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Abstract

Civitas is the first electronic voting system that is
coercion-resistant, universally and voter verifiable, and suit-
able for remote voting. This paper describes the design and
implementation of Civitas. Assurance is established in the
design through security proofs, and in the implementation
through information-flow security analysis. Experimental
results give a quantitative evaluation of the tradeoffs be-
tween time, cost, and security.

1. Introduction
Electronic voting is now a reality—and so are the many er-
rors and vulnerabilities in commercial electronic voting sys-
tems [2,8,48,73]. Voting systems are hard to make trustwor-
thy because they have strong, conflicting security require-
ments:

• Integrity of election results must be assured so that all
voters are convinced that votes are counted correctly.
Any attempt to corrupt the integrity of an election must
be detected and correctly attributed.

• Confidentiality of votes must be assured to protect vot-
ers’ privacy, to prevent selling of votes, and to defend
voters from coercion.

Integrity is easy to obtain through a public show of hands,
but this destroys confidentiality. Confidentiality can be ob-
tained by secret ballots, but this fails to assure integrity. Be-
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cause of the civic importance of elections, violations of these
requirements can have dramatic consequences.

Many security experts have been skeptical about elec-
tronic voting [25, 28, 41, 53, 63], arguing that assurance in
electronic voting systems is too hard to obtain and that their
deployment creates unacceptable risks. Our work, however,
was inspired by the possibility that electronic voting systems
could be more trustworthy than their non-electronic prede-
cessors. This paper describes and evaluates Civitas, the pro-
totype system we built to explore that possibility. Although
not yet suitable for deployment in national elections, Civi-
tas enforces verifiability (an integrity property) and coercion
resistance [45] (a confidentiality property). Civitas does not
rely on trusted supervision of polling places, making it a re-
mote voting system.

To obtain assurance in the security of Civitas, we em-
ployed principled techniques:

• Security proofs. The design of Civitas refines a cryp-
tographic voting scheme1 due to Juels, Catalano, and
Jakobsson [45], who proved their scheme secure; we
extend the proof to account for our changes.

• Secure information flow. The implementation of
Civitas is in Jif [54, 56], a language which enforces
information-flow security policies.

This validation of the design and implementation supports
our argument that Civitas is secure.

The security provided by Civitas is not free. Tradeoffs
exist between the level of security provided by Civitas tab-
ulation, the time required for tabulation, and the monetary
cost of tabulation. To better understand these tradeoffs, we
studied the performance of Civitas. The results reveal that
(with reasonable security and time parameters), the marginal
cost of tabulation is as low as 4¢ per voter. Since the current
cost of a government election in a stable Western democ-
racy is $1 to $3 per voter [38], Civitas can provide increased
security at little additional cost.

1For clarity, we define voting systems as implementations, voting
schemes as cryptographic protocols, and voting methods as algorithms that
aggregate voters’ preferences to produce a collective decision.
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Developing Civitas led to several contributions:

• A provably secure voter registration protocol, which
distributes trust over a set of registration authorities.

• A scalable design for vote storage that ensures integrity
without expensive fault tolerance mechanisms.

• A performance study demonstrating the scalability of
secure tabulation.

• A coercion-resistant construction for implementing a
ranked voting method.

• A concrete, publicly available specification of the cryp-
tographic protocols required to implement a coercion-
resistant, verifiable, remote voting scheme. This speci-
fication leverages many results in the cryptographic and
voting literature.

Moreover, Civitas is the first voting system to implement a
scheme proved to satisfy coercion resistance and verifiabil-
ity. Thus, Civitas takes an important step toward bringing
secure electronic voting to reality.

We proceed as follows. Section 2 discusses the Civitas
security model. The design of Civitas is presented in Sec-
tion 3. Section 4 evaluates the security of Civitas. The im-
plementation of cryptographic components is described in
Section 5, and the scalability of tabulation is analyzed in
Section 6. The Jif implementation is described in Section 7.
Section 8 presents our performance study. Related work is
reviewed in Section 9, and some remaining challenges are
identified in Section 10. Section 11 concludes.

2. Security Model
The Civitas security model comprises the environment in
which Civitas is used, the security properties we require Civ-
itas to satisfy, and the capabilities we ascribe to the adver-
sary attempting to subvert those properties.

Remote voting. Electronic voting systems are often de-
signed for supervised voting, which assumes trusted human
supervision of the voters, procedures, hardware, and soft-
ware in polling places. But this contradicts society’s trend
toward enabling interactions from anywhere at any time. For
example, voters in the state of Oregon now vote only by
postal mail, and all states receive a substantial fraction—
enough to change the outcome of many elections—of their
ballots by mail as absentee ballots. As another example, In-
ternet voting is increasingly used by groups such as Debian,
the ACM, and the IEEE. Estonia even conducts legally bind-
ing national elections using the Internet.

Postal voting and Internet voting are instances of remote
voting, which does not assume trusted supervision of polling
places. Remote voting is thus a more general problem, and a
harder problem, than supervised voting. Because of the evi-
dent interest in remote voting, we believe that remote voting

is the right problem to solve. One of our goals was there-
fore to strike a reasonable compromise between enabling
remote voting and guaranteeing strong security properties.
This compromise led to two requirements. First, in some
circumstances, voters must register at least partly in per-
son. Second, voters must trust the computational device they
use to submit votes—though unlike conventional supervised
voting, in which voters must trust the particular device sup-
plied by their local election authorities, Civitas enables each
voter to choose a supplier and device. We discuss these re-
quirements in Section 4.

Security properties. To fulfill the integrity requirement of
Section 1, we require Civitas to satisfy:

Verifiability. The final tally is verifiably correct. Each
voter can check that their own vote is included in the
tally (voter verifiability). Anyone can check that all
votes cast are counted, that only authorized votes are
counted, and that no votes are changed during count-
ing (universal verifiability).2

We define “verifiability” informally for simplicity, but Civi-
tas satisfies the formal definition given by Juels et al. [45].3

Verifiability improves upon the integrity properties com-
monly offered by real-world voting systems. For example,
real-world systems rarely allow individual voters to verify
that their own votes were included in the tally, or to verify
the tally themselves. As another example, the commercial
electronic voting systems currently deployed in California
offer no guarantees that votes are counted correctly [73].

To fulfill the confidentiality requirement of Section 1, a
voting system might guarantee anonymity, meaning that the
information released by the system never reveals how a voter
voted. However, for remote voting, anonymity is too weak.
Voters might gain additional information during voting that
could enable the buying and selling of votes. Such informa-
tion could also be used to coerce voters. In remote voting,
the coercer could even be the voter’s employer or domes-
tic partner, physically present with the voter and controlling
the entire voting process. Against such coercers, it is nec-
essary to ensure that voters can appear to comply with any
behavior demanded of them. Further, confidentiality must
be maintained even when voters collude with the adversary.

Thus, for confidentiality, we require Civitas to satisfy:

Coercion Resistance. Voters cannot prove whether
or how they voted, even if they can interact with the
adversary while voting.4

2Universal verifiability was originally defined by Sako and Kilian [66].
3Verifiability could be formulated as the correctness property of secure

multi-party computation [33]. Intuitively, this requires that no adversary
can change the results of tabulation to be different than if all votes were
announced and tabulated publicly.

4Removing interaction with the adversary results in receipt-freeness, a
weaker property originally defined by Benaloh [6].
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We define “coercion resistance” informally5 for simplicity,
but Civitas again satisfies the formal definition given by
Juels et al. [45].6 This formal definition requires Civitas
to defend against attacks in which the adversary demands
secrets known to the voter, and attacks in which the adver-
sary demands that the voter submits a value chosen by the
adversary. This value might be a legitimate vote or a ran-
dom value. The adversary may even demand that the voter
abstain by submitting no value at all.7

A third security requirement that could be added is avail-
ability of the voting system and tabulation results. Although
this would be essential for a national voting system, we do
not require our prototype to satisfy any availability prop-
erty. Some aspects of availability, such as fault tolerance,
could be addressed by well-known techniques. Other as-
pects, such as defending against selective denial-of-service
attacks intended to disenfranchise particular groups of vot-
ers, are open problems.

