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The ability to add new features to programming languages is essential for language design

experimentation and domain-specific developments, but implementing and maintaining

small language extensions in traditional compilers remain a challenge. General-purpose

programming languages do not have desired mechanisms to integrate small, indepen-

dently developed extensions into a working programming language. At the same time,

domain-specific languages that support such integration struggle to gain popularity in the

programming language community. More language mechanisms and tools are needed as

a middle ground so that a broader range of programmers can implement, maintain, and

combine compilers for individual language features more easily.

At the heart of compiler construction, new design patterns are proposed to allow

compilers to be extended in a modular way and to be merged with little effort. These

design patterns, implementable in a mainstream programming language, encode dynamic

relationships between node types in abstract syntax trees (ASTs) so that inheritance

in object-oriented programming still works over the course of language evolution. A

new AST representation lets a single AST be viewed as different programs for different

languages. Compiler passes are language-neutral, making translations reusable and

composable.

At the front end, engineering language syntax can be a painstaking process, espe-

cially when individual language syntaxes start to interact. Automatic parser generators,

albeit a powerful tool to parse complex grammars, are unhelpful when grammars are

faulty, as reports of parsing conflicts do not explain these faults. To improve debugging

experience, a semi-decision procedure is added to an LALR parser generator to give

compact counterexamples illustrating why the grammar in question is ambiguous. For



unambiguous grammars that cause parsing conflicts, a different kind of counterexample

is constructed to aid removal of conflicts.

At the back end, translation passes in compilers require extracting components of

AST nodes. Pattern matching, an important feature in functional languages, is a prime

candidate for this task. However, data abstraction and extensibility, two concepts central

to object-oriented languages, are in conflict with pattern matching. A new language design

based on modal abstraction reconciles static, modular reasoning about exhaustiveness in

pattern matching with data abstraction.
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CHAPTER 1

INTRODUCTION

General-purpose programming languages are often unsatisfactory for building real-

world applications [117]. At the front end, general-purpose language constructs can be

too unwieldy for concisely expressing desired properties and idioms pertaining to the task

at hand. At the back end, machine code generated by general-purpose language compilers

might be suboptimal for the specific problems being solved. The introduction of domain-

specific languages, therefore, has become a common approach for addressing problems

in computer security [74, 76], distributed systems [63], syntactic analysis [48, 51], and

formal methods [25, 68], among many other domains of interest.

Programming languages, whether general-purpose or domain-specific, are subject

to revisions and evolution. New language features and program analyses may be added

to existing languages to reflect programming language research frontiers. Existing

features and analyses may be revised to benefit from advances in the underlying hardware

technology. Ideally, these language features and program analyses, which shall be

denoted collectively as extensions, should be implemented in a modular way, forming

a language feature toolbox from which programmers and language designers can pick

just the features best suited to the task at hand. Modular implementations of extensions

enable feature sharing across domain-specific languages, and can even be combined

into a general-purpose language containing features that can tackle a wide range of

domain-specific problems.

A grand, unified programming language that can solve every computable problem

efficiently and requires only minimal coding and specifications is to be yearned for.

Ideally, this language should be implementable by simply building on individually

developed constructs in the language feature toolbox, but in reality, combining small,

individual extensions remains a challenge. The syntax in different extensions may conflict,
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introducing ambiguities that need to be resolved when constructing the parser for the

combined language at the front end. The available target languages in one extension

may not overlap with those in another extension, calling for additional translations to

a common target language at the back end. To connect the two, individual compilers

for these individual extensions need to work in unison; the resulting compiler for the

combined language needs to have addressed any semantic tension that may have arisen

from the interaction between individual language features.

As code duplication is undesirable for software maintenance and evolution [4, 10],

existing compiler code for component extensions should be reused for the combined

language. In this way, corrections and changes to the component extensions can be

propagated to the combined language automatically. Code reuse would be difficult or

even impossible, however, if implementation languages of the component extensions

are incompatible with each other. A programming language that can interact with

existing implementations is therefore a minimal prerequisite for permitting code reuse.

Alternatively, extensions could be implemented with the same programming language so

that they can be stitched with short pieces of glue code. Regardless of how extensions are

written, we need an implementation language that lets developers combine the features in

an efficient way. The end result, a compiler for the combined language, is yet another real-

world application, which brings us to where we began: are general-purpose programming

languages suitable and satisfactory for this task of composing compilers?

Mainstream programming languages have a number of advantages for building com-

pilers. These languages have better support for integrated development environments

(IDEs), and are better understood by a wider spectrum of programmers. Better IDE sup-

port lets compilers be composed with less trouble, as IDEs can catch trivial programming

errors that may arise during the composition. Mainstream languages are understood by a

broader community of programmers and are used heavily in industry, so more manpower
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is available for new applications, including new compilers, to be developed. Even after

release, any lingering errors in compilers implemented in mainstream languages are

more likely to be discovered, understood, and resolved. For these reasons, mainstream,

general-purpose programming languages appear to be a suitable candidate for composing

compilers.

On the other hand, mainstream languages remain unsatisfactory for composing

compilers for a number of reasons. They might not be expressive enough to guarantee

that the resulting compilers will be type-safe. They might require an unreasonable

amount of code to be written for individual features to interact in a meaningful way. They

might be inimical to the evolution of existing language features and analyses and make

compilers difficult to maintain. Consequently, the problem of composing compilers has

been addressed in several ways:

u To support composition, new domain-specific languages have been proposed [14, 35,

80, 83, 118].

u The composability problem itself is relaxed to the extensibility problem, in which new

language features and analyses can be added in a modular way with a modest amount

of code [32, 44, 78], but composing compilers remains challenging.

u The composability problem is limited to the front end, where syntax can be composed,

but the possible target languages remain fixed. This approach is usually achieved using

macro-rewriting systems [37, 106, 112, 113].

u New programming paradigms have been proposed to organize code in a more modular

and understandable way [53, 115].

New programming languages and programming paradigms create obstacles for mak-

ing compilers composable in practice. Programmers need to spend time learning new

features. IDE support may not be readily available. The implementations of these new

languages themselves might not be entirely correct, adding another dimension to diagnos-
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ing programming errors. Meanwhile, existing general-purpose, mainstream languages

continue to evolve. Can we influence this evolution to head in the right direction so that

mainstream languages are more satisfactory for composing compilers?

This dissertation aims to address missing concepts and tools that will encourage use

of mainstream, general-purpose programming languages for composing compilers and

will encourage the evolution of mainstream programming languages to better support

this goal.

1.1 Design patterns for composing compilers

Existing mainstream, general-purpose programming languages do not support composing

compilers efficiently. To identify their weaknesses, we first implement a collection of

compilers for a number of individual language constructs, using Java, a well-known

mainstream programming language. Then, we attempt to compose these compilers

using as little extra code as possible. Whenever language features that would simplify

composition are unavailable in Java, we use design patterns [40], a collection of code

templates implementable in Java, to model them. During this process, we also discover

that some Java language mechanisms impede compilers from evolving in a scalable

way. Again, design patterns are used to simulate desired language mechanisms to

make evolution possible under composition. Even if existing language mechanisms

by themselves are not adequate for our goal, we can still exploit them as much as

possible, using design patterns to achieve it. These design patterns used for implementing

composable compilers will help suggest possible directions of mainstream language

evolution, including new features to be added to the language, and how these new

features can be implemented and translated. The core design patterns constitute the

skeleton of a framework for implementing composable compilers.

