 t E2)}

∪ {(−LEQ){C}(E1 t E2 7→ Ei)} ∪ E[[Ei]]C
)

E[[E1 u E2]]C =
⋃

i∈1..2

(
{(+LEQ){C}(E1 u E2 7→ Ei)}

∪ {(−LEQ){C}(Ei 7→ E1 u E2)} ∪ E[[Ei]]C
)

Figure 7. Construction of the constraint graph

(pLEQ{H1 ∧H2}) ::= (pLEQ{H1}) (pLEQ{H2})
(+LEQ{H}) ::= (pci) (pLEQ{H}) (pci)

(−LEQ{H}) ::= (pci) (pLEQ{H}) (pci)

where c ∈ Con, 1 ≤ i ≤ a(c), p ∈ {+,−}, + = − and − = +

Figure 8. Context-free grammar for (+LEQ) inference

The power of context-free grammars is needed in order to han-
dle reasoning about constructors. In the running example, applying
transitivity to the constraints yields ty1 ≤ ty2 ` fn(ty2, int) ≤
fn(ty1, bool). Then, because fn is contravariant in its first argu-



ment, we derive ty1 ≤ ty2. Similarly, we can derive int ≤ bool,
the dotted arrow in Figure 6(b).

To capture this kind of reasoning, we use the first two produc-
tions in Figure 8. In our example of Figure 6(b), the path from ty1
to ty2 has the following edges: (−fn1) (−LEQ) (−LEQ{ty1 ≤
ty2}) (−LEQ) (−fn

1
). These edges reduce via the first and then

the second production to an edge (+LEQ{ty1 ≤ ty2}) from
ty1 to ty2. Note that the variance is flipped because the first con-
structor argument is contravariant. Similarly, we can infer another
(+LEQ{ty1 ≤ ty2}) edge from int to bool.

The third grammar production in Figure 8 is the dual of the
second production, ensuring the invariant that each (+LEQ) edge
has an inverse (−LEQ) edge. In our example of Figure 6(b), there
is also an edge (−LEQ{ty1 ≤ ty2}) from ty2 to ty1, derived
from the following edges: (−fn1) (+LEQ) (+LEQ{ty1 ≤ ty2})
(+LEQ) (−fn

1
). These edges reduce via the first and then the third

production to an edge (−LEQ{ty1 ≤ ty2}) from ty2 to ty1.
Computing all inferable (+LEQ) edges according to the context-

free grammar in Figure 8 is an instance of context-free-language
reachability, which is well-studied in the literature [5, 28] and has
been used for a number of program-analysis applications [34]. We
adapt the dynamic programming algorithm of Barrett et al. [5] to
find shortest (+LEQ) paths. We call such paths supporting paths
since the hypotheses along these paths justify the inferred (+LEQ)
edges. We extend this algorithm to also handle join and meet nodes.

Take join nodes, for instance (meet is handled dually). The rule
E1 t E2 ≤ E ⇐⇒ E1 ≤ E ∧ E2 ≤ E can be used in two
directions. The direction from left to right is already handled when
we construct edges for join elements (Figure 7).

To use the rule in the other direction, we use the following
procedure when a new edge (+LEQ){C}(n1 7→ n2) is processed:
for each join element E where n1 is an argument of the t operator,
we add an edge fromE to n2 if all arguments of the t operator have
a (+LEQ) edge to n2.

4.4 Checking the satisfiability of (+LEQ) edges
A (+LEQ) edge, whether inferred or specified directly in an asser-
tion, is added to the graph only when the corresponding ≤ ordering
is entailed by the constraints along the supporting path. Hence, the
constraints along the path must be unsatisfiable if the partial order-
ing on the end nodes is unsatisfiable.

When either end node of a (+LEQ) edge is a variable or a t(u)
node where at least one argument of t(u) is a variable, the edge
is trivially satisfiable and hence not informative for error diagnosis.
For simplicity, we ignore such edges and refer subsequently only
to informative (+LEQ) edges. Two informative (+LEQ) edges can
be inferred in Figure 6(b). These edges are int 7→ bool and
ty1 7→ ty2, though only the first is shown.

A (+LEQ) edge holds only if all hypotheses on the edge hold
too. Therefore, the satisfiability of an edge (+LEQ){C}(n1 7→
n2) is equivalent to the satisfiability of the assertion C ` n1 ≤
n2. In our running example, the combined hypotheses along both
informative edges are ty1 ≤ ty2. Therefore, satisfiability of the
constraint system reduces to satisfiability of these assertions:

ty1 ≤ ty2 ` int ≤ bool ty1 ≤ ty2 ` ty1 ≤ ty2

To check the satisfiability of these assertions, we test if the
conclusion can be proved from all constraints in the hypothesis.
Recall that a constraint graph facilitates the inference of all provable
partial ordering given a set of constraints. Therefore, a hypothesis
graph is constructed in exactly the same way as the constraint graph
to find all provable ≤ relations.