Threat model. We require Civitas to be secure with re-
spect to an adversary (essentially due to Juels et al. [45])
with the following capabilities:

• The adversary may corrupt a threshold (made precise
in Section 4) of the election authorities, mutually dis-
trusting agents who conduct an election. Agents might
be humans, organizations, or software components.

• The adversary may coerce voters, demand their secrets,
and demand any behavior of them—remotely or in the
physical presence of voters. But the adversary may not
control a voter throughout an entire election, otherwise
the voter could never register or vote.

• The adversary may control all public channels on the
network. However, we also assume the existence of
some anonymous channels, on which the adversary
cannot identify the sender, and some untappable chan-
nels, which the adversary cannot use at all.8

• The adversary may perform any polynomial-time com-
putation.

3. Design
Civitas refines and implements a voting scheme, which we
refer to as JCJ, developed by Juels, Catalano, and Jakobs-

5“Coercion resistance” is used informally throughout the literature.
Juels et al. [45] and Delaune et al. [22] give formal definitions in the compu-
tational and symbolic models, respectively, of cryptography. The informal
definition given above is consistent with both.

6Coercion resistance could be formulated as the privacy property of se-
cure multi-party computation. Intuitively, this requires that no adversary
can learn any more about votes than is revealed by the results of tabulation.

7Note that the requirement to defend voters from forced-abstinence at-
tacks is incompatible with a public record of who has voted.

8An untappable channel must provide perfect secrecy, perhaps by being
physically untappable or by implementing a one-time pad.
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Figure 1. Civitas architecture

son [45]. The differences between our design and JCJ are
discussed in Section 9.

3.1. Agents
There are five kinds of agents in the Civitas voting scheme:
a supervisor, a registrar, voters, registration tellers, and tab-
ulation tellers. Some of these are depicted in Figure 1. The
agents other than voters are election authorities:

• The supervisor administers an election. This includes
specifying the ballot design and the tellers, and starting
and stopping the election.

• The registrar authorizes voters.
• Registration tellers generate the credentials that voters

use to cast their votes.
• Tabulation tellers tally votes.

These agents use an underlying log service that imple-
ments publicly readable, insert-only storage. Integrity of
messages in a log is ensured by digital signatures. Agents
may sign messages they insert, ensuring that the log service
cannot forge new messages. The log service must sign its re-
sponses to reads, ensuring that attempts to present different
views of log contents to different readers can be detected.
Multiple instances of the log service are used in a single
election. One instance, called the bulletin board, is used by
election authorities to record all the information needed for
verifiability of the election. The remaining instances, called
ballot boxes, are used by voters to cast their votes.9

3.2. Setup phase
First, the supervisor creates the election by posting the ballot
design on an empty bulletin board. The supervisor also iden-
tifies the tellers by posting their individual public keys.10

9In our prototype, the log service instances are centralized systems pro-
vided by the election authorities—the bulletin board by the supervisor, and
one ballot box by each tabulation teller. But instances could be made dis-
tributed systems to improve availability, and instances could be provided by
agents other than the election authorities.

10A real-world deployment of Civitas would need a public-key infras-
tructure to certify keys.
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Second, the registrar posts the electoral roll, containing
identifiers (perhaps names or registration numbers) for all
authorized voters, along with the voters’ public keys. Each
voter is assumed to have two keys, a registration key and a
designation key, whose uses are described below.

Third, the tabulation tellers collectively generate a public
key for a distributed encryption scheme and post it on the
bulletin board. Decryption of messages encrypted under this
key requires the participation of all tabulation tellers.

Finally, the registration tellers generate credentials,
which are used to authenticate votes anonymously. Each
credential is associated with a single voter. Like keys in an
asymmetric cryptosystem, credentials are pairs of a public
value and a private value. All public credentials are posted
on the bulletin board, and each registration teller stores a
share of each private credential. Private credentials can be
forged or leaked only if all registration tellers collude.

3.3. Voting phase
Voters register to acquire their private credentials. Each reg-
istration teller authenticates a voter using the voter’s regis-
tration key. The teller and voter then run a protocol, using
the voter’s designation key, that releases the teller’s share of
the voter’s private credential to the voter. The voter com-
bines all of these shares to construct a private credential.

Voting may take place immediately, or a long time after
registration. To vote, the voter submits a private credential
and a choice of a candidate (both encrypted), along with a
proof that the vote is well-formed, to some or all of the bal-
lot boxes. (This submission does not require either of the
voter’s keys.) Replication of the vote across the ballot boxes
is used to guarantee availability of the vote for tabulation.

Resisting coercion. The key idea (due to Juels et al. [45])
that enables voters to resist coercion, and defeats vote sell-
ing, is that voters can substitute fake credentials for their real
credentials, then behave however the adversary demands.
For example:

If the adversary
demands that the
voter. . .

Then the voter. . .

Submits a particular
vote

Does so with a fake credential.

Sells or surrenders a
credential

Supplies a fake credential.

Abstains Supplies a fake credential to the ad-
versary and votes with a real one.

To construct a fake credential, the voter locally runs an
algorithm to produce fake private credential shares that, to
an adversary, are indistinguishable from real shares. The
faking algorithm requires the voter’s private designation key.
The voter combines these shares to produce a fake private
credential; the voter’s public credential remains unchanged.

Revoting. Voters might submit more than one vote per cre-
dential. The supervisor has the flexibility to specify a pol-
icy on how to tally such revotes. If revotes are not allowed,
then all votes submitted under duplicate credentials are elim-
inated. If revotes are allowed, then the voter must include a
proof in later votes to indicate which earlier votes are be-
ing replaced. This proof must demonstrate knowledge of
the credential and choice used in both votes, preventing an
adversary from revoting on behalf of a voter.

Ballot design. Civitas is compatible with the use of any
ballot design for which a proof of well-formedness is pos-
sible. Our prototype supports the use of ballots in which
voters may choose a single candidate (plurality voting), any
subset of candidates (approval voting), or a ranking of the
candidates (ranked voting). However, ranked voting intro-
duces covert channels that enable attacks on coercion resis-
tance. We discuss this vulnerability, and how to eliminate it,
in the accompanying technical report [18].11

Write-in votes could also be supported by Civitas, since
any write-in could be considered well-formed. However,
write-ins also enable attacks on coercion resistance.12 To our
knowledge, it is not possible to eliminate this vulnerability,
so we chose not to implement write-ins in our prototype.

3.4. Tabulation phase
The tabulation tellers collectively tally the election:

1. Retrieve data. All tabulation tellers retrieve the votes
from each ballot box and the public credentials from
the bulletin board.

2. Verify proofs. The tellers check each vote to verify
the proof of well-formedness. Any vote with an invalid
proof is discarded. (For efficiency, our implementation
actually merges this with the next step.)

3. Eliminate duplicates. At most one vote is retained for
each credential. Votes with duplicate credentials are
eliminated according to the revoting policy.

4. Anonymize. Both the list of submitted votes and the
list of authorized credentials are anonymized by apply-
ing a random permutation, implemented with a mix net-
work [11]. In the mix, each tabulation teller in turn ap-
plies its own random permutation.

5. Eliminate unauthorized votes. The credentials in
the anonymized votes are compared against the anon-

11Other kinds of ballots can be encoded into one of these supported
forms. For example, conditional ballots, in which a voter selects “yes”
or “no” on some issue, then is offered particular candidates based on this
selection, can be encoded as a plurality vote on a pair of a selection and a
candidate.

12For example, the adversary could issue each voter a unique, large num-
ber, then demand that the voter submit that number as the voter’s choice.
If that number does not appear in the final list of decrypted choices, the
adversary knows that the voter did not comply.
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ymized authorized credentials. Any votes with invalid
credentials are discarded.