The key observations for making compilers composable and evolvable are as follows:
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u To avoid code duplication, inheritance provided as part of the object-oriented language

mechanism should be used so that common code can be written once in a hierarchy of

incrementally more specific kinds of objects. In other words, a hierarchy of classes

should be used to keep implementations modular. One application of inheritance is

with the representations of abstract syntax trees (ASTs), where each AST node type

inherits state fields and operations, such as type-checking, from parent node types as

much as possible.

u To support the additions of future operations on the AST while maintaining the ability

to inherit superclass implementations, the supertype relationships for AST node types

are not necessarily fixed across extensions. More specifically, an extension might

add a new operation to a subset of existing AST node types, but this operation can

be implemented in the same way for all the node types in this subset. To maintain

modularity, then, a new AST node type equipped with the implementation of the new

operation should be introduced, and the existing node types in this subset should add

the new node type as their additional supertype.

u To support the additions of new properties (e.g., fields) in AST nodes without dupli-

cating part of the existing class hierarchy when implementing extensions, instance

variables and methods can no longer be used as the primary way to store and access

AST node properties. That is, an AST node needs to be represented with a more

elaborate data structure, not just a single object.

Our design patterns incorporate these observations.

To illustrate that our design patterns can be used to implement real-world compilers

and not only smaller ones, we port the implementation of the Polyglot extensible compiler

framework for Java [78] to use our framework, show that the amount of code is compara-

ble, and demonstrate that the performance of the compiler implemented in our framework
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does not significantly degrade when compiling large programs. This experiment suggests

that our approach is practical for making real-world compilers evolvable and composable.

1.2 Better diagnosis for parsing conflicts

The design patterns for implementing composable compilers primarily deal with the

representation of AST nodes and the relationships between AST node types. If all

programs were written as ASTs, the design patterns would address all the key parts per-

taining to the composability problem. This might be true for visual-based programming

languages [9, 46, 64] where source programs are directly represented as ASTs, but a

majority of programming languages remains lexical-based. In these languages, programs

are still written as text files that require lexical analysis and parsing. Language engineers

need to not only resolve any conflicting specifications resulting from the interaction

between existing language semantics, but also design a grammar that avoids ambiguities

that may result from the interaction between existing language syntax.

Two lines of previous work deal with grammar composition:

u Grammars are composable by way of composing parser tables, but the resulting

grammar may be ambiguous [21, 116], although ambiguities can be prevented by

working with restricted forms of grammars, e.g., LR(0), which do not use lookahead

symbols.

u Only grammars that do not violate a set of restrictions are composable, so that the

resulting grammar will not contain ambiguity or conflicts in the parser [104, 105].

These restrictions primarily concern the internal mechanism of parser state machines

to ensure that the composed parser is conflict-free.

Either way, some restrictions need to be enforced to ensure that the resulting grammars

are acceptable. In general, however, programming language grammars might not always
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satisfy such restrictions, especially when programming languages evolve over time.

Additions of new language constructs can increase the likelihood of these restrictions

being violated. Moreover, modifications or removals of existing language constructs are

orthogonal to grammar composition. Techniques for composing grammars alone are

hence inadequate for the evolution and composition of compilers.

The ambiguity problem in grammar engineering not only happens when existing

grammars are composed, but also occurs firsthand when new language syntax is initially

designed. Techniques for detecting ambiguities in grammars will help troubleshoot

syntactic flaws. Unfortunately, determining whether a context-free grammar is ambiguous

is undecidable [47]. Still, attempting to provide a diagnosis for faulty grammars when

possible would be useful.

Although a conservative approximation algorithm that decides when a grammar may

be ambiguous is one possible way to detect faults, such simple verdicts are not helpful

enough for language engineers to pinpoint the root cause of the ambiguities. A better

way to provide diagnosis is to give a counterexample that illustrates why a grammar is

ambiguous. That is, a counterexample consists of a single sequence of tokens decorated

with two distinct ways to parse that sequence. Having seen a counterexample, language

designers are notified of the real cause of ambiguity immediately so that they can start

fixing relevant parts of the grammar right away.

To make the problem of counterexample generation practical for compiler con-

struction, we focus on diagnosing LR(1) grammars, a specific class of grammars that

can describe the syntax of most programming languages. Strings generated by LR(1)

grammars are accepted by a left-to-right, rightmost derivation parser that uses a single

lookahead terminal symbol. LR(1) parser generators, such as Yacc [51], can transform a

valid LR(1) grammar into a parser. On the other hand, LR(1) parser generators attempting
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to transform a non-LR(1) grammar will produce a conflict indicating that the grammar is

faulty.

While the details of a conflict given by LR(1) parser generators can be used as a proof

of faulty grammars, parsing conflicts themselves do not immediately suggest why the

grammar needs a correction. This is because the conflicts describe what would go wrong

in the internal mechanism of the parser were it be generated, rather than the faulty location

in the grammar. Instead of requiring parser generator users to understand the clockwork

of LR parsers before attempting to fix a bad grammar, we give counterexamples, a

different kind of error messages that are easier to interpret by grammar writers.

The key observations for generating useful counterexamples are as follows:

u Counterexamples should not be more specific than necessary. For instance, in the

infamous dangling-else ambiguity, the counterexample if 2!=5 then if 4!=7 then

2112 else 2110 is too specific, because the concrete, complete derivation of the

expression 2!=5 is unnecessary. That is, a nonterminal in the grammar that does not

play a role in causing conflicts in the parser should be left unexpanded.

u Counterexamples should be localized to the ambiguity when possible. In other words,

counterexamples need not be a derivation of the start symbol, but rather the innermost

nonterminal that can derive an ambiguous string.

u Faulty LR(1) grammars might not be ambiguous, so ambiguous counterexamples

cannot always be generated. In addition, since the ambiguity detection problem is

undecidable, an ambiguous counterexample might not always be found even if the

grammar is ambiguous. As a fallback strategy, a different kind of counterexample

should be generated in order to give grammar writers as much debugging information

as possible.
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Our counterexample-finding procedure takes these observations into account and has

been integrated into an existing LALR parser generator [48], so that a meaningful

counterexample is displayed along with each conflict, if any, in an input grammar.

To demonstrate that our methods for finding counterexamples is usable in practice,

we run our tool against faulty grammars that various programmers having difficulties

debugging have asked on an Internet forum and show that counterexamples are generated

almost immediately after a conflict is detected. We also run our tool against grammars

used in evaluating a previous approach on generating counterexamples [7] and show

that, on average, our approach is an improvement. These experiments suggest that our

counterexample generator can be user-friendly for debugging grammars.

1.3 Safe pattern matching for objects

So far, we have pointed out issues that may arise at the heart of compiler construction,

i.e., the modularity of the implementation of AST nodes, and at the front end, i.e., the

difficulty of troubleshooting faulty grammars. An equally important part of the compiler

is the back end, where newly defined language constructs are translated into existing, less

expressive constructs. Many such translations are syntax-directed: the translations are

defined by the types and structures of AST nodes, and components of an AST node are

translated recursively. Pattern matching is a powerful technique that can extract these

AST components in an expressive way when implementing a compiler in a functional

language, but pattern matching has yet to be as powerful in object-oriented programming

languages because of a tension between data abstraction and pattern safety.

Unlike in object-oriented languages, declarative programming in functional program-

ming languages makes pattern matching safe. Specifically, the declaration of an algebraic

data type in functional languages lists all the possible, distinct cases to which members of

the data type may belong. This declaration enables an algorithm [65] that checks whether
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(1) a group of patterns handles all members of the data type, i.e., patterns are exhaustive,

and (2) a pattern in question will handle some members of the data type that have not

already been handled by a prior group of patterns, i.e., the pattern is not redundant. Upon

encountering a nonexhaustive group of patterns or a redundant pattern, the algorithm

emits a compilation warning so that programmers can inspect these patterns for potential

programming errors.