Specifically, to test if an edge (+LEQ){C}(n1 7→ n2) is sat-
isfiable, we construct a hypothesis graph using C as described in

Section 4.2 and find all inferable (+LEQ) edges as described in Sec-
tion 4.3. Edge (+LEQ){C}(n1 7→ n2) is unsatisfiable if the rela-
tionship (+LEQ)(n1 7→ n2) cannot be inferred from the hypothesis
graph using C.

For our running example, the hypothesis graphs for both infor-
mative edges are the same. From this graph, shown in Figure 6(c),
int ≤ bool is not provable. The constraints along the supporting
path from int to bool form a proof of unsatisfiability.

Satisfiable and unsatisfiable paths When the partial ordering on
the end nodes of a path is invalid, we say that the path is end-to-end
unsatisfiable. End-to-end unsatisfiable paths are helpful because the
constraints along the path explain why the inconsistency occurs.

Also useful for error diagnosis is the set of satisfiable paths:
paths where there is a valid partial ordering on any two nodes on
the path for which a (+LEQ) relationship can be inferred.

Any remaining paths are ignored in our error diagnosis algo-
rithm, since by definition they must contain at least one end-to-end
unsatisfiable subpath. For brevity, we subsequently use the term un-
satisfiable path to mean a path that is end-to-end unsatisfiable.

5. Ranking explanations
The algorithm in Section 4 identifies unsatisfiable paths in the con-
straint graph, which correspond to sets of unsatisfiable constraints
expressed by our constraint language.

Although the information along unsatisfiable paths already cap-
tures why the goal is unsatisfiable, reporting all constraints along a
path may give more information than the programmer can digest.
Our approach is to use Bayesian reasoning to identify programmer
errors more precisely.

5.1 A Bayesian interpretation
The cause of errors can be wrong constraints, missing hypotheses,
or both. To keep our diagnostic method as general as possible,
we avoid building in domain-specific knowledge about mistakes
programmers tend to make. However, the framework does permit
adding such knowledge in a straightforward way.

The language-level entity about which errors are reported can be
specific to the language. OCaml reports typing errors in expressions,
whereas Jif reports errors in information-flow constraints. To make
our diagnosis approach general, we treat entities as an abstract set
Ω and assume a mapping Φ from entities to constraints. We assume
a prior distribution on entities PΩ, defining the probability that an
entity is wrong. Similarly, we assume a prior distribution PΨ on
hypotheses Ψ, defining the probability that a hypothesis is missing.

Given entities E ⊆ Ω and hypotheses H ⊆ Ψ, we are inter-
ested in the probability that E and H are the cause of the error
observed. In this case, the observation o is the satisfiability of in-
formative paths within the program. We denote the observation as
o = (o1, o2, . . . , on), where oi ∈ {unsat, sat} represents unsatis-
fiability or satisfiability of the corresponding path. The observation
follows some unknown distribution PO .

We are interested in finding a subset E of entities Ω and a subset
H of hypotheses Ψ for which the posterior probability P (E,H|o)
is large, meaning that E and H are likely causes of the given
observation o. In particular, a maximum a priori estimate is a pair
(E,H) at which the posterior probability takes its maximum value;
that is, at arg maxE⊆Ω,H⊆Ψ P (E,H|o).

By Bayes’ theorem, P (E,H|o) is equal to

PΩ×Ψ(E,H)P (o|E,H)/PO(o)

The factor PO(o) does not vary in the variables E and H , so it
can be ignored. Assuming the prior distributions on Ω and Ψ are
independent, a simplified term can be used:

PΩ(E)PΨ(H)P (o|E,H)



PΩ(E) is the prior knowledge of the probability that a set of
entities E is wrong. In principle, this term might be estimated by
learning from a large corpus of buggy programs or using language-
specific heuristics. For simplicity and generality, we assume that
each entity is equally likely to be wrong; we leave the incorporation
of language-specific knowledge to future work.

We also assume the probability of each entity being the cause is
independent.1 Hence, PΩ(E) is estimated by P |E|1 , where P1 is a
constant representing the likelihood that a single entity is wrong.
PΨ(H) is the prior knowledge of the probability that hypotheses

H are missing. Of course, not all hypotheses are equally likely to
be wrong. For example, the hypothesis > ≤ ⊥ is too strong to be
useful: it makes all constraints succeed. The likely missing hypothe-
sis is both weak and small. Our general heuristics for obtaining this
term are discussed in Section 5.3.
P (o|E,H) is the probability of observing the constraint graph,

given that entities E are wrong and hypotheses H are missing. To
estimate this factor, we assume that the satisfiability of the remain-
ing paths is independent. This allows us to write P (o|E,H) =∏

i P (oi|E,H). The term P (oi|E,H) is calculated using two
heuristics:

1. For an unsatisfiable path, either something along the path is
wrong, or adding H to the hypotheses on the path makes the
partial ordering on end nodes valid. So P (oi = unsat|E,H) is
equal to 1 in this case, and is otherwise 0.