6. Decrypt. The remaining choices, but not credentials,
are decrypted. The final tally is publicly computable.

Verifying an election. Tabulation is made publicly ver-
ifiable by requiring each tabulation teller to post proofs
that it is honestly following the protocols. All tabulation
tellers verify these proofs as tabulation proceeds. An hon-
est teller refuses to continue when it discovers an invalid
proof. Anyone can verify these proofs during and after tabu-
lation, yielding universal verifiability. A voter can also ver-
ify that his vote is present in the set retrieved by the tabula-
tion tellers, yielding voter verifiability.

4. Security Evaluation
The Civitas voting scheme requires certain assumptions
about the trustworthiness of agents and system components.
We discuss what attacks are possible when these trust as-
sumptions are violated, and what defenses an implementa-
tion of the scheme could employ.

Trust Assumption 1. The adversary cannot simulate a
voter during registration.

There must be some period of time during which the ad-
versary cannot simulate the voter. Otherwise the system
could never distinguish the adversary from the voter, so the
adversary could register and vote on behalf of a voter. Regis-
tration is a good time for this assumption because it requires
authentication and can be done far in advance of the election.

During registration, Civitas authenticates voters with
their registration keys. So this assumption restricts the ad-
versary from acquiring a voter’s key before the voter has
registered. However, voters might attempt to sell their pri-
vate registration keys, or an adversary might coerce a voter
into revealing the voter’s key.13 Both attacks violate Trust
Assumption 1 by allowing the adversary to simulate a voter.

One possible defense would be to store private keys on
tamper-resistant hardware, which could enforce digital non-
transferability of the keys. This is not a completely effective
defense, as voters could physically transfer the hardware to
the adversary. Preventing such physical transfers is not gen-
erally possible, but they could be discouraged by introduc-
ing economic disincentives for voters who relinquish their
keys. For example, the Estonian ID card, which contains
private keys and is used for electronic voting, can be used to
produce legally binding cryptographic signatures [62]. Vot-
ers would be unlikely to sell such cards, although coercion
would remain a problem.

Another possible defense is to change authentication to
use in-person registration as an alternative to private keys.

13Note that these attacks are relevant only to registration, not voting, be-
cause the voter’s registration key is not used during the voting protocol.

Each registration teller would either be an online teller,
meaning voters register with that teller remotely, or an of-
fline teller, meaning voters must register in person with that
teller. Offline registration tellers would be trusted to authen-
ticate voters correctly, preventing the adversary from mas-
querading as the voter. At least one offline registration teller
would need to exist in any election, ensuring that voters reg-
ister in person with at least one teller.

For deployments of Civitas in which this trust assumption
does not hold, we recommend requiring in-person registra-
tion. This compromises of our goal of a fully remote system.
But it is a practical defense, since voting could still be done
remotely, registration could be done far in advance of the
actual election, and a single credential could be reused for
multiple elections.14

Trust Assumption 2. Each voter trusts at least one regis-
tration teller, and the channel from the voter to the voter’s
trusted registration teller is untappable.

Constructing a fake credential requires the voter to mod-
ify at least one of the shares received during registration.
Suppose the adversary can tap all channels to registration
tellers and record the encrypted traffic between the voter and
the registration tellers. Further suppose that the adversary
can corrupt the voter’s client so that it records all credential
shares received from tellers. Then the adversary can ask the
client to reveal the plaintext credential shares correspond-
ing to the encrypted network messages. In this scenario, the
voter cannot lie to the adversary about his credential shares,
meaning that the voter could now sell his credential and is no
longer protected from coercion. So an untappable channel is
required for distribution of at least one share. The voter must
also trust the teller who issued that share not to reveal it.15

An untappable channel is the weakest known assumption
for a coercion-resistant voting scheme [4,19,37,45,66]. Re-
placing this with a more practical assumption has been an
open problem for at least a decade [20]. Offline registration
tellers, discussed with Trust Assumption 1, could ensure an
untappable channel by supervising the registration process.
Our prototype of the client employs enforced erasure of all
credential shares once the voter’s credential is constructed,
preventing the voter from reporting shares to the adversary.

Trust Assumption 3. Voters trust their voting clients.

Voters enter votes directly into their clients. No mecha-
nism ensures that the client will preserve the integrity or the
confidentiality of votes. A corrupt voting client could violate
coercion resistance by sending the plaintext of the voter’s
credential and choice to the adversary. A corrupt client could

14Such reuse would require strengthening Trust Assumptions 2 and 6 to
honesty of tellers across multiple elections.

15Note that a voter must know which registration teller he is trusting,
which is stronger than Trust Assumptions 5 and 6.
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also violate verifiability by modifying the voter’s credential
or choice before encrypting it.

Clients could be corrupted in many ways. The machine,
including the network connection, could be controlled by the
adversary. Any level of the software stack, from the operat-
ing system to the client application, could contain vulnera-
bilities or be corrupted by malicious code. The adversary
might even be an insider, compromising clients during their
development and distribution.

Current research aims to solve this problem by chang-
ing how voters enter their votes [12, 43, 49, 75]. The voting
client is decomposed into multiple (hardware and software)
components, and the voter interacts with each component to
complete the voting process. For example, voting might re-
quire interacting with a smart card to obtain a randomized
ballot, then interacting with a client to submit a vote on that
ballot.16 Now the voter need not trust a single client, but in-
stead that the components implementing the client will not
collude. Complementary research aims to leverage trusted
computing technology [72]. For example, attestation could
be used to prove that no level of the hardware or software
stack has been changed from a trusted, pre-certified config-
uration. Integrating these kinds of defenses into Civitas is
important future work.

Note that this trust assumption does not require all voters
to trust a single client implementation. Rather, voters may
choose which client they trust. This client could be obtained
from an organization the voter trusts, such as their own po-
litical party or another social organization. These organiza-
tions are free to implement their own Civitas client software
on their own hardware, and to make their source code pub-
licly available. This freedom improves upon current direct-
recording electronic (DRE) voting systems, in which voters
are often forced by local election authorities to use particu-
lar proprietary (or closed-source) clients that are known to
contain vulnerabilities [46, 48, 73]. Another advantage over
DREs is that diverse clients, provided by several organiza-
tions, could reduce the incentive to attack Civitas by raising
the cost of mounting an attack.

Requiring trusted voter clients compromises our goal of
a remote voting system. Even if voters download a client
from a trusted organization, the software stack on a voter’s
machine might not be trustworthy. Thus voters might need
to travel to a location where an organization they trust has
provided a client application running on a trustworthy hard-
ware and software platform.

Trust Assumption 4. The channels on which voters cast
their votes are anonymous.

Without this assumption, the adversary could observe
network traffic and learn which voters have voted, trivially

16Another example is the use of paper as one of the components. How-
ever, this is incompatible with remote electronic voting.

violating coercion resistance—although the adversary still
could not learn the voter’s choice or credential.

Our prototype of Civitas does not implement its own
anonymous channel because the construction of trustworthy
anonymous channels is an orthogonal research problem. It
seems likely that existing anonymizing networks, such as
Tor [26], would suffice if made sufficiently reliable.17

Trust Assumption 5. At least one of the ballot boxes to
which a voter submits his vote is correct.

A correct ballot box returns all the votes that it accepted
to all the tabulation tellers. This is weaker than the standard
assumption (less than a third of the ballot boxes fail) made
for Byzantine fault tolerance [10] and multi-party computa-
tion [33], which both require more expensive protocols.

Trust Assumption 6. There exists at least one honest tabu-
lation teller.

If all the tellers were corrupted, then the adversary could
trivially violate coercion resistance by decrypting creden-
tials and votes. This assumption is not needed for verifia-
bility, even if all the tellers collude or are corrupted—the
proofs posted by tellers during tabulation will reveal any at-
tempt to cheat. Fault tolerance techniques [14, 30] would
increase the difficulty of corrupting all the tellers.