Even though pattern matching is a dominant feature in functional languages, the

safety of pattern matching depends on the availability of information on the concrete

implementation of data types. That is, the specified cases of an algebraic data type

restricts the number of possible implementations the data type may have, and for each

case, exactly one implementation is permitted. In object-oriented languages, where

data abstraction prevails, this restriction unnecessarily limits the power of abstract data

types that allow multiple concrete implementations. To provide pattern-matching support

under the presence of data abstraction, another source of information than the concrete

implementations of members of a data type should be used when patterns are checked

for exhaustiveness and nonredundancy. Attempts to make pattern matching coexist with

data abstraction have partly addressed the safety concerns:

u Pattern matching can be used on abstract types, e.g., interface specifications, but there

is no guarantee whether patterns will handle every possible value of the object being

matched. This line of work includes Wadler’s views [121], the Pizza language [81],

extensible algebraic data types with defaults [126], and extractors [33].

u Pattern matching can be used on abstract types, but matching only works safely when

the number of concrete implementations of the abstract type is limited. That is, knowl-

edge on concrete data types remains essential for verifying pattern exhaustiveness.

This line of work includes active patterns in F# [111], sealed classes in Scala [84], an

extension of extractors [31], and the RINV language [123].
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u Invertible computation is introduced as a new language feature to provide a stronger

guarantee that pattern matching a member of a data type yields a consistent result with

the construction of that member. This line of work includes Wadler’s views [121],

modal abstraction [61], and the RINV language [123].

Still, full-fledged pattern matching on abstract data types, where concrete, specific

implementations of objects play no role in checking pattern safety, is hard to come by.

To further address these concerns, we propose a novel language design that reconciles

safe pattern matching with objects. The key observations for better pattern matching are

as follows:

u An abstract specification independent of concrete implementations is needed to de-

scribe possible cases of an algebraic data type. This specification is similar to a data

type declaration in functional languages, but different cases do not pin down specific

implementations.

u Since pattern verification can no longer depend on a concrete implementation, each im-

plementation now needs a matching specification that describes when pattern matching

on that implementation will succeed.

u As a single member of an abstract data type may be represented in multiple ways using

different implementations of the data type, a new language mechanism is necessary to

automatically convert one implementation of an object to another in order for pattern

matching to work properly.

We implement these ideas as an extension to modal abstraction [61] and show that

verification of patterns under data abstraction is possible using an SMT solver [28].

Further, we demonstrate that our implementation allows multiple implementations of the

same abstract data type to interoperate seamlessly when used in pattern matching.
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1.4 Dissertation structure

The remainder of this dissertation is organized as follows. Chapter 2 identifies language

features needed to make compilers evolvable and composable, and suggests possible ways

to implement them by way of design patterns. Chapter 3 describes an incomplete but

effective procedure to construct counterexamples that illustrate conflicts in lookahead LR

parsers. Chapter 4 explores a new language design for supporting safe pattern matching in

the presence of data abstraction, which would make compiler implementations even more

concise. Finally, Chapter 5 offers concluding remarks and discusses possible directions

for future research.
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CHAPTER 2

PRACTICAL DESIGN PATTERNS FOR COMPOSING COMPILERS

A language feature toolbox containing individual constructs that can be cherry-picked

and composed into a working language would be useful for domain-specific applications

and language-design experimentation. But developments of this toolbox is held back

because programming languages that support such composition are widely unknown

or lack convenient development environments. In other words, existing mainstream

programming languages complicate implementations of programming language compo-

sition.

One way to encourage the development of such toolboxes is to identify what is

missing in mainstream languages that would make composition easier to implement and

whether this absence can be remedied within existing, well-known languages. In this

chapter, we present a design-pattern approach to make implementations of compilers

composable and evolvable in a scalable way. This is joint work with Andrew Myers.

2.1 Introduction

Few programmers seem completely happy with the programming language they are using.

Domain-specific language extensions are frequently introduced to ease the difficulty of

developing specific applications. Even mainstream languages continue to evolve through

the addition of new language features and program analyses. Ideally, small programming

language extensions should be easy to implement modularly, so programmers and lan-

guage designers are provided a language feature toolbox from which they can pick just

the features best suited to the task at hand.

In languages that support macros and metaprogramming, language extensions that

are sufficiently simple can often be implemented within the language, as libraries [106,

112, 113]. However, there are shortcomings to this approach. It is difficult to produce
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satisfactory compile-time error messages, and composing independently developed yet

conflicting extensions is problematic.

It is therefore desirable to be able to easily modify compilers in a modular way, so

that all parts of the compilation process can be customized, including the language’s

syntax, type system, static analyses, and translations to target language(s). In the limit, a

compiler becomes a framework of various modular transformations that can be freely

combined and extended to arrive at the desired language design.

Unfortunately, such compilers do not exist yet. Traditional compilers are relatively

monolithic, and changes to the language often involve modifying a large, intricate code

base in many locations. This is not a recipe for ease of development or maintenance.

Part of the problem seems to be that existing programming languages do not support the

development of a highly extensible compilers particularly well.

Software is in general difficult to extend in a modular way, but compilers are a

particularly difficult case, because a typical compiler extension involves modifying both

the data structures representing program code within the compiler and the code that

traverses and rewrites this code. What is desired is scalable extensibility, meaning that

code changes should be modular and the amount of code written should be proportional

to the size of the change being made—and not to the size of the compiler being modified.

Various design patterns have aimed to provide solutions to this extensibility challenge [78,

86]. However, these design patterns can also result in a lot of boilerplate code that

discourages programmers from implementing full-fledged compilers.

Beyond scalable extensibility, what is missing is an effective, scalable way to compose

language features. Composition poses two main challenges that implementation lan-

guages have to address: data representations that have been independently extended must

be composable, and extended transformations must be integrable while resolving conflicts

that may arise from incompatible parent languages. Previous extensibility design patterns
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have not solved these problems. To address these problems, some new language designs

add features to allow composition of code modules [14, 35, 80, 83]. This language-based

approach has the advantage that it can be concise while offering static enforcement that

increases code safety. However, boutique implementation languages also have trouble

achieving widespread adoption.

Our approach in this paper is to develop new extensibility design patterns that allow

compilers to be implemented as composable modules. Because we develop design

patterns rather than a new language, we have the advantage that the compiler code remains

in a mainstream, well-supported programming language. This language happens to be

Java, but the techniques developed here would apply to any other modern, mainstream

object-oriented language, e.g., C#, that supports dynamic dispatch, multiple interface

inheritance, and traits [100]. Specifically, we make the following contributions:

u We identify challenges for the problem of composing compilers (Section 2.2).

u We propose a desirable relationship between programming languages that enables

composability (Section 2.3).

u We present an encoding that permits changes to the inheritance relationships among

AST node types during compilation so that compilers can evolve in a natural and

scalable way (Section 2.4).

u We present a new representation of AST nodes that allows the state associated with

an AST node to be extended and composed, and allows a single AST to represent

programs in multiple language variants (Section 2.5).

u We present a new dispatch mechanism that addresses the inflexbility of the standard

object-oriented dispatch (Section 2.6).

u We present a new translation mechanism that allows for one-to-many transformations,

and makes translation code reusable and composable (Section 2.7).
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u We show that our design patterns are effective and scalable by implementing a compos-

able compiler framework for various language variants (Section 2.8). While we have

chosen to implement this framework using a mainstream language, there is a lesson

for language design here too. The design patterns also suggest useful new language

features that could have made our implementation even better.

Section 2.9 discusses related work, and Section 2.10 concludes.