2. A satisfiable path is unlikely (with some constant probability
P2 < 0.5) to contain a wrong entity. Since adding or removing
H does not affect a path that is already satisfiable, P (oi =
sat|E,H) is not affected by H . Hence, we have P (oi =
sat|E,H) = P2 if path pi contains a constraint generated by
some entity in E. Otherwise, P (oi = sat|E,H) = 1− P2.

The first heuristic suggests we only need to consider the enti-
ties and hypotheses that explain all unsatisfiable paths (otherwise
P (oi|E,H) = 0 for some oi = unsat by heuristic 1). We denote
this set by G. Suppose nsat (a constant) paths are satisfiable, and
entities E appear on kE of them. Then, based on the simplifying
assumptions made, we have

arg max
E⊆Ω,H⊆Ψ

PΩ(E)PΨ(H)P (o|E,H)

= arg max
E⊆Ω,H⊆Ψ

P
|E|
1 PΨ(H)P kE

2 (1− P2)nsat−kEΠi:oi=unsatP (oi|E)

= arg max
(E,H)∈G

P
|E|
1 (P2/(1− P2))kEPΨ(H)

An intuitive understanding of this estimation is that the cause
must explain all unsatisfiable paths; the wrong entities are likely to
be small (|E| is small) and not used often on satisfiable paths (since
P2 < 1 − P2 by heuristic 2); the missing hypothesis is likely to
be weak and small, as defined in Section 5.3, which maximizes the
term PΨ(H).

Although this estimation is affected by the values of P1 and P2,
empirical study suggests that the diagnosis result is insensitive to
their values across a broad range (see Section 6.2.1).

5.2 Inferring likely wrong entities

The term P
|E|
1 (P2/(1− P2))kE can be used to calculate the likeli-

hood that a subset of entities is the cause. However, its computation
for all possible sets of entities can be impractical. Therefore, we
propose an instance of A∗ search [16], based on novel heuristics, to
calculate optimal solutions in a practical way.

1 It seems likely that the precision of our approach could be improved by
refining this assumption, since the (rare) missed locations in our evaluation
usually occur when the programmer makes a similar error multiple times.

A∗ search is a heuristic search algorithm for finding minimum-
cost solution nodes in a graph of search nodes. In our instance of the
algorithm, each search node n represents a set of entities deemed
wrong, denoted En. A solution node is one that explains all unsat-
isfiable paths—the corresponding entities appear in all unsatisfiable
paths. An edge corresponds to adding a new entity to the current set.

The key to making A∗ search effective is a good cost function
f(n). The cost function is the sum of two terms: g(n), the cost to
reach node n, and h(n), a heuristic function estimating the cost from
n to a solution.

Before defining the cost function f(n), we note that maximizing
the likelihood P |E|1 (P2/(1 − P2))kE is equivalent to minimizing
C1|E| + C2kE , where C1 = − logP1 and C2 = − log(P2/(1 −
P2)) are both positive constants because 0 < P1 < 1 and 0 < P2 <
0.5. Hence, the cost of reaching n is

g(n) = C1|En|+ C2kEn

To obtain a good estimate of the remaining cost—that is, the
heuristic function h(n)—our insight is to use the number of entities
required to cover the remaining unsatisfiable paths, denoted as Prm,
since C1 is usually larger than C2. More specifically, h(n) = 0 if
Prm = ∅. Otherwise, h(n) = C1 if Prm is covered by one single
entity; h(n) = 2C1 otherwise.

An important property of the heuristic function is its optimality:
all and only the most likely wrong subsets of entities are returned.
The proof is included in the associated technical report [39]. The
heuristic search algorithm is also efficient in practice: on current
hardware, it takes about 10 seconds when the search space is over
21000. More performance details are given in Section 6.

Since the remaining part of our instance of A∗ search is largely
standard, we leave the details in the accompanied technical re-
port [39]. The only nonstandard feature is that the search stops when
a suboptimal suggestion is found, rather than when the first sugges-
tion is found, since we are interested in all top-ranked suggestions.

5.3 Inferring missing hypotheses
Another factor in the Bayesian interpretation is the likelihood that
hypotheses (assumptions) are missing. Recall that a path from ele-
ment E1 to E2 in a constraint graph is unsatisfiable if the conjunc-
tion of hypotheses along the path is insufficient to prove the partial
ordering E1 ≤ E2. So we are interested in inferring a set of miss-
ing hypotheses that are sufficient to repair unsatisfiable paths in a
constraint graph.