Attacks on election authorities. Trust Assumptions 2, 5,
and 6 allow all but one election authority of each kind to be
corrupted. But certain attacks might still be mounted:

• A corrupt registration teller might fail to issue a valid
credential share to a voter. The voter can detect this,
but coercion resistance requires that the voter cannot
prove that a share is valid or invalid to a third party. De-
fending against this could involve the voter and another
election authority, perhaps an external auditor, jointly
attempting to re-register the voter. The auditor could
then attest to the misbehavior of a registration teller.

• The bulletin board might attempt to alter messages. But
this is detectable since messages are signed. A bulletin
board might also delete messages. This is an attack on
availability, which is addressed in Section 10.

• A corrupt registrar might add fictitious voters or re-
move legitimate voters from the electoral roll. Each
tabulation teller can defend against this by refusing to
tabulate unless the electoral roll is correct according to
some external policy.

• A corrupt supervisor might post an incorrect ballot de-
sign, stop an election early, or even attempt to simulate
an election with only one real voter. Voters and tabu-
lation tellers should cease to participate in the election
once the supervisor exhibits such behavior.

17A vote typically fits into just three packets, so scalability and timing
attacks seem unlikely to present problems.
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All election authorities might be simultaneously cor-
rupted if they all run the same software. For example, an
insider working at the software supplier might hide mali-
cious code in the tabulation teller software. As discussed in
Trust Assumption 6, this attack could violate coercion resis-
tance, but it could not violate verifiability. To defend against
insider attacks, election authorities should use diverse im-
plementations of the Civitas protocols.

Trust Assumption 7. The Decision Diffie-Hellman (DDH)
and RSA assumptions hold, and SHA-256 implements a ran-
dom oracle.

DDH and RSA are standard cryptographic assumptions.
The more fundamental assumption for Civitas is DDH, as
the JCJ security proof is a reduction from it.

5. Cryptographic Components
Civitas uses many cryptographic components. This section
gives an overview of these; the accompanying technical re-
port [18] contains a detailed specification of the protocols.
Many components require posting messages to the bulletin
board. These messages must be signed by the poster. Also,
a variety of zero-knowledge proofs are used to enforce the
honest execution of protocols. These proofs are made non-
interactive via the Fiat-Shamir heuristic [29], so their secu-
rity is in the random oracle model [5]. Civitas implements a
random oracle with SHA-256.

Security proof. The security of Civitas follows from the
JCJ security proof [45] and the individual security proofs
of each component, cited below. We give a security proof
for the registration protocol in the accompanying technical
report [18].

5.1. Setup phase
Keys. The supervisor posts RSA public keys representing
the election authorities. These keys are used for authenti-
cation of agents and messages. The choice of RSA is for
convenience, since many real-world organizations already
have RSA keys, but could be replaced by another cryptosys-
tem. The tabulation tellers also generate a distributed El Ga-
mal public key, described below. The registrar posts each
voter’s registration public key (RSA, again for convenience)
and designation public key (El Gamal).

Encryption scheme. Civitas implements a distributed El
Gamal scheme similar to Brandt’s [7]. The supervisor posts
a message (p, q, g) describing the cryptosystem parameters:
a prime p = 2kq + 1, where q is also prime, and a generator
g of the order q subgroup of Z∗p. This subgroup, denoted
M, is the message space of the cryptosystem. The tabula-
tion tellers generate an El Gamal public key KTT for which
each teller holds a share of the corresponding private key.

Encryption of message m under key K with randomness r
is denoted Enc(m; r; K). We omit r or K from this nota-
tion when they are unimportant or clear from context. De-
cryption of a ciphertext c that was encrypted under key KTT,
denoted Dec(c), requires all tabulation tellers.

El Gamal encryption is homomorphic with respect to
multiplication. That is, Enc(m) · Enc(n) = Enc(m · n).
El Gamal permits a probabilistic reencryption operation, de-
noted Reenc(c) for a ciphertext c, which produces a new
encryption of the same plaintext. Encryption can be made
non-malleable, preventing the use of homomorphisms and
reencryption, by the use of Schnorr signatures [68]. Civi-
tas uses non-malleable encryption until the tabulation phase,
where malleability is required.

Civitas uses two zero-knowledge proofs to ensure the
honesty of tellers during key generation and during decryp-
tion. The first is a proof of knowledge of a discrete logarithm
due to Schnorr [67]. The second is a proof of equality of dis-
crete logarithms due to Chaum and Pedersen [13].

Credential generation. Civitas uses a novel construction
for credentials, based on ideas found in earlier work [20,
37, 45]. The security of this construction is proved in the
accompanying technical report [18].

For each voter, each registration teller i individually gen-
erates a random element of M as private credential share
si. The corresponding public share Si is Enc(si; KTT). The
registration teller posts Si on the bulletin board and stores si

for release during registration. After all tellers have posted a
share, the voter’s public credential S is publicly computable
as

∏
i Enc(si; KTT), which by the homomorphic property is

equal to Enc(
∏

i si; KTT).

5.2. Voting phase
Registration. To acquire a private credential, a voter con-
tacts each registration teller. The voter authenticates us-
ing his registration key, then establishes a shared AES ses-
sion key using the Needham-Schroeder-Lowe [51] proto-
col. The voter requests registration teller i’s share si of
the private credential. The registration teller responds with
(si, r, S

′
i, D), where r is random, S′i = Enc(si; r; KTT) and

D is a designated-verifier reencryption proof (DVRP) due
to Hirt and Sako [37]. The proof shows that S′i is a reen-
cryption of Si, the public credential share. Construction of
this proof requires the voter’s public designation key. The
voter verifies that S′i was computed correctly from si and
r, then verifies the DVRP. These verifications convince the
voter, and only the voter, that the private share is correct with
respect to the public share posted on the bulletin board—i.e.,
that Si is an encryption of si. After retrieving all the shares,
the voter constructs private credential s, where s =

∏
i si.

Voting. To cast a vote, a voter posts an unsigned mes-
sage 〈Enc(s; KTT), Enc(v; KTT), Pw, Pk〉 to some or all of
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the ballot boxes, where s is the voter’s private credential, v
is the voter’s choice, and Pw and Pk are zero-knowledge
proofs. Pw, implemented with a 1-out-of-L reencryption
proof due to Hirt and Sako [37], shows that the vote is
well-formed with respect to the ballot design of the elec-
tion. Given C = {ci | 1 ≤ i ≤ L} and c, this reencryp-
tion proof shows there exists an i such that ci = Reenc(c).
Pk, implemented by adapting a proof due to Camenisch and
Stadler [9], shows that the submitter simultaneously knows
s and v. This defends against an adversary who attempts to
post functions of previously cast votes.

Resisting coercion. To construct a fake credential, a voter
chooses at least one registration teller and substitutes a ran-
dom group element s′i ∈M for the share si that registration
teller sent to the voter. The voter can construct a DVRP that
causes this fake share to appear real to the adversary, unless
the adversary has corrupted the registration teller the voter
chose (in which case the adversary already knows the real
share), or unless the adversary observed the channel used by
the registration teller and voter during registration (in which
case the adversary has seen the real proof). By Trust As-
sumption 2, there exist some teller and channel that the ad-
versary does not control, so it is always possible for voters
to fake credentials.

5.3. Tabulation phase
Ballot boxes. Recall from Section 3 that ballot boxes are
instances of an insert-only log service. Ballot boxes have
one additional function, reporting their contents at the end
of an election. When the supervisor closes the election, each
ballot box posts a commitment to its contents on the bulletin
board. The supervisor then posts his own signature on all
these commitments, defining the set of votes to be tabulated.
Thus, if a voter posts a vote to at least one correct ballot
box, the vote will be tabulated.18 Note that ballot boxes do
not check validity of votes.

Since ballot boxes operate independently, never contact-
ing other ballot boxes, this ballot box construction scales
easily. Moreover, this construction ensures that all votes
are available for tabulation—a requirement of universal
verifiability—without expensive fault tolerance protocols.