2.2 Challenges in composability

A common goal in research on compiler technology is to make compilers easier to

implement. This section overviews challenges in implementing composable compilers,

discusses various attempts to address these challenges, and outlines our design-pattern

solutions. Additional related work can be found in Section 2.9.

2.2.1 Ease of extension

New programming languages are usually derived from an existing language in several

ways. Additional language constructs may be added, available constructs may be removed,

or the semantics of certain constructs may be redefined. Even if language constructs do

not change, additions of new program analyses can also create a new language, as the

same program may yield different compilation results. More precisely, we will use the

terms new language and extension to refer to the result of any modification, however

small, to the base language.

Extensible compiler frameworks are designed to make extensions easier to implement.

JastAdd [32, 44] and Polyglot [78] are frameworks that rely on object orientation to

provide scalable extensibility. Design patterns such as factory and visitor patterns [40] are

heavily used to maintain modularity. Inspired by experiences with Polyglot, our design
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patterns do accommodate scalable extensibility, and, unlike Polyglot, also enable scalable

composability, in which independently developed extensions can be combined with

minimal effort. In Section 2.8, we demonstrate that our design patterns can implement

Polyglot extensions with a similar amount of code.

2.2.2 Composability vs multiple inheritance

Research in programming languages often involves experimentation with a small number

of language features or program analyses that improve on existing languages. Domain-

specific languages often work the same way: only a few new constructs are needed to

solve the problems of interest. The ability to freely compose many language extensions

to obtain a customized language that meets users’ needs—a sort of multiple inheritance

at the language level—is an ideal strategy.

An issue with multiple inheritance is the diamond problem, in which ambiguity

arises when a class extends two classes that happen to implement the same operation. In

languages like C++, where multiple class inheritance is permitted, the diamond problem

also causes issues with consistency of object representations for shared superclasses. But

most mainstream object-oriented programming languages only support single inheritance

of classes. As a result, JastAdd resorts to aspect-oriented programming [53] to enable

composability. The language J& [80] solves the diamond problem by requiring that the

subclass overrides the operation to resolve the ambiguity. J& has an elaborate object

structure to ensure that a state is represented by only one location. C++ duplicates

objects for the shared superclass unless all subclasses are declared virtual. Scala requires

that states only appear in classes, which remain in the single inheritance portion of the

language. Our design patterns maintain object consistency in the same way that J& does,

but do so within a mainstream language. With a handcrafted type system, J& can detect

conflicts from the diamond problem at compile time; our approach trades this static
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Figure 2.1: Compilation stages, primarily a sequence of AST validations and translations
between languages

safety property for a mainstream-language solution to composability, but still flags such

conflicts at run time.

2.2.3 Monolithic vs nanopass compilers

Traditional compiler implementations tend to bundle operations on ASTs into one mono-

lithic pass. Figure 2.1 illustrates a typical pipeline of compilation stages. Program

text is parsed into an AST; the AST is validated and then translated into a sequence of

intermediate languages, prompting additional validations and translations; finally, the

target language is reached, and the code is output as an executable or for additional

processing by external back-end tools. With all these operations done in a small number

of passes, incremental changes to traditional compilers are hard to make modular. A more

fine-grained approach is needed to enable extensibility while maintaining modularity.

Work on nanopass compilers [52, 99] shows that it is possible to structure compilers into

many very small compiler without do not incur significant overhead. Our approach is

influenced by version 2 of Polyglot, which introduces a system of goals and passes: each

pass indicates a number of prerequisite passes that need to complete before the pass itself
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can be run, forming a dependency graph of passes within each extension. When a new

extension is created by composing existing extensions, the new dependency graph can be

formed by adding and modifying the lists of prerequisites as appropriate.

2.2.4 Intermediate languages

Part of the canon of compiler design is to have an intermediate representation (IR)

independent of any particular source or target language. When a compiler is structured

into many small passes, there are effectively many intermediate languages, transitioning

across each compiler pass from an intermediate language closer to the source to one

closer to the final target. Naively implemented, each compiler pass would create an

entirely new AST; instead, our goal is to mostly share the AST data structure between

these program representations, while explicitly keeping track of the language in which to

interpret it.

2.2.5 Flexibility of target languages

Rewriting is a critical step for translating higher-level programming languages into

lower-level languages. Since extensions to programming languages often introduce

additional syntactic forms, macros are a prime candidate for implementing compilers.

Programming languages such as C++, OpenJava [112], and Racket [37, 113] have

integrated macro systems to make rewriting more convenient. However, macros can only

translate constructs into a limited number of target languages that are built on top of a

predetermined, canonical target language. An ideal implementation of a compiler, on

the other hand, should be able to support translations from one source language into

any target language of choice, because the target language may vary depending on the

hardware architecture and operating system the resulting program will be executed in.
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Even though translations can be considered as another compiler pass, our approach

decouples the validation phase, e.g., type checking, from the translation phase. This is

because validation is independent of the target language and should be performed even

if no translations are left, as in validating the target AST in Figure 2.1. In this way, our

design patterns can support one-to-many translations.

2.3 Programming language hierarchy

Reusability plays an important role in measuring composability. For compilers to be com-

posable, abstract syntax trees (ASTs) that represent programs in an existing programming

language should also be representable in extensions of that language. The ability to share

ASTs across languages avoids the inconsistency from using different representations

for the same program in different languages, even if that program’s semantics does not

change. Moreover, an AST representation tied to a fixed language risks incompatibility

when that language is to be composed with another. In other words, the design of ASTs

that is independent of specific programming languages will minimize incompatibility and

maximize code reuse across compiler implementations, making composition scalable.

To achieve this independence, we first need to consider how programming languages

relate to one another so that their compilers can be composed without much difficulty.

Developments in this section are driven by examples to give a concrete picture of how to

compose languages properly.

We write the names of programming languages in small caps for the remainder of

the chapter. Consider two small programming languages: (1) the untyped λ-calculus

(denoted lc), containing variables, abstractions, and applications; and (2) expressions

on pairs (denoted pair), containing pair constructors and projections. Figure 2.2(a)

shows a natural AST representation for a λ-expression λx.e, and Figure 2.2(b) for a pair

(e1, e2). Notice that the λ-abstraction and the pair constructor, both subtypes of Expr,
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Abs <: Expr

x : Var e : Expr

(a) AST for λx.e in lc

Pair <: Expr

e1 : Expr e2 : Expr

(b) AST for (e1, e2) in pair

Pair

Abs

x : Var Pair

e1 : Expr e2 : Expr

e3 : Expr

(c) AST for (λx.(e1, e2), e3) in lcpair , lc ⊕ pair

Figure 2.2: Composing ASTs across language extensions

Expr

Var Abs App Pair Fst Snd

exprlc pair

lcpair

Figure 2.3: Relationships among AST node types across extensions

contain a subexpression of type Expr. If lc and pair are to be composed, but Expr were

implemented separately in each extension, then Abs could not be a component of a pair,

and Pair could not be the body of a lambda. This would prevent the two languages

from being composed seamlessly, as we would have to reconcile the definition of Expr

before an AST containing both of these constructs, such as one in Figure 2.2(c), could be

constructed.

This observation suggests that abstract language features like Expr should be shared

across languages. That is, abstract constructs can be collected and defined in an abstract

language. Actual programming languages should then extend this abstract language

to implement concrete constructs. Figure 2.3 shows how this factoring works for our
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expr

base

lcpair

lc pair

(a) Language hierarchy for lcpair

expr

base

typed

lc typedexpr

stlc

(b) Language hierarchy for stlc

Figure 2.4: Examples of programming language hierarchies

example: generic expressions of type Expr are defined in abstract language expr, which

is extended by lc and pair. Then, the composed language lcpair can simply inherit the

constructs from both of the parent languages. More generally, all abstract constructs

can be defined in a collection of abstract language extensions, leaving us with the empty

language (denoted base), containing only the top type of all language constructs, at the

top of the language hierarchy. The base language is then the ancestor of every language

variant, extended or composed, abstract or concrete. Figure 2.4(a) illustrates the language

hierarchy relevant to lcpair.