5.3.1 Motivating example
Consider the following assertions:

(Bob ≤ Carol ` Alice ≤ Bob)
∧(Bob ≤ Carol ` Alice ≤ Carol)
∧(Bob ≤ Carol ` Alice ≤ Carol t ⊥)

Since the only hypothesis we have is Bob ≤ Carol (meaning
Carol is more privileged than Bob), none of the three constraints
in the conclusion holds. One trivial solution is to add all invalid
conclusions to the hypothesis. This approach would add Alice ≤
Bob ∧ Alice ≤ Carol ∧ Alice ≤ Carol t ⊥ to the hypotheses.
However, this naive approach is undesirable for two reasons:

1. An invalid hypothesis may invalidate the program analysis. For
instance, adding an insecure information flow to the hypotheses
can violate security. The programmer has the time-consuming,
error-prone task of checking the correctness of every hypothesis.

2. A program analysis may combine static and dynamic ap-
proaches. For instance, although most Jif label checking is static,
some hypotheses are checked dynamically. So a large hypothesis
may also hurt run-time performance.



It may also be tempting to select the minimal missing hypothesis,
but this approach does not work well either: a single assumption
> ≤ ⊥ is always a minimal missing hypothesis for all unsatisfiable
paths. Given > ≤ ⊥, any partial order E1 ≤ E2 can be proved
since E1 ≤ > ≤ ⊥ ≤ E2. However, this assumption is obviously
too strong to be useful.

Intuitively, we are interested in a solution that is both weakest
and minimal. In the example above, our tool returns a hypothesis
with only one constraint Alice ≤ Bob: both weakest and minimal.

We now formalize the minimal weakest missing hypothesis, and
give an algorithm for finding this missing hypothesis.

5.3.2 Missing hypothesis
Consider an unsatisfiable path P that supports an (+LEQ) edge e =
(+LEQ){C}(n1 7→ n2). For simplicity, we denote the hypothesis
of P asH(P ) = C, and the conclusion C(P ) = n1 ≤ n2.

We define a missing hypothesis as follows:

DEFINITION 1. Given unsatisfiable paths P = {P1, P2, . . . , Pn},
a set of inequalities S is a missing hypothesis for P iff ∀Pi ∈
P .H(Pi) ∧

∧
I∈S I ` C(Pi).

Intuitively, adding all inequalities in the missing hypothesis to
the assertions’ hypotheses removes all unsatisfiable paths in the
constraint graph.2

Example Returning to the example in Section 5.3.1, it is easy to
verify that Alice ≤ Bob is a missing hypothesis that makes all of
the assertions valid.

5.3.3 Finding a minimal weakest hypothesis
We are not interested in all missing hypotheses; instead, we want to
find one that is both minimal and as weak as possible.

To simplify the notation, we further define the conclusion set
of unsatisfiable paths P as the union of all conclusions: C(P) =⋃
{C(Pi) | Pi ∈ P}.
The first insight is that the inferred missing hypothesis should

not be too strong.

DEFINITION 2. For a set of unsatisfiable paths P , a missing hy-
pothesis S is no weaker than S′ iff

∀I ′ ∈ S′ . ∃P ∈ P .H(P ) ∧
∧
I∈S

I ` I ′

That is, S is no weaker than S′ if all inequalities in S′ can be
proved from S, using at most one existing hypothesis.

Given this definition, the first property we show is that every
subset of C(P) that forms a missing hypothesis is maximally weak:

LEMMA 1. ∀S ⊆ C(P). S is a missing hypothesis =⇒ no missing
hypothesis is strictly weaker than S.

Proof. Suppose there exists a strictly weaker missing hypothesis S′.
Since S′ is a missing hypothesis, H(Pi) ∧

∧
I′∈S′ I

′ ` C(Pi) for
all i. Since S ⊆ C(P), ∀I ∈ S . H(Pi) ∧

∧
I′∈S′ I

′ ` I . So S′ is
no weaker than S. Contradiction. �

The lemma above suggests that subsets of C(P) may be good
candidates for a weak missing hypothesis. However, they are not
necessarily minimal. For instance, the entire set C(P) is a maxi-
mally weak missing hypothesis.

To remove the redundancy in this weakest hypothesis, we ob-
serve that some of the conclusions are subsumed by others. To be

2 A more general form of missing hypothesis might infer individual hypothe-
ses for each path. But it is less feasible to do so.

more specific, we say a conclusion ci subsumes another conclusion
cj = C(Pj) if ci ∧ H(Pj) ` cj . Intuitively, if ci subsumes cj , then
adding ci to the hypothesis of Pj makes Pj satisfiable.

Example Return to the example in Section 5.3.1. The missing
hypothesis Alice ≤ Bob is both the weakest and minimal.