Mix network. A mix network is used to anonymize sub-
mitted votes and authorized credentials. Civitas implements
a reencryption mix network made verifiable by randomized
partial checking [40], in which each teller in the network
performs two permutations.19

18A malicious supervisor could violate this by excluding a correct bal-
lot box. This trust in the supervisor could be eliminated by using a more
expensive agreement protocol.

19Randomized partial checking reveals some small amount of informa-
tion about these permutations. In the worst case, when all but one teller is
corrupted, the size of the set within which a vote or credential is anonymous

Duplicate and invalid credential elimination. It would
be easy to eliminate votes containing duplicate or invalid
credentials if credentials could be decrypted. However, this
would fail to be coercion-resistant, because voters’ private
credentials would be revealed. Instead, a zero-knowledge
protocol called a plaintext equivalence test (PET) is used to
compare ciphertexts. Given c and c′, a PET reveals whether
Dec(c) = Dec(c′), but nothing more about the plaintexts of
c and c′. Civitas implements a PET protocol due to Jakob-
sson and Juels [39]. For duplicate elimination, a PET must
be performed on each pair of submitted credentials. Sim-
ilarly, to eliminate invalid credentials, PETs must be per-
formed to compare each submitted credential with every au-
thorized credential.20 These pairwise tests cause credential
elimination to take quadratic time.

6. Scalability
There are two main challenges for scalability in Civitas.
First, elimination of duplicate and invalid credentials takes
quadratic time. Second, tabulation requires each teller to
perform computation for each vote.

Our solution to both challenges is to group voters
into blocks, which are virtual precincts. Like real-world
precincts, the tally for each block can be computed indepen-
dently, block results are public, and voters are anonymous
within their block. Unlike real-world precincts, the assign-
ment into blocks need not be based on physical location. For
example, voters might be assigned to blocks in a way that is
verifiably pseudorandom, reducing the risk of reprisal by the
adversary against an entire block of voters. Blocking also
enables the production of early returns, in which a fraction
of blocks are tabulated to predict the outcome of the election.

Implementing blocking is straightforward. The registrar
publicly assigns each voter to a block. Each submitted vote
identifies, in plaintext, the block in which its credential (sup-
posedly) resides. Vote proof Pk is extended to make this
identifier non-malleable.

Without blocking, duplicate elimination requires O(N2)
PETs, where N is the number of all submitted votes. With
blocking, O(BM2) PETs are required, where B = b V

K c
is the number of blocks, V is the number of voters, K is
the minimum number of voters per block, and M is the
maximum number of votes submitted in a block. Like-
wise, blocking reduces invalid credential elimination from

is halved. By a result of Gomułkiewicz et al. [34], the revealed information
can be made statistically small by requiring each teller to perform a total
of five permutations. We estimate this would increase tabulation time by
at most 3%. Mix networks based on zero-knowledge proofs [32, 57] would
improve anonymity at the cost of more expensive verification.

20The presence of invalid credentials is an information channel. For ex-
ample, if there are zero invalid credentials, then no voter submitted a vote
with a fake credential. The adversary could detect this from the PET results
posted on the bulletin board. To eliminate this channel, each teller could
post a random number of votes with invalid credentials.
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Table 1. Modular exponentiations per block

Agent Action Protocol BB

RT Generate all credentials 4K K
Distribute all credentials 14K –

Voter Retrieve a credential 12A A
Vote 4C + 7 –

TT Retrieve data – AK + A + 1
Verify proofs 4M(C + 1) –
Eliminate duplicates

`
M
2

´
(8A− 1) 3A

Anonymize (mixes) 2(A + 1)(M + K) 2A
Eliminate invalids KM(8A− 1) 3A
Decrypt K(4A− 1) A

O(V N) PETs to O(BKM). The B factor in each of these
terms is easily parallelizable, since a different set of ma-
chines can be used to implement the tabulation tellers for
each block. Tabulation time then depends on M and K, but
not V . Therefore performance can scale independently of
the number of voters.

Table 1 identifies the number of modular exponentiations
performed per block by individual agents: registration tellers
(RT), tabulation tellers (TT), and voters. (Tabulation time
is dominated by modular exponentiations.) The table dis-
tinguishes protocol exponentiations, which are required by
the Civitas voting scheme regardless of the implementation
of the bulletin board, from bulletin board (BB) exponenti-
ations, which are required by the particular implementation
used in our prototype. BB exponentiations result from RSA
signatures and verifications. Exponentiations are counted
under the assumption that there are no duplicate votes and
that no voters abstain, maximizing the number of PETs re-
quired. Parameter A describes the number of election au-
thorities of each kind—i.e., if A = 4, then there are four reg-
istration tellers, four tabulation tellers, and four ballot boxes.
Regardless of A, there is a single bulletin board. Table 1 as-
sumes a plurality ballot with C candidates.

7. Implementation in Jif
Our prototype of Civitas is implemented in JifE [15], an ex-
tension of Jif 3.0 [54,56]. Jif is a security-typed language in
which programs are annotated with information-flow secu-
rity policies. The Jif compiler and runtime guarantee end-to-
end enforcement of these polices. Information-flow policies
control both the release and propagation of information, en-
abling the protection of both sensitive data and data derived
therefrom. Information-flow policies are therefore stronger
than access control policies, which control only the release
of information.

Jif security policies are expressed using the decentralized
label model [55], which allows specification of confidential-
ity and integrity requirements of principals. Such policies

are useful for constructing systems like Civitas, in which
principals need to cooperate yet are mutually distrusting.
For example, if information is labeled with confidentiality
policy RT1 � voter76, then principal RT1 permits principal
voter76 to learn the information; such a policy would be
suitable for the private credential share generated by regis-
tration teller RT1 for voter76. Similarly, if information is
labeled with integrity policy TT3 � Sup, then principal TT3
requires that only principal Sup has influenced the informa-
tion; such a policy would be suitable for the ballot design,
which only the supervisor may specify.

In general, a principal p may specify a set R of readers in
confidentiality policy p � R. JifE extends Jif with declassi-
fication and erasure policies [16], which allow principals to
state conditions on when the set of readers in a confidential-
ity policy may be changed.

Declassification policies allow the set of readers of infor-
mation to be expanded. For example, in the implementation
of mix networks, each tabulation teller must commit to ran-
dom bits. The bits are then revealed and used to verify the
mix. The security of the mix requires maintaining the se-
crecy of these bits until all tellers have committed. In the
code, this requirement is expressed using a declassification
policy. The policy annotating the variable storing the ran-
dom bits of TTi indicates that the information is readable
only by TTi until condition AllCommitted is satisfied, upon
which the information may be declassified to be readable by
all principals. AllCommitted becomes true at the program
point where all commitments have been received.

Erasure policies mandate conditions upon which the set
of readers must be restricted. For example, each registration
teller must store a private credential share for each voter un-
til the voter requests it. After this, the teller may erase the
share, ensuring that the share cannot later be disclosed.21 In

21Erasure is a design choice that impacts recovery from voters’ accidental
loss or deletion of credentials. If tellers do not erase shares, then tellers
can reissue credentials. But if tellers do erase shares, then reissue is not
possible. Instead, tellers would need to revoke lost shares and issue new
shares. This is left as future work.
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Table 2. Lines of JifE code per component

Component LOC

Tabulation teller 5,740
Common 3,173
Registration teller 1,290
Supervisor 1,138
Log service (bulletin board and ballot box) 911
Voter client 826
Registrar 308
Total 13,386

the code, the variable storing the share is annotated with an
erasure policy indicating that this information becomes un-
readable by all principals when condition Delivered is sat-
isfied. Delivered becomes true at the program point where
receipt of the share has been acknowledged by the voter. The
JifE compiler inserts code at that point to erase the informa-
tion from memory.