The base language can also be a basis for mixin languages, where additional state is

added uniformly to every existing construct, without introducing new concrete constructs

otherwise. For instance, suppose we would like to add a type system to the lc extension

to implement the simply-typed λ-calculus (denoted stlc). In this case, the compiler will

have to compute the type of each expression, whether from type annotations in the source

program or by type inference. Each expression needs to be decorated with an attribute

representing the computed type. In general, type attributes could be attached to any AST

nodes, so we declare an abstract language typed, an extension of base that adds type

attributes to AST nodes, as shown in Figure 2.4(b). We can then compose expr and typed

to obtain the abstract language for typed expressions (denoted typedexpr). Finally, the
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simply-typed λ-calculus is the composition of lc and typedexpr, where type attributes

are mixed into abstractions and applications.

In what follows, we write “a is an immediate superlanguage of b” if b directly extends

a, e.g., lc is an immediate superlanguage of lcpair; and write “a is a superlanguage of b”

if b extends from a, possibly indirectly, e.g., base is a superlanguage of lc. Further, we

use “b is an immediate sublanguage of a” if a is an immediate superlanguage of b, and

“b is a sublanguage of a” if a is a superlanguage of b.

2.3.1 Implementing programming language hierarchy

The implementation of composable compilers begins with the declaration of language

definitions that capture the relationships among language extensions. Figure 2.5 shows

an implementation of language definitions for three of the extensions related to lcpair,

whose relationships are shown in Figure 2.4(a). First, we define the language definition

interface for the base language, called baseLang, that serves as the root of the program-

ming language hierarchy. This interface extends Lang, which contains utility methods

for keeping track of superlanguages, and for determining whether one language is a

sublanguage of another. This Lang interface is shared across all language definitions and

only needs to be implemented once. Appendix A.1 lists the core implementation of Lang.

Inside the baseLang interface, an abstract class Class is declared so that an instance

representing the base language can be constructed. Once again, most of the work is

already done in Lang.Class, defined in the Lang interface; the only job that remains for

the base language is to make the Class class a subtype of baseLang. This is achieved by

using Java’s implements clause.

An instance of the language definition interface for a given programming language

can be thought of as the identity of that language. Consequently, there should be at most

one such instance per language: language definition classes should be singleton. To
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/** A {@code baseLang} represents the root programming language. */

public interface baseLang extends Lang {
abstract class Class extends Lang.Class implements baseLang {
protected Class(Lang... superlangs) {
super(superlangs);

}

}

baseLang.Class instance = new Class() {
// Define various factories for the language (later).

...

};

...

}

/**

* An {@code exprLang} represents a programming language

* containing expressions.

*/

public interface exprLang extends baseLang {
abstract class Class extends Lang.Class implements exprLang {
protected Class(Lang... superlangs) {
super(superlangs);

}

}

exprLang.Class instance = new Class(baseLang.instance) {
...

};

...

}

/** An {@code lcpairLang} represents a lambda calculus with pairs. */

public interface lcpairLang extends lcLang, pairLang {
abstract class Class extends Lang.Class implements lcpairLang {
protected Class(Lang... superlangs) {
super(superlangs);

}

}

lcpairLang.Class instance =

new Class(lcLang.instance, pairLang.instance) {
...

};

...

}

Figure 2.5: Example implementations of language definition interfaces
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enforce this requirement, each language definition interface declares an interface constant

named instance that instantiates the unique language definition object. For example,

baseLang.instance represents the identity of the base language.

Language definition interfaces for further extensions are implemented in the same

way. The main difference is the presence of superlanguage identities as additional

arguments to the constructor of the language definition class. For instance, the expr

language is an immediate sublanguage of base, so we need to pass baseLang.instance

as the argument to the constructor to establish this relationship. For composed languages,

the implementation is similar, as shown in the initialization of the language identity

instance for the lcpair language.

The readers might notice a redundancy in indicating superlanguages. The identity

instances of superlanguages are passed as arguments to the constructor, but the declaration

the language definition interface itself also extends superlanguage definition interfaces.

The constructor arguments account for the lack of features in the implementation language

(Java) so that composition can work properly. On the other hand, interface extensions still

rely on existing language mechanism, to enjoy as many static safety properties offered by

the implementation language as possible. Specifically, the language identity instances

are used when the compiler is run, while the declaration of superinterfaces helps ensure

the consistency of inherited method implementations in language definition interfaces.

Although the redundancy appears undesirable, our experience indicates that static errors

are helpful for catching bugs early on, even if run-time errors remain possible. The

technique of introducing compromises for missing language features and relying on static

checking whenever possible will be a common theme in the design patterns described

here.
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2.4 Evolvable class hierarchy

Programming languages change over time. Changes to an existing language create a new

version of the language, requiring a new version of the compiler. To maintain backward

compatibility, the source code of existing compilers cannot simply be altered to handle

the changes. Rather, the new version of the compiler should reuse as much code as

possible from the existing compiler, and new code can be added to handle changes where

necessary. Therefore, to minimize the cost of compiler construction and maintenance,

we need a good way to make compilers for a single language evolvable before we even

attempt to compose compilers from multiple languages.

In the traditional object-oriented programming paradigm, the hierarchy of classes

is statically determined. That is, a class declaration specifies a list of superclasses

or superinterfaces the class extends or implements. However, compiler evolution can

change the relationship between classes. For instance, mixin composition [20] adds new

IS-A relationships to existing classes. To keep AST nodes independent of a particular

language, the class hierarchy for AST node types effectively must be able to change across

languages. We need design patterns that support schema evolution, like in language-based

approaches such as open classes [24] and nested interitance [79].

For example, suppose the λ-calculus is to evolve from untyped (lc) to simply-typed

(stlc)1. Suppose further that, in lc, the class hierarchy relevant to the AST node type for

λ-abstractions (denoted Abs) is as shown in Figure 2.6(a), where Abs is an immediate

subclass of Expr that represents all expressions, and Expr is an immediate subclass of

Node that represents all AST nodes. The addition of a type attribute to every expression

in stlc means that Expr should now be a subclass of Typed that represents all AST

nodes containing type attributes. As such, the class hierarchy relevant to Abs now has

1This in fact does limit the expressiveness of λ-calculus, but adds safety properties to the evaluation of
λ-terms [23].
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Node

Expr

Abs

(a) AST class hierarchy in lc

Node

Typed

Expr

Abs

(b) AST class hierarchy in stlc

Figure 2.6: AST class hierarchies for Abs under the evolution of λ-calculus

to change to one shown in Figure 2.6(b). Changing the AST class hierarchy across

languages enables code reuse, where state and operations defined in new superclasses

can be inherited in subclasses. In our example, the type attribute state declared in Typed

can be inherited by Expr and Abs.

As another example, consider the changes that were made to the implementation of

Java 1.4 in Polyglot [78] in order to handle the evolution of method declarations from

Java 1.4 to Java 5. A simplified description of these changes is depicted in Figure 2.7(b).