Based on Lemma 1 and the definition above, finding a minimal
weakest missing hypothesis in C(P) is equivalent to finding the
minimum subset of C(P) which subsumes all c ∈ C(P). This gives
us the following algorithm:

Algorithm Given a set of unsatisfiable pathsP = {P1, P2, . . . , Pn}:

1. Construct the set C(P) from the unsatisfiable paths.

2. For all ci, cj in C(P), add cj to set Si, the set of conclusions
subsumed by ci, if ci subsumes cj .

3. Find the minimum cover M of C(P), where S = {S1, . . . , Sn}
and M ⊆ S.

4. Return {ci | Si ∈M}.

A brute force algorithm for finding the minimal weakest missing
hypothesis may check all possible hypotheses. That is on the order
of 2N2

(the number of all subsets of≤ orderings on elements) where
N is the total number of elements used in the constraints. While
the complexity of our algorithm is exponential in the number of
unsatisfiable paths in the constraint graph, this number is usually
small in practice. So the computation is still feasible.

6. Evaluation
6.1 Implementation
We implemented our general error diagnostic tool in Java. The im-
plementation includes about 5,500 lines of source code, excluding
comments and blank lines.

As input, the diagnostic tool reads in constraints following the
syntax of Figure 4. The program analyses to be diagnosed must be
modified to emit those constraints.

To evaluate our error diagnostic tool on real-world program
analyses, we modified the Jif compiler and an extension to the
OCaml compiler, EasyOCaml [12], to generate constraints in our
constraint language format. EasyOCaml is an extension of OCaml
3.10.2 that generates the labeled constraints defined in [15].

Generating constraints in our language format involved only
modest effort. Changes to the Jif compiler include about 300 LoC
(lines of code) above more than 45,000 LoC in the Jif compiler.
Changes to EasyOCaml include about 500 LoC above the 9,000
LoC of the EasyOCaml extension. Slightly more effort is required
for EasyOCaml because that compiler did not track the locations of
type variables; this functionality had to be added to trace constraints
back to the corresponding source code.

6.2 Case study: OCaml error reporting
To evaluate the quality of our ranking algorithm, we used a corpus of
previously collected OCaml programs containing errors, collected
by Lerner et al. [23]. The data were collected from a graduate-level
programming-language course for part-time students with at least
two years professional software development experience. The data
came from 5 homework assignments and 10 students participating
in the class. Each assignment requires students to write 100–200
lines of code.

From the data, we analyzed only type mismatch errors, which
correspond to unsatisfiable constraints. Errors such as unbound val-
ues or too many arguments to a constructor are more easily localized
and are not our focus.



We also exclude programs using features not supported by Easy-
OCaml and files where the user’s fix is unclear. After excluding
these files, 336 samples remain.

Analysis Analyzing a file and the quality of error report message
manually can be inherently subjective. We made the following ef-
forts to make our analysis less subjective:

1. Instead of judging which error message is more useful, we
judged whether the error locations the tools reported were cor-
rect.

2. To locate the actual error in the program, we use the user’s
changes with larger timestamps as a reference. Files where the
error location is unclear are excluded in our evaluation.

To ensure the tools return precisely the actual error, a returned
location is judged as correct only when it is a subset of the actual
error locations.

One subtlety of judging correctness is that multiple locations can
be good suggestions, because of let-bindings. For instance, consider
a simple OCaml program:

1 let x = true in x + 1

Even if the programmer later changed true to be some integer,
the error suggestion of the let-binding of x and the use of x are still
considered to be correct since they bind to the same expression as
the fix. However, the operation + and the integer 1 are not since the
fix is not related.

Since the OCaml error message reports an expression that ap-
pears to have the wrong type, to make the reports comparable, we
use expressions as the program entities on which we run our infer-
ence algorithm—our tool reports likely wrong expressions in eval-
uation. Recall that our tool can also generate reports of why an ex-
pression has a wrong type, corresponding to unsatisfiable paths in
the constraint graph. Using such extra information might improve
the error message, but we do not use that capability in the evalua-
tion.

Another mismatch is that our tool inherently reports a small
set of program entities (expressions in this case) with the same
estimated quality, whereas OCaml reports one error at one time. To
make the comparison fair, we make the following efforts:

1. For cases where we report a better result (our tools finds the
error location that OCaml misses), we ensure that all locations
returned are correct.

2. For other cases, we ensure that the majority of the suggestions
are correct.

Moreover, the average top rank suggestion size is smaller than 2.
Therefore, our evaluation results should not be affected much by the
fact that our tool can offer multiple suggestions.

6.2.1 Sensitivity
Recall that maximizing the likelihood of entities E being an error
is equivalent to minimizing the term C1|E| + C2kE , where C1 =
− logP1 and C2 = − log(P2/(1− P2)) (see, Section 5.2). Hence,
the ranking is only affected by the ratio between C1 and C2.

To test how sensitive our tool is to the choice of P1 and P2, we
collect two important statistics for a wide range of P1 and P2 values:
1) the number of programs where the actual error is missing in top
rank suggestions (among 336 programs), 2) the average number of
suggestions in the top rank. The result is summarized in Table 1.