Our implementation of Civitas totals about 13,000 lines
of JifE code. Table 2 gives the number of lines of code in
each component; common code includes shared data struc-
tures and utility methods for retrieving and caching election
information. About 8,000 additional lines of Java code are
used to perform I/O and to implement number-theoretic op-
erations such as encryption and zero-knowledge proofs.

8. Performance
A voting system is practical only if tabulation can be com-
pleted in reasonable time, with reasonable cost and secu-
rity. Civitas offers a tradeoff between these three factors,
because tabulation can be completed more quickly by ac-
cepting higher cost or lower security.

Notions of reasonable time, cost, and security may dif-
fer depending on the election or the observer. In current
U.S. elections, accurate predictions of election results are
available within a few hours. Therefore, we chose a target
tabulation time of five hours. The two most important pa-
rameters affecting security are K, the minimum number of
voters within each block, and A, the number of authorities of
each kind.22 As reasonable values for these parameters, we
chose K = 100 and A = 4. Anonymity within 100 voters
seems comparable to what is available in current real-world
elections, where results are tabulated at a precinct level and
observers might correlate voters with ballots.23 Similarly,
four mutually distrusting authorities might offer better over-
sight than real-world elections.

22Recall from Section 6 that if A = 4, then there are four registration
tellers, four tabulation tellers, and four ballot boxes.

23Random block assignment might even offer stronger anonymity than
real-world elections.

Experiment design. We used Emulab [74] as an experi-
ment testbed. The experiments ran on machines containing
3.0 GHz Xeon processors and 1 GB of RAM, networked on
a 1 Gb LAN. Note that only tabulation tellers actually need
hardware this fast, whereas voters could use substantially
less powerful hardware without impacting performance or
the voting experience. Our machines ran Red Hat Linux 9.0
and Java 1.5.0 11. For RSA, AES, and SHA implementa-
tions, we used Bouncy Castle JCE provider 1.33. We imple-
mented the remaining cryptographic functionality, including
El Gamal and zero-knowledge proofs, ourselves. We used a
C library, GMP 4.2.1, for implementations of modular expo-
nentiation and multiplication.

Key lengths were chosen to meet or exceed NIST rec-
ommendations for 2011–2030 [3]. We used 128-bit AES
keys, 2048-bit RSA keys, and 224-bit El Gamal keys from a
2048-bit group—i.e., |p| = 2048 and |q| = 224. A modular
exponentiation in this size group required about 3.7 ms.

Each experiment simulated all phases of a complete elec-
tion, including all the cryptographic protocols in Section 5.
Therefore the results should be representative of a real de-
ployment. All experiments used plurality ballots with three
candidates. No voters abstained, so N ≥ V and M ≥ K.24

Experiments were repeated three times, and we report the
sample mean. The sample standard deviation was always
less than 2% of the mean.

Setup and voting time. Generation of keys and creden-
tials scales linearly in the number of authorities and voters,
respectively, and can be conducted offline. During the vot-
ing phase, voters retrieve credential shares from registration
tellers and submit votes to ballot boxes. A voter client takes
about 325 ms to acquire a credential share from a registration
teller, and about 20 ms to submit a vote to a ballot box. Thus,
for four authorities, it takes a voter less than 1.4 seconds to
retrieve credentials and submit a vote. From the registra-
tion teller’s perspective, it takes about 200 ms of CPU time
to distribute a single voter’s credential share. A registration
teller could therefore process 18,000 voters per hour.

Tabulation time and space. Figure 2(a) shows the re-
sults of four tabulation tellers processing blocks sequen-
tially, where V is a multiple of K. The data indicate that
Civitas requires 39 seconds per voter per authority to tabu-
late a single block, and that votes from 500 voters, in blocks
of 100, can be tabulated in five hours. (The time to com-
bine the block tallies is negligible.) Parameters A and K
have non-linear effects on tabulation time, as shown in Fig-
ure 2(b) and Figure 2(c). Communication increases quadrat-
ically in A, and PETs take time proportional to K2. Fig-
ure 2(c) indicates that a block of 200 voters can be tabulated
in less than five hours.

24Recall that N is the number of votes submitted and M is the maximum
number of votes submitted in a block.
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Figure 2. Tabulation time vs. (a) Voters: K = 100, A = 4; (b) Authorities: K = V = 100; (c) Anonymity:
V = K, A = 4; (d) Chaff: K = V = 100, A = 4

The independence of blocks can be exploited to decrease
tabulation time by processing blocks in parallel. Given a set
of tabulation teller machines for each block, the data in Fig-
ure 2(a) predict that tabulation could be completed in about
65 minutes, independent of V . Because of the linear trade-
off between time and machines at the granularity of blocks,
the remaining measurements in this study are for tabulation
of a single block.

The memory footprint of Civitas is very small. With
M = 100, the active set of a tabulation teller is never more
than 8 MB. The size of the active set scales linearly in M , so
modern machines could easily fit tabulation in memory for
substantially larger values of M (and of K, since K ≤ M ).
The storage space needed for the entire bulletin board is less
than 620 MB for an election where K = 100, V = 100, and
A = 4. Our prototype uses a verbose XML-like message
format, so we expect that storage space requirements could
be reduced significantly.25

Chaff. We refer to votes containing invalid and duplicate
credentials as chaff because they are eliminated during tab-
ulation. Because chaff increases the number of votes in a
block, it increases tabulation time similarly to increasing
anonymity parameter K. Figure 2(d) shows how tabulation

25Note that voters do not need to download the entire bulletin board to
verify inclusion of their votes. Rather, a voter would need to download only
the list of votes (about 160 kB) used as input to the tabulation protocol, then
check that his vote is in this list.

time varies as a function of the percentage of chaff votes in
each block. With fraction c chaff (split between invalid and
duplicate credentials), there are M = V

1−c votes in a block.
All the other graphs in this study assume c = 0.

Cost. A government election in a stable Western democ-
racy currently costs $1 to $3 per voter [38]. Civitas would
increase the cost of computing equipment but could reduce
the costs associated with polling places and paper ballots. A
dual-core version of our experiment machines is currently
available for about $1,500, so the machine cost to tabulate
votes from 500 voters in five hours (with K = 100 and
A = 4) is at worst $12 per voter, and this cost could be
amortized across multiple elections. Moving to multicore
CPUs would also be likely to reduce tabulation time, since
tabulation is CPU-bound (utilization is about 70–85% dur-
ing our experiments), has a small memory footprint, and can
be split into parallel threads that interact infrequently. Costs
could be reduced dramatically if trust requirements permit
a tabulation teller to lease compute time from a provider.26

One provider currently offers a rate of $1 per CPU per hour
on processors similar in performance to our experiment ma-

26Essentially, this means trusting the provider with the teller’s El Gamal
private key share for that election so the provider can compute decryption
shares. To avoid giving the provider the key share, computation might be
split between the provider and teller, with the teller computing only these
decryption shares. This would result in the teller performing only about
10% of the total number of modular exponentiations.

11



chines [71]. At this rate, tabulation for 500 voters would cost
about 4¢ per voter—clearly in the realm of practicality.

Reducing security parameters also reduces cost. For ex-
ample, halving K approximately quarters tabulation time.
So for a ten-hour, K = 50, A = 3 election, the cost per voter
would be about ten times smaller than a five-hour, K = 100,
A = 4 election. El Gamal key lengths also have a signifi-
cant impact. Figure 2(c) shows that, for 224-bit keys from a
2048-bit group, K can be as high as 200 while maintaining a
tabulation time of under five hours. With 160-bit keys from
a 1024-bit group (secure, according to NIST, from 2007–
2010 [3]), K can be increased to 400. Using 256-bit keys
from a 3072-bit group (secure until after 2030) currently re-
quires decreasing K to 125.