Class MethodDecl (method declaration) is a direct subclass of class ProcedureDecl,

which also represents constructor declarations. Class ProcedureDecl is a direct subclass

of class CodeDecl, which represents nodes that may contain a block of code, including

initializers. Finally, class CodeDecl is a direct subclass of the base class Node, which

in Polyglot represents all possible Java language constructs. The Java 5 extension adds

annotation support to method declarations in the manner shown in Figure 2.7(a). A

new class AnnotatedElement is introduced to represent any Java language constructs

that may be annotated, including class declarations, method declarations, and instance

variable declarations. Since ProcedureDecl may now be annotated, a new IS-A relation-

ship between ProcedureDecl and AnnotatedElement arises. In addition to CodeDecl,

ProcedureDecl now has AnnotatedElement as another direct superclass, as shown in

the highlighted portion of Figure 2.7(b).
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@Deprecated

private void foo(...)
throws AnException { ... }

(a) Syntax changes

Node

CodeDecl AnnotatedElement

ProcedureDecl

MethodDecl

Java 5

Java 5

(b) Class hierarchy changes in the Java 5 extension

Figure 2.7: Evolution of method declaration code from Java 1.4 to Java 5. Java 5
additions are highlighted.

Again, changing the class hierarchy permits code reuse. In the Polyglot evolution

example, annotations in Java 5 are type-checked to ensure each annotation occurs at most

once. This type-checking code is implemented in AnnotatedElement class. Unless the

AST class hierarchy is changed, this implementation must be duplicated in the Java 5’s

implementation of ProcedureDecl and of any other kind of nodes that exist in Java 1.4

but can be annotated in Java 5.

2.4.1 Implementing evolvable class hierarchy

To support evolution of the IS-A relationship, we add a hierarchy factory interface, as

shown in Figure 2.8, to each extension. A hierarchy factory interface has two parts, one

to represent node classes themselves, and the other to represent inheritance relationships

(arrows). This decomposition respects an observation that the only changes that evolution

causes are the movements of arrows. In other words, the existence of AST node classes

does not change once they are declared2, but their superclasses might.

2We do not directly support removal of classes, but removals can be simulated by simply not using
such classes.
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1 public interface JLNodeClassFactory extends NodeClassFactory {
2 abstract class JLNodeClass extends NodeClass.Class {
3 /** Return direct superclasses of this class. */

4 @Override

5 public final Set<NodeClass> superclasses(NodeClassFactory cf) {
6 return superclasses((JLNodeClassFactory) cf);
7 }

8 protected abstract Set<NodeClass>
9 superclasses(JLNodeClassFactory cf);

10 ...

11 }

12 NodeClass ProcedureDecl = new JLNodeClass("ProcedureDecl") {
13 @Override

14 protected Set<NodeClass> superclasses(JLNodeClassFactory cf) {
15 // Delegate to language-specific definition.

16 return cf.ProcedureDecl_super();
17 }

18 };

19 /** direct superclasses of ProcedureDecl in Java 1.4 */

20 default Set<NodeClass> ProcedureDecl_super() {
21 return Collections.singleton(CodeDecl);
22 }

23 ...

24 }

1 public interface JL5NodeClassFactory extends JLNodeClassFactory {
2 NodeClass AnnotatedElement = new JL5NodeClass("AnnotatedElement") {
3 @Override

4 protected Set<NodeClass> superclasses(JL5NodeClassFactory cf) {
5 return cf.AnnotatedElement_super();
6 }

7 };

8 default Set<NodeClass> AnnotatedElement_super() {
9 return Collections.singleton(Node);

10 }

11 /** direct superclasses of ProcedureDecl in Java 5 */

12 @Override

13 default Set<NodeClass> ProcedureDecl_super() {
14 Set<NodeClass> sup =

15 new HashSet<>(JLNodeClassFactory.super.ProcedureDecl_super());
16 sup.add(AnnotatedElement);

17 return sup;
18 }

19 ...

20 }

Figure 2.8: Example implementations of hierarchy factory interfaces for node types
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Representing declarations of node classes Each node class declaration is a static final

member of the hierarchy factory interface3 and is represented by an instance of the

NodeClass interface. Like the Lang interface, NodeClass is shared among AST node

types and only needs to be implemented once. Most of the work is already done

in NodeClass.Class defined in the NodeClass interface. Appendix A.2 lists the core

implementation of NodeClass.

The only difference among NodeClass instances is the superclasses() method im-

plementation, which simply delegates to an appropriate factory method in the hierarchy

factory interface. In this fashion, the hierarchy factory interface can implement such

factory methods freely to reflect changes to direct-superclass arrows. For example, the hi-

erarchy factory interface JLNodeClassFactory for the Java 1.4 compiler in Figure 2.8 con-

tains a declaration of ProcedureDecl, whose implementation of superclasses method

simply calls the ProcedureDecl_super factory method of the given hierarchy factory

interface.

The hierarchy factory interface for an extension simply extends one or more existing

hierarchy factory interfaces. For instance, the hierarchy factory interface for the Java 5

compiler (JL5NodeClassFactory), also in Figure 2.8, extends JLNodeClassFactory and

adds a declaration of the AnnotatedElement node class, which is introduced in Java 5.

Representing direct-superclass relationships As direct-superclass relationships may

differ among various languages, they are implemented as instance methods in the hierar-

chy factory interface so that they may be overridden. These methods are implemented

as Java 8’s default interface methods [42]. Java interfaces containing default methods

are similar to traits in Scala [83], but do not use the order of declared superinterfaces to

resolve conflicts that may occur when inherited traits provide different method imple-

mentations. Instead, like in the original traits proposal [100], the composite interface

3A final factory method that returns the NodeClass instance would also suffice.

30



must override the implementation or declare the method abstract. Requiring developers

to explicitly specify the desired resolution prevents accidentally preferring one imple-

mentation over another, and makes the code more robust against lexical code changes.

This property becomes more important when compiler passes are implemented.

Using default methods, an extension that combines multiple existing extensions can

inherit all factory method implementations by way of Java interface inheritance but still

have an opportunity to override them as necessary. For example, the implementation

of method ProcedureDecl_super in JLNodeClassFactory returns a singleton set indi-

cating that the direct superclass of ProcedureDecl in Java 1.4 is CodeDecl. Meanwhile,

JL5NodeClassFactory overrides this method to indicate that the direct superclasses of

ProcedureDecl in Java 5 now include AnnotatedElement, whose direct superclass is

Node, as implemented in method AnnotatedElement_super.

Similar to language definition instances, an instance of a hierarchy factory interface

is considered the identity of the hierarchy of AST node types in a given language, so

hierarchy factories should be singleton. To enforce this property, we declare a factory

method in the Lang interface that returns the singleton instance:

NodeClassFactory nodeClassFactory();

A unique instance of the hierarchy factory interface is then added to the language

definition instance for each language. For example, we add the following code to

lcpairLang.instance:

protected lcpairNodeClassFactory af =

new lcpairNodeClassFactory.Class();

@Override

public NodeClassFactory nodeClassFactory() {

return af;

}
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2.5 Composable abstract syntax trees

We now have enough machinery to describe the data structure for AST nodes that can be

composed across languages. The new AST design also allows a single AST to represent

programs in multiple language variants.

In traditional object-oriented programming languages, as in Java, declaration of states

(fields) can only occur in classes. As subclassing in Java is single inheritance, meaning

that a class can only be a direct subclass of at most one other class, any implementation

of an AST node as a single object is unfriendly for making compilers composable. The

problem is that in composable compilers, an AST nodes might have to inherit states from

multiple extensions. For example, a typed λ-abstraction node in stlc needs to inherit the

fields representing the parameter binding and the body of the abstraction from lc, and

also inherit the type-attribute field from typed. We need a way to structure AST nodes so

that extensions can inherit states from multiple parent languages.