We arrange the columns in Table 1 such that for any 0 < P2 <
0.5, P1 decreases exponentially from left to right. The last column
corresponds to the special case when P2 = 0.5.

Empirically, the overall suggestion quality is best when P1 =
P ′32 , where P ′2 = P2/1 − P2. However, the quality of the sugges-
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tions is close for any P1 and P2 s.t. P ′22 ≤ P1 ≤ P ′62 ; the results
are not very sensitive to the choice of these parameters.

If satisfiable paths are ignored (P2 = 0.5, that is, C2 = 0), the
top-rank suggestion size is much larger, and more errors are missing.
Hence, using satisfiable paths is important to suggestion quality.

The quality of the error report is also considerably worse when
P1 is very large relative to P2 (P1 = P ′2). This result shows that
unsuccessful paths are more important than successful paths, but
that ascribing too importance to the unsuccessful paths (e.g., at
P1 = P ′10

2 ) also hurts the quality of the error report.

6.2.2 Comparison with OCaml and Seminal
For each file we analyze, we consider both the error location re-
ported by OCaml and the top-ranked suggestion of our tool (based
on the setting P1 = (P2/1 − P2)3). We reused the data offered by
the authors of the Seminal tool [23], who labeled the correctness of
Seminal’s error location report.

We classify the files into one of the following five categories and
summarize the results in Figure 9:

1. Our approach suggests an error location that matches the pro-
grammer’s fix, but the other tool’s location misses the error.

2. Our approach reports multiple correct error locations that match
the programmer’s fix, but the other tool only reports one of them.

3. Both approaches find error locations corresponding to the pro-
grammer’s fix.

4. Both approaches miss the error locations corresponding to the
programmer’s fix.

5. Our tool misses the error location but the other tool captures it.

The result shows that OCaml’s reports find about 75% of the
error locations but miss the rest. Seminal’s reports on error locations
are slightly better, finding about 80% of the error locations.

Compared with both OCaml and Seminal, our tool consistently
identifies a higher percentage of error locations across all home-
works, with an average of 96%.

In about 10% of cases, our tool identifies multiple errors in
programs. According to the data, the programmers usually fixed
these errors one by one since the OCaml compiler only reports one
at a time. Reporting multiple errors at once may be more helpful.

Limitations Of course, our tool sometimes misses errors. We stud-
ied programs where our tool missed the error location, finding that
in each case it involved multiple interacting errors. In some cases



P1 = P ′2 P1 = P ′22 P1 = P ′32 P1 = P ′42 P1 = P ′52 P1 = P ′62 P1 = P ′10
2 P2 = 0.5

Missed Error 21 15 14 17 17 16 22 23
Avg. Sugg. Size 1.86 1.80 1.72 1.69 1.70 1.69 1.67 5.58

Table 1. The quality of top-ranked suggestions with various values of P1 and P2, where P ′2 = P2/1− P2.
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Figure 9. Results organized by homework assignment. From top to bottom, columns represent programs where (1) our tool finds a correct
error location that the other tool misses. (2) both approaches report the correct error location, but our tool reports multiple (correct) error
locations; (3) both approaches report the correct error location; (4) both approaches miss the error location; (5) our tool misses the error
location while the other tool identifies one of them. For every assignment, our tool does the best job of locating the error.

the programmer made a similar error multiple times. Our tool fails
to identify such errors because they violate the assumption of error
independence. As our result suggests, this situation is rare.

The comparison between the tools is not completely apples-
to-apples. We only collect type mismatch errors in the evaluation.
OCaml is very effective at finding other kinds of errors such as
unbound variables or wrong numbers of arguments, and Seminal
not only finds errors but also proposes fixes.

6.2.3 Performance
We measured the performance of our tool on a Ubuntu 11.04 system
using a dual core at 2.93GHz with 4G memory. Results are shown in
Figure 10. We separate the time spent generating and inferring LEQ
edges in the graph from that spent computing rankings.

The results show how the running time of both graph building
time and ranking time scale with increasing constraint graph size.
Interestingly, graph building, including the inference of (+LEQ)
relationships, dominates and is in practice quadratic in the graph
size. The graph size has less impact on the running time of our
ranking algorithm. We suspect the reason is that the running time of
our ranking algorithm is dominated by the number of unsatisfiable
paths, which is not strongly related to total graph size.

Considering graph construction time, all programs finish in 79
seconds, and over 95% are done within 20 seconds. Ranking is more
efficient: all programs finish in 10 seconds. Considering the human
cost to identify error locations, the performance seems acceptable.

6.3 Case study: Jif hypothesis inference
We also evaluated how helpful our hypothesis inference algorithm
is for Jif. In our experience with using Jif, we have found missing
hypotheses to be a common source of errors.