Real-world estimates. In the 2004 general election for
President of the United States, just under 2.3 million votes
were reported by the City of New York Board of Elec-
tions [17]. Using the worst-case estimate we developed
above, $12 per voter, the one-time hardware cost for us-
ing Civitas to tabulate this election would be at most $27.6
million. In comparison, Diebold submitted an estimate
in 2006 of $28.7 million in one-time costs to replace the
city’s mechanical lever voting machines with optical scan
machines [23]; hardware and software costs accounted for
$10.2 million of this estimate [24]. Although we cannot
make any strong comparisons, the cost of Civitas does seem
to be about the same order of magnitude.

9. Related Work
Voting schemes. Cryptographic voting schemes can be di-
vided into three categories, based on the technique used to
anonymize votes: homomorphic encryption [6, 20, 37, 65],
blind signatures [31,58,59], and mix networks [4,11,52,66].
JCJ and Civitas are both based on mix networks.

To optimize JCJ, Smith [70] proposes replacing PETs
with reencryption into a deterministic, distributed cryptosys-
tem. However, the proposed construction is insecure. The
proposed encryption function is Enc(m; z) = mz , where
z is a secret key distributed among the tellers. But to test
whether s is a real private credential, the adversary can in-
ject a vote using s2 as the private credential. After the pro-
posed encryption function is applied during invalid creden-
tial elimination, the adversary can test whether any submit-
ted credential is the square of any authorized credential. If
so, then s is real with high probability. Araújo et al. [1] are
studying another possible replacement for PETs, based on
group signatures.

Civitas differs from JCJ in the following ways:

• JCJ assumes a single trusted registration authority; Civ-
itas factors this into a registrar and a set of mutually
distrusting registration tellers. As part of this, Civitas
introduces a construction of credential shares.

• JCJ does not specify a means of distributing creden-
tials; Civitas introduces a protocol for this and proves
its security.

• JCJ has voters post votes to the bulletin board; Civitas
introduces ballot boxes for vote storage.

• JCJ supports plurality voting; Civitas generalizes this
to include approval and ranked voting methods.

• JCJ left many of the cryptographic components de-
scribed in Section 5 unspecified (though JCJ also pro-
vided helpful suggestions for possible implementa-
tions); Civitas provides concrete instantiations of all the
cryptographic components in the voting scheme.

• JCJ, as a voting scheme, did not study the scalability
of tabulation or conduct experiments; Civitas, as both
a scheme and a system, introduces blocking, studies its
scalability, and reports experimental results.

Voting systems. To our knowledge, Civitas offers stronger
coercion resistance than other implemented voting systems.
Sensus [21], based on a blind signature scheme known as
FOO92 [31], offers no defense against coercion. Neither
does EVOX [36], also based on FOO92. Both systems al-
low a single malicious election authority to vote on behalf
of voters who abstain. EVOX-MA [27] addresses this by
distributing authority functionality. REVS [44, 50] extends
EVOX-MA to tolerate failure of distributed components, but
does not address coercion. ElectMe [69] is based on blind
signatures and claims to be coercion resistant, but it assumes
the adversary cannot corrupt election authorities. If the ad-
versary learns the ciphertext of a voter’s “ticket,” the scheme
fails to be receipt-free. ElectMe also is not universally ver-
ifiable. Voters can verify their votes are recorded correctly,
but the computation of the tally is not publicly verifiable.
Adder [47] implements a homomorphic scheme in which
voters authenticate to a “gatekeeper.” If the adversary were
to corrupt this single component, then Adder would fail to
be coercion-resistant.

Kiayias [47] surveys several voting systems from the
commercial world. These proprietary systems do not gener-
ally make their implementations publicly or freely available,
nor do they appear to offer coercion resistance. The Cali-
fornia top-to-bottom review [73] of commercial electronic
voting systems suggests that these systems offer completely
inadequate security.

The W-Voting system [49] offers limited coercion resis-
tance. It requires voters to sign votes, which appears sus-
ceptible to attacks in which a coercer insists that the voter
abstain or submit a vote prepared by the coercer. It also al-
lows voters to submit new votes, which replace older votes.
So unlike Civitas, an adversary could successfully coerce a
voter by forcing the voter to submit a new vote, then keeping
the voter under surveillance until the end of the election.

12



Prêt à Voter 2006 [64] offers a weak form of coercion re-
sistance, if voting is supervised. The construction of ballots
depends on non-uniformly distributed seeds, which might
enable the adversary to learn information about how voters
voted. In remote settings, Prêt à Voter offers no coercion re-
sistance. The adversary, by observing the voter during vot-
ing, will learn what vote was cast.

VoteHere [57] offers coercion resistance, assuming a
supervised voting environment. Removing this assump-
tion seems non-trivial, since the supervised environment in-
cludes a voting device with a trusted random number gener-
ator. This generator could be subverted in a remote setting,
enabling the adversary to learn the voter’s vote.

The primary goal of Punchscan [61] is high integrity ver-
ification of optical scan ballots. Punchscan does not claim to
provide coercion resistance. Instead, under the assumption
that voting takes place in a supervised environment, Punch-
scan offers a weaker property: The adversary learns nothing
by observing data revealed during tabulation. This assump-
tion rules out coercion-resistant remote voting. For confi-
dentiality, Punchscan assumes that the election authority is
not corrupted, even partially, by the adversary.

10. Toward a Secure Voting System
Some open technical problems must be solved before Civi-
tas, or a system like it, could be used to secure national elec-
tions. Two such problems are that Civitas assumes a trusted
voting client, and that in practice, the best way to satisfy two
of the Civitas trust assumptions is in-person registration.

We did not address availability in this work. However,
the design of Civitas accommodates complementary tech-
niques for achieving availability. To improve the availability
of election authorities, they could be implemented as Byzan-
tine fault-tolerant services [10, 60]. Also, the encryption
scheme used by Civitas could be generalized from the cur-
rent distributed scheme to a threshold scheme. This would
enable election results to be computed even if some tabu-
lation tellers become unresponsive or exhibit faulty behav-
ior, such as posting invalid zero-knowledge proofs.27 For a
threshold scheme requiring k out of n tabulation tellers to
participate in decryption, no more than k − 1 tellers may be
corrupted, otherwise coercion resistance could be violated.
For availability, a new trust assumption must be added: At
least k tellers do not fail.28

Application-level denial of service is particularly prob-
lematic, because an adversary could insert chaff to inflate
tabulation time. A possible defense, in addition to standard
techniques such as rate-limiting and puzzles, would be to

27Recovery from these faults would need to ensure that the adversary
cannot exploit any partial information from aborted subphases.

28The adversary could increase tabulation time by forcing at most n −
k restarts. But as long as no more than k − 1 tellers are corrupted, the
adversary cannot successfully cause tabulation to be aborted.

require a block capability in each submitted vote. The ad-
versary would need to learn the capability for each block,
individually, to successfully inflate tabulation time for that
block. Another possible defense is to weaken coercion resis-
tance so that chaff votes could be detected without requiring
PETs. These defenses are left as future work.

We have not investigated the usability of Civitas, al-
though usability is more important than security to some vot-
ers [35]. Management of credentials is an interesting prob-
lem for the use of Civitas. Voters might find generating fake
credentials, storing and distinguishing real and fake creden-
tials (especially over a long term), and lying convincingly to
an adversary to be quite difficult. Recovery of lost creden-
tials is also an open problem.

There are open non-technical problems as well; we give
three examples. First, some people believe that any use
of cryptography in a voting system makes the system too
opaque for the general public to accept.29 Second, remote
electronic voting requires voters to have access to comput-
ers, but not all people have such access now. Third, some
real-world attacks, such as attempts to confuse or misinform
voters about the dates, significance, and procedures of elec-
tions, are not characterized by formal security models. Mit-
igation of such attacks is important for real-world deploy-
ments, but beyond the scope of this paper.

Finally, a report on the security of a real-world remote
voting system, SERVE, identifies a number of open prob-
lems in electronic voting [42]. These problems include
transparency of voter clients, vulnerability of voter clients
to malware, and vulnerability of the ballot boxes to denial-
of-service attacks that could lead to large-scale or selective
disenfranchisement. However, Civitas does address other
problems raised by the report: the voter client is not a DRE,
trust is distributed over a set of election authorities, voters
can verify their votes are counted, spoofing of election au-
thorities is not possible due to the use of digital signatures,
vote buying is eliminated by coercion resistance, and elec-
tion integrity is ensured by verifiability.