To avoid resorting to multiple implementation inheritance, the actual locations of

states are partitioned into a collection of extension objects by the language extension

that defines them. An AST node is then represented by a master object that contains

a map from language extensions to corresponding extension objects. Figure 2.9(a)

depicts the components of an AST node for lc’s untyped λ-abstraction, whose states

are partitioned into two extension objects. Extension class baseNode_c, associated with

the base extension, declares a field representing the source position of an AST node,

while extension class lcAbs_c, associated with the lc extension, declares fields for the

parameter and body of a lambda expression. Figure 2.9(b) depicts the components of

an AST node for stlc’s typed λ-abstraction, extending the AST node for lc with one

additional extension object that contains a type-attribute field.
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base 7→

pos : Position

baseNode_c

lc 7→

param : Var

body : Expr

lcAbs_c

Abs.Class

(a) Untyped λ-abstraction in lc

base 7→

pos : Position

baseNode_c

lc 7→

param : Var

body : Expr

lcAbs_c

typed 7→

type : Type

typedNode_c

Abs.Class

(b) Typed λ-abstraction in stlc

Figure 2.9: Representation of states for λ-abstractions in different languages

The partitioning of states into extension objects maintains subtyping between AST

nodes in the absence of subclassing. In our example, a typed Abs node can be used

anywhere an untyped Abs node is expected. This is because the extension objects for a

typed Abs are a superset of the extension objects for an untyped Abs. The additional level

of indirection for accessing states makes ASTs composable, simply by adding different

extension objects. The indirection also automatically implements certain translations,

such as type erasure, simply by changing how the same AST node is viewed. This

reduces the compiler’s memory footprint.

Despite the convenience of composability and reusability, the new representation

of AST nodes introduces one wrinkle to be addressed. The exact type of an AST node

is determined by the collection of extension objects that are present in the node. Duck

typing appears inevitable. Fortunately, the node class instance and language definition

instance, defined previously, come to the rescue. These instances uniquely characterize

all the supertypes of a given AST node type, which in turn determine the extension

objects to be expected in an AST node of that type. Therefore, in addition to extension

objects, each AST node includes a field indicating the type to be expected of an AST
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node. A language definition instance is then used to select the appropriate view of the

node.

2.5.1 Implementing AST nodes

The implementation of AST nodes starts with the declaration of the Node interface that

represents master objects, as shown in Figure 2.10. Each Node object provides a method

rep() that returns the representation type, the node class instance representing the actual

type of the node, a method get() that retrieves the extension object associated with a

given language definition instance, and a method put() that updates these bindings with

new extension objects. The abstract class Class, which implements the Node interface,

can be written in a straightforward fashion.

The check() method is a utility function that enforces the subtyping relationship on

node types when AST nodes are used at run time. The parameter expected represents

the node type expected within a compilation context, and lang is the language definition

instance representing the extension in which the AST node n is to be viewed. The imple-

mentation of check() queries the node class hierarchy defined by the given extension and

checks that the underlying type of the given node is a subtype of the expected type. When

this check fails, the methods fails with an error comparable to the ClassCastException

in Java, which indicates that the object in question cannot be cast to the desired type.

As an example of using the check() method, suppose that in the compiler for stlc,

an AST node is to be used in a context that expects a node containing a type attribute.

The following invocation enforces the validity of the AST node:

Node.check(n, stlcLang.instance, typedNodeClassFactory.Typed);

On the other hand, in the compiler for lc, if the context expects a node that represents a

λ-abstracton, the following code can be used:

Node.check(n, lcLang.instance, lcNodeClassFactory.Abs);
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1 interface Node {
2 /** Return the node type represented by this master object. */

3 NodeClass rep();

4 /**

5 * Return the extension object associated

6 * with the given language extension.

7 */

8 <E extends Ext> E get(Lang lang);
9 /**

10 * Register a new extension object for the given language extension.

11 * Return this master object.

12 */

13 <N extends Node> N put(Lang lang, Ext extNew);
14 /**

15 * Check that the node type is a subtype of the expected node type

16 * in the given language.

17 */

18 static void check(Node n, Lang lang, NodeClass expected) {
19 if (!n.rep().isSubclass(lang.nodeClassFactory(), expected)) {
20 // Can’t use this node in the given context.

21 // Throw an error comparable to ClassCastException in Java.

22 throw new InternalCompilerError("Unexpected node type");
23 }

24 }

25 abstract class Class implements Node {
26 /** node type represented by this master object */

27 protected NodeClass rep;
28 /** map from language definitions to extension objects */

29 protected Map<Lang, Ext> map;
30 protected Class(NodeClass rep, Map<Lang, Ext> map) {
31 this.rep = rep;
32 this.map = map;
33 }

34 @Override

35 public final NodeClass rep() { return rep; }
36 @Override

37 public final <E extends Ext> E get(Lang lang) { ... }
38 @Override

39 public final <N extends Node> N put(Lang lang, Ext extNew) { ... }
40 ...

41 }

42 ...

43 }

Figure 2.10: Declaration of AST master node interface
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Observe that a typed λ-abstraction node as in Figure 2.9(b) will pass both checks above.

In particular, the first check passes because in stlc, Abs is a subtype of Typed in the node

class hierarchy.

Using static types as hints The implementation of the master node thus far suggests

that the object type of the node does not play a role in determining the actual type of the

node; what matters is the representation type. Therefore, in principle, the Node interface

need not be specialized for different kinds of nodes. For instance, declaring the Abs

interface that extends Node to specifically represent λ-abstractions is unnecessary. In

practice, however, programmers rely on static types to discern one kind of object from

another. Uses of types in the implementation language—Java in our case—will help

reduce potential coding errors.

Once again, we use a middle-ground approach to give programmers as much static

typing information as possible without compromising composability. The goal is to

define enough types in Java for constructing master objects that provide clues as to what

the representation type of a node may be. To achieve this goal, we designate certain types

in the node class hierarchy as principal types that should be present in the Java class

hierarchy. Intuitively, a principal type represents the core components of an AST node

that distinguish one node type from another. For example, in stlc, the core components

of a typed λ-abstraction are the variable binding and the body of the abstraction, while

the type attribute is not part of the core. The most general type that represents these

two core components is the untyped λ-abstractions Abs, so Abs should be considered a

principal type.

Although there is no set rule for classifying core components, they are normally

newly introduced states when a new AST node type is created, and not states added as

part of mixin compositions. Since mixins are a main factor that causes the evolution of

the class hierarchy, excluding mixin classes from principal types makes the superclass
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Figure 2.11: Node class hierarchies for λ-abstractions in various extensions. Principal
types are highlighted.

relationships static. When the supertypes of principal types are fixed, the class hierarchy

generated by principal types can be represented in Java. For instance, Figure 2.11 shows

the node class hierarchies for lc and stlc, along with their principal types. In stlc, the

addition of types as a mixin composition does not affect the hierarchy of principal types.

The intermediate class Typed is bypassed so that Node remains the supertype of Expr.

Having determined principal types, we can now implement them as traditional Java

interfaces. Figure 2.12 lists the implementation of Expr and Abs interfaces. For concrete

node types, such as Abs, a concrete class extending Node.Class and implementing Abs is

written so that a master object of type Abs can be constructed. On the other hand, abstract

node types, such as Expr, do not need a concrete class.

Interfaces and classes for extension objects are implemented in a straightforward way,

as in Figure 2.12. An instance of interface lcAbs is an extension object that will store the

variable binding and the body of a λ-abstraction, to be associated with lcLang.instance

in a master object of type Abs. Accessor methods in extension classes take a master

object as an argument, as in line 22, to account for a state that might not be represented

simply by a field, but by a combination of other states. The master object argument

allows the accessor methods to access states in other extension objects of the same AST
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1 interface Expr extends Node { ... }
2

3 interface Abs extends Expr {
4 static Expr body(Abs n, Lang lang) {
5 // First, check that the node is of the desired type,

6 // and that this state is accessible in the given language.