A corpus of buggy programs was harder to find for Jif than for
OCaml. We obtained application code developed for other, earlier
projects using either Jif or Fabric (a Jif extension). These applica-

Secure Tie Better Worse Total
Number 12 17 11 0 40

Percentage 30% 42.5% 27.5% 0% 100%

Table 2. Hypothesis inference result

tions are interesting since they deal with real-world security con-
cerns.

To mimic potential errors programmer would meet while writ-
ing the application, we randomly removed hypotheses from these
programs, generating, in total, 40 files missing 1–5 hypotheses. The
frequency of occurrence of each application in these 40 files corre-
sponds roughly to the size of the application.

For all files generated in this way, we classified each file into one
of four categories, with the results summarized in Table 2:

1. The program passed Jif/Fabric label checking after removing the
hypotheses: the programmer made unneeded assumptions.

2. The generated missing hypotheses matched the one we removed.

3. The generated missing hypotheses provides an assumption that
removes the error, but that is weaker than the one we removed
(in other words, an improvement).

4. Our tool fails to find a suggestion better than the one removed.

The number of redundant assumptions in these applications is
considerable (30%). We suspect the reason is that the security mod-
els in these applications are nontrivial, so programmers have diffi-
culty formulating their security assumptions. This observation sug-
gests that the ability to automatically infer missing hypotheses could
be very useful to programmers.

All the automatically inferred hypotheses had at least the same
quality as manually written ones. This preliminary result suggests
that our hypothesis inference algorithm is very effective and should
be useful to programmers.



Errors Separate Combined Interactive
Missing hypothesis 11 10 7 11
Wrong expression 5 4 4 4

Total 16 14 11 15
Percentage 100% 87.5% 68.75% 93.75%

Table 3. Jif case study result. (1) Separate: top rank of both sep-
arately computed hypothesis and expression suggestions (2) Com-
bined: top rank combined result only (3) Interactive approach

6.4 Case study: combined errors
To see how useful our diagnostic tool is for Jif errors that occur in
practice, we used a corpus of buggy Fabric programs that a devel-
oper collected earlier during the development of the “FriendMap”
application [3]. As errors were reported by the compiler, the pro-
grammer also clearly marked the nature and true location of the er-
ror. This application is interesting for our evaluation purposes since
it is complex—it was developed over the course of six weeks by two
developers—and it contains both types of errors: missing hypothe-
ses and wrong expressions.

The corpus contains 24 buggy Fabric programs. One difficulty in
working on these programs directly was that 9 files contained many
errors. This happened because the buggy code was commented out
earlier by the programmer to better localize the errors reported by
the Fabric compiler. We posit that this can be avoided if a better error
diagnostic tool, like ours, is used. For these files, we reproduced
the errors the programmer pointed out in the notes when possible
and ignored the rest. Redundancy—programs producing the same
errors—was also removed. Result for the remaining 16 programs
are shown in Table 3.

Most files contain multiple errors. We used the errors recorded in
the note as actual errors, and an error is counted as being identified
only when the actual error is suggested among top rank suggestions.

The first approach (Separate) measures errors identified if the er-
ror type is known ahead, or both hypothesis and expression sugges-
tions separately computed are used. The result is comparable to the
result in Sections 6.2 and 6.3, where error types are known ahead.

Providing a concise and correct error report when multiple errors
interact can be more challenging. We evaluated the performance
of two approaches providing combined suggestions. The combined
approach simply ranks the combined suggestions by size. Despite its
simplicity, the result is still useful since this approach is automatic.

The interactive approach calculates missing hypotheses and re-
quires a programmer to mark the correctness of these hypotheses.
Then, correct hypotheses are used and wrong entities are suggested
to explain the remaining errors. We think this is the most promis-
ing approach, since it involves limited manual effort: hypotheses
are usually facts of properties to be checked, such as “is a flow from
Alice to Bob secure?”. We leave a more comprehensive study of
this approach to future work.

7. Related work
Program analyses, constraints and graph representations Mod-
eling program analyses via constraint solving is not a new idea. The
most related work is on set constraint-based program analysis [1, 2]
and type qualifiers [13]. However, these constraint languages do not
model hypotheses, which are important for some program analyses,
such as information flow.

Program slicing, shape analysis, and flow-insensitive points-
to analysis are expressible using graph-reachability [34]. Melski
and Reps [28] show the interchangeability between context-free-
language reachability (CFL-reachability) and a subset of set con-
straints [1]. But only a small set of constraints—in fact, a single

variable—may appear on the right hand side of a partial order.
Moreover, no error diagnostic approach is proposed for the graphs.

Error diagnoses for type inference and information-flow control
Dissatisfaction with error reports has led to earlier work on improv-
ing the error messages of both ML-like languages and Jif.

Efforts on improving type-error messages in ML-like languages
can be traced to the early work of Wand [36] and of Johnson and
Walz [19]. These two pieces of work represent two directions in
improving error messages: the former traces everything that con-
tributes to the error, whereas the latter attempts to infer the most
likely cause. We only discuss the most related among them, but
Heeren’s summary [17] provides more details.