11. Conclusion
This paper describes the design, implementation, and eval-
uation of Civitas, a remote voting system whose underly-
ing voting scheme is proved secure under carefully articu-
lated trust assumptions. To our knowledge, this has not been
done before. Civitas provides stronger security than previ-
ously implemented electronic voting systems. Experimental
results show that cost, tabulation time, and security can be
practical for real-world elections.

Civitas is based on a previously-known voting scheme,
but elaborating the scheme into an implemented system led

29Our stance is that it is unnecessary to convince the general public di-
rectly. Rather, we need to convince experts by using principled techniques
that put security on firm mathematical foundations.
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to new technical advances: a secure registration protocol and
a scalable vote storage system. Civitas thus contributes to
both the theory and practice of electronic voting. But per-
haps the most important contribution of this work is evi-
dence that secure electronic voting could be made possible.
We are optimistic about the future of electronic voting sys-
tems constructed, like Civitas, using principled techniques.

Website
The accompanying technical report and prototype source
code are available from:

http://www.cs.cornell.edu/projects/civitas
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with linear work. In Proc. of Frontiers of Electronic Voting:
Dagstuhl Seminar 07311, July 2007.

[2] J. Bannet, D. W. Price, A. Rudys, J. Singer, and D. S. Wallach. Hack-
a-vote: Security issues with electronic voting systems. IEEE Secu-
rity & Privacy, 2(1):32–37, Jan. 2004.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommen-
dation for key management. NIST Special Publication 800-57 Part
1, Mar. 2007.

[4] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern.
Practical multi-candidate election system. In Proc. of ACM Sympo-
sium on Principles of Distributed Computing, pages 274–283, Aug.
2001.

[5] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proc. of ACM Con-
ference on Computer and Communications Security, pages 62–73.
ACM, Nov. 1993.

[6] J. D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, Sept. 1987.

[7] F. Brandt. Efficient cryptographic protocol design based on dis-
tributed El Gamal encryption. In Proc. of International Conference
on Information Security and Cryptology, pages 32–47, Dec. 2005.

[8] Brennan Center for Justice. The machinery of democracy: Voting
system security, accessibility, usability, and cost. New York Univer-
sity, Oct. 2006.

[9] J. Camenisch and M. Stadler. Efficient group signature schemes
for large groups. In Proc. of International Cryptology Conference
(CRYPTO), pages 410–424, Aug. 1997.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In
Proc. of Symposium on Operating System Design and Implementa-
tion, pages 173–186, Feb. 1999.

[11] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[12] D. Chaum. SureVote. http://www.surevote.com, 2007. Inter-
national patent WO 01/55940 A1, 02 August 2001.

[13] D. Chaum and T. P. Pedersen. Wallet databases with observers. In
Proc. of International Cryptology Conference (CRYPTO), pages 89–
105, Aug. 1992.

[14] L. Chen and A. Avizienis. N-version programming: A fault toler-
ance approach to reliability of software operation. In International
Symposium on Fault-Tolerant Computing, 1978.

[15] S. Chong and A. C. Myers. End-to-end enforcement of erasure. In
submission.

[16] S. Chong and A. C. Myers. Language-based information erasure.
In Proc. of IEEE Computer Security Foundations Workshop, pages
241–254, June 2005.

[17] City of New York Board of Elections. General election results.
http://www.vote.nyc.ny.us/results.html, 2004.

[18] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a
secure remote voting system. Technical Report 2007-2081, Cornell
University, May 2007. Revised Mar. 2008. http://hdl.handle.
net/1813/7875.

[19] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-
authority secret-ballot elections with linear work. In Proc. of In-
ternational Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), pages 72–83, May 1996.

[20] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. In Proc. of Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 103–118, May 1997.

[21] L. F. Cranor and R. K. Cytron. Sensus: A security-conscious elec-
tronic polling system for the Internet. In Proc. of IEEE Hawaii Inter-
national Conference on Systems Science, pages 561–570, Jan. 1997.

[22] S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and
receipt-freeness in electronic voting. In Proc. of IEEE Computer
Security Foundations Workshop, pages 28–42, July 2006.

[23] Diebold Election Systems. New York City BOE voting system, Cost
response: Cost proposal summary, October 20, 2006. http://www.
vote.nyc.ny.us/rfi.html.

[24] Diebold Election Systems. New York City BOE voting system, Cost
response: Lever replacement solution: Optical scan pollsite system,
October 20, 2006. http://www.vote.nyc.ny.us/rfi.html.

[25] D. L. Dill, B. Schneier, and B. Simons. Voting and technology: Who
gets to count your vote? Communications of the ACM, 46(8):29–31,
Aug. 2003.

[26] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-
generation onion router. In Proc. of USENIX Security Symposium,
pages 303–320, Aug. 2004.

[27] B. W. DuRette. Multiple administrators for electronic voting. Bach-
elor’s Thesis, Massachusetts Institute of Technology, 1999.

[28] D. Evans and N. Paul. Election security: Perception and reality.
IEEE Security & Privacy, 2(1):24–31, Jan. 2004.

[29] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Proc. of International
Cryptology Conference (CRYPTO), pages 186–194, Aug. 1986.

[30] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer
systems. In Proc. of IEEE Workshop on Hot Topics in Operating
Systems, May 1997.

[31] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting
scheme for large scale elections. In Proc. of International Confer-
ence on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 244–251, May 1992.

[32] J. Furukawa. Efficient and verifiable shuffling and shuffle-
decryption. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E88-A(1):172–188, 2005.

[33] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority.
In Proc. of ACM Symposium on Theory of Computing, pages 218–
229, 1987.

[34] M. Gomułkiewicz, M. Klonowski, and M. Kutyłowski. Rapid mix-
ing and security of Chaum’s visual electronic voting. In Proc. of Eu-
ropean Symposium on Research in Computer Security, pages 132–
145, 2003.

14



[35] P. S. Herrnson, R. G. Niemi, M. J. Hanmer, B. B. Bederson, and
F. C. Conrad. Voting Technology: The Not-So-Simple Act of Casting
a Ballot. Brookings Institution Press, 2008.

[36] M. Herschberg. Secure electronic voting over the world wide web.
Master’s thesis, Massachusetts Institute of Technology, 1997.

[37] M. Hirt and K. Sako. Efficient receipt-free voting based on ho-
momorphic encryption. In Proc. of International Conference on
the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 539–556, May 2000.

[38] International Foundation for Election Systems. Getting to the
CORE—A global survey on the cost of registration and elec-
tions, June 2006. http://www.undp.org/governance/docs/

Elections-Pub-Core.pdf.
[39] M. Jakobsson and A. Juels. Mix and match: Secure function evalua-

tion via ciphertexts. In Proc. of International Conference on the The-
ory and Application of Cryptology and Information Security (ASI-
ACRYPT), pages 162–177, Dec. 2000.

[40] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust
for electronic voting by randomized partial checking. In Proc. of
USENIX Security Symposium, pages 339–353, Aug. 2002.

[41] D. Jefferson, A. D. Rubin, B. Simons, and D. Wagner. Analyzing
Internet voting security. Communications of the ACM, 47(10):59–
64, Oct. 2004.

[42] D. Jefferson, A. D. Rubin, B. Simons, and D. Wagner. A se-
curity analysis of the secure electronic registration and voting ex-
periment (SERVE). http://www.servesecurityreport.org/

paper.pdf, Jan. 2004.
[43] R. Joaquim and C. Ribeiro. CodeVoting: Protecting against mali-

cious vote manipulation at the voter’s PC. In Proc. of Frontiers of
Electronic Voting: Dagstuhl Seminar 07311, July 2007.
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