In the first direction, several efforts [8, 13, 15, 33, 35] improve
the basic idea of Wand [36] in various ways. Despite the attractive-
ness of feeding a full explanation to the programmer, the reports are
usually verbose and hard to follow [17].

In the second direction, one approach is to alter the order of type
unification [22, 26]. But since the error location may be used any-
where during the unification procedure, any specific order fails in
some circumstance. Some prior work [17, 19] builds a type graph
from a more limited constraint language and infers error locations
based on heuristics mostly tailored for type inference. Though the
“weighted options” heuristic in [19] uses successful type unifica-
tions to distinguish abnormal types from normal ones, information
about satisfiable paths is leveraged with finer-granularity in our ap-
proach, to distinguish the constraints that caused errors. This is
shown to be effective in Section 6.2.1.

A third approach is to generate fixes for errors by searching for
similar programs [23, 27] or type substitutions [7] that do type-
check. Unfortunately, we cannot obtain a common corpus to per-
form direct comparison with some of this prior work [7, 27]. It is
worth noting that the ranking heuristics used in [7] are language-
specific: there is no obvious way to extend them to information
flow, for instance. We are able to compare directly with the work
of Lerner et al. [23]; the results of Section 6.2 suggest that our ap-
proach finds error locations more accurately. In fact, by pinpointing
where searches for fixes are likely to be productive, our approach
ought to be complementary.

For information-flow control, King et al. [20] propose to gener-
ate a trace explaining the information-flow violation. Although this
approach also constructs a diagnosis from a dependency graph, only
a subset of the DLM model is handled. As in type-error slicing,
reporting whole paths can yield very verbose error reports. Recent
work by Weijers et al. [38] diagnoses information-flow violations in
a higher-order, polymorphic language. But the mechanism is based
on tailored heuristics and a more limited constraint language. More-
over, the algorithm in [38] diagnoses a single unsatisfiable path,
while our algorithm diagnoses multiple errors.

Probabilistic inference Applying probabilistic inference to pro-
gram analysis has appeared in earlier work, particularly on spec-
ification inference [21, 25]. Our contribution is to apply proba-
bilistic inference to a general class of static analyses, allowing
errors to be localized without language-specific tuning. Also re-
lated is work on statistical methods for diagnosing dynamic errors
(e.g., [24, 40]). These algorithms rely on a different principle—
statistical interpretation—and do not handle important features for
static analysis, such as constructors and hypotheses.

The work of Ball et al. on diagnosing errors detected by model
checking has exploited a similar insight by using information about
traces for both correct execution and for errors to localize error
causes [4]. Beyond differences in context, that work differs in not
actually using probabilistic inference; each error trace is considered
in isolation, and transitions are not flagged as causes if they lie on
any correct trace.



Missing hypothesis inference The most related work on inferring
likely missing hypotheses is the recent work by Dillig et al. on er-
ror diagnosis using abductive inference [11]. This work computes
small, relevant queries presented to a user that capture exactly the
information a program analysis is missing to either discharge or val-
idate the error. It does not attempt to identify incorrect constraints.

With regard to hypothesis inference, the algorithm in [11] infers
missing hypotheses for a single assertion, while our tool finds miss-
ing hypotheses that satisfy a set of assertions. Further, the algorithm
of [11] infers additional invariants on variables (e.g., x ≤ 3 for a
constraint variable x), while our algorithm also infers missing par-
tial orderings on constructors (e.g., Alice ≤ Bob in Section 5.3.1).

Recent work by Blackshear and Lahiri [6] assigns confidence
to errors reported by modular assertion checkers. This is done by
the computation of an almost-correct specification that is used to
identify errors likely to be false positives. This idea is largely com-
plementary to our approach: although their algorithm returns a set
of high-confidence errors, it does not attempt to infer their likely
cause. At least for some program analyses, the heuristics they de-
velop might also be useful for classifying whether errors result from
missing hypotheses or from wrong constraints. As with the compar-
ison above to Dillig et al. [11], our algorithm also infers missing
partial orderings on constructors, not just additional specifications
on variables.

8. Conclusion
Better tools for helping programmers locate the errors detected
by program analysis should make them more willing to use the
many powerful program analyses that have been developed. The
science of diagnosing programmer errors is still rather primitive,
but this paper takes a step towards improving the situation. Our
analysis of program constraint graphs offers a general, principled
way to identify both incorrect expressions and missing assumptions.
Results on two very different languages, OCaml and Jif, with little
language-specific customization, suggest this approach is promising
and broadly applicable.

There are many interesting directions to take this work. Though
we have shown that the technique works well on two very different
type systems, it would likely be fruitful to apply these ideas to other
type systems and program analyses, and to explore more sophisti-
cated ways to estimate the likelihood of different error explanations.
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