7 Node.check(n, lang, lcNodeClassFactory.Abs);

8 // Forward request to extension object.

9 // Pass this master object in case the state

10 // is derived from other states.

11 return n.<lcAbs> get(lcLang.instance).body(n);
12 }

13 class Class extends Node.Class implements Abs {
14 public Class(NodeClass rep, Map<Lang, Ext> map) {
15 super(rep, map);
16 }

17 }

18 ...

19 }

20

21 interface lcAbs extends Ext {
22 Var param(Abs n);

23 Expr body(Abs n);

24 class lcAbs_c implements lcAbs {
25 Var param;

26 Expr body;

27 public lcAbs_c(Var param, Expr body) {
28 this.param = param;
29 this.body = body;
30 }

31 @Override

32 public Var param(Abs n) { return param; }
33 @Override

34 public Expr body(Abs n) { return body; }
35 }

36 }

Figure 2.12: Example implementations of AST master interfaces, master classes, exten-
sion interfaces, and extension classes
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node to compute this derived state. Alternatively, the derivation of such states could be

implemented directly within the master class, but we choose to maintain modularity by

keeping the traditional compiler implementations within extension classes, separate from

the forwarding mechanism in master classes.

2.5.2 Accessing state in AST nodes

Accessing a field for an AST node requires looking up the extension object associated

with the appropriate language extension, and then accessing the actual field within that

extension object. To encapsulate this mechanism from client code, which should not

know the exact representation of AST nodes, we need to provide accessor methods

(getters). Traditionally, these accessor methods are implemented as instance methods that

belong to each object, but doing so would make composition less scalable. To see why,

consider accessing the type attribute for AST nodes in stlc. If the accessor method for

type attributes were implemented as an instance method of the Typed node type, every

node type in stlc would need to extend Typed to inherit the implementation. Since node

types in stlc have already been declared in lc, extending Typed would entail duplicating

the entire node type hierarchy, only to add one more accessor method to each node

type. To make composition more scalable, an alternative to instance accessor methods is

needed.

Instead of instance methods, we use static methods to access fields. Each accessor

method takes an AST node, along with a language definition instance to select an

appropriate view of the node. In the Abs interface in Figure 2.12, the body() method

shows how to retrieve the body of a λ-abstraction.

The implementation of body() works as follows. First, it checks that the given Abs

node does in fact permit access to the body field, as some extension might disallow this

view. We use the check() method in the Node interface to enforce accessibility. If the test
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succeeds, we then retrieve the extension object that contains the body field—in our case,

the one associated with the lc language—and invoke the accessor method as appropriate.

The Java type system is not powerful enough to let us avoid type casts in accessor

methods. In particular, the value type of the map from language definition instances

to extension objects is fixed, requiring a cast to the desired extension type: the desired

type is passed as a type argument to get() (line 11). Nevertheless, the target types of

these casts are clear from the context, so such casts are unlikely to lead to programmer

mistakes.

2.5.3 Constructing AST nodes

So far, we have a representation of ASTs that is modular, reusable, and composable, but

we still need to be able to construct these ASTs in a modular and extensible way. To

enable extensibility, object creation is encapsulated in a factory method. Factory methods

in AST node factories are either a master factory method, to create a master object, or an

extension factory method, to create extension objects. A master factory method passes

the created master object, along with states that need to be stored, to an extension factory

method. An extension factory method populates the given master object.

Figure 2.13 shows a partial implementation of AST node factories used by stlc.

The primordial baseNodeFactory does not contain a master factory method, because the

base language does not have a concrete node type. It does contain an extension factory

method Node for storing the position in the source file. Before creating a Node extension

object, the Node extension factory method checks that the master object’s map does not

already contain an extension object for the base language that might otherwise have been

created by other calls to this factory method. Extension factory methods in sublanguages

eventually invoke the Node extension factory method. The exprNodeFactory extends

baseNodeFactory and adds another extension factory method to handle all subtypes
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1 public interface baseNodeFactory {
2 default <N extends Node> N Node(N n, Position pos) {
3 // Nothing to do if extension object is already there.

4 if (n.containsExtObj(baseLang.instance)) return n;
5 // Add extension object for base to master object.

6 n.put(baseLang.instance, new baseNode_c(pos));
7 return n;
8 }

9 }

1 public interface exprNodeFactory extends baseNodeFactory {
2 default <N extends Expr> N Expr(N n, Position pos) {
3 // Let parent node type handle the rest of extension objects.

4 return Node(n, pos);
5 }

6 ...

7 }

1 public interface lcNodeFactory extends exprNodeFactory {
2 default Abs Abs(Position pos, Var param, Expr body) {
3 // Create master object.

4 Abs n = new Abs_c(lcNodeClassFactory.Abs);
5 // Populate the master object with extension objects.

6 return Abs(n, pos, param, body);
7 }

8 default <N extends Abs> N Abs(
9 N n, Position pos, Var param, Expr body) {

10 // Nothing to do if extension object is already there.

11 if (n.containsExtObj(lcLang.instance)) return n;
12 // Add extension object for lc to master object.

13 n.put(lcLang.instance, new lcAbs_c(param, body));
14 // Let parent node type handle the rest of extension objects.

15 return Expr(n, pos);
16 }

17 ...

18 }

Figure 2.13: Example implementations of AST node factories
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1 public interface stlcNodeFactory
2 extends lcNodeFactory, typedexprNodeFactory {
3 @Override

4 default Abs Abs(Position pos, Var param, Expr body) {
5 // Factory method no longer usable in this extension.

6 throw new UnsupportedOperationException();
7 }

8 default Abs TypedAbs(
9 Position pos, Type type, Var param, Expr body) {

10 // Create master object.

11 Abs n = new Abs_c(lcNodeClassFactory.Abs);
12 // Populate the master object with extension objects.

13 return TypedAbs(n, pos, type, param, body);
14 }

15 default <N extends Abs> TypedAbs(
16 N n, Position pos, Type type, Var param, Expr body) {

17 // Let parent node types handle the rest of extension objects.

18 n = TypedExpr(n, pos, type);

19 return Abs(n, pos, param, body);
20 }

21 ...

22 }

Figure 2.13: Example implementations of AST node factories (continued)
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of Expr, but since Expr itself does not have any state, this method simply let the Node

extension factory method deal with extension objects. That is, the expr language does

not have any extension object associated with it.

In the lc extension, we start seeing concrete node types. The first method in

lcNodeFactory is a master factory method for Abs, creating a master object and passing

it to the second method, which is an extension factory method. The extension factory

method creates an lcAbs_c object to store states pertaining to a λ-abstraction, and the

Expr extension factory method handles the rest of the extension objects.

Finally, stlcNodeFactory is a composition of two node factories: lcNodeFactory

and typedexprNodeFactory (not shown in Figure 2.13). The inherited Absmaster factory

method is first disabled to prevent untyped Abs nodes from being created. To construct

a typed λ-abstraction, the new TypedAbs master factory method creates a master object

of the appropriate principal type, Abs in this case. Since a typed λ-abstraction does not

have any state associated with stlc itself, the TypedAbs extension factory method can

simply let the extension factory methods for parent node types create extension objects.

Specifically, TypedExpr extension factory method will populate base and typed entries,

and Abs extension factory method will populate base and lc entries. Notice that the

Node extension factory method is invoked twice, but only one baseNode_c extension

object will be created since we avoid duplicate extension object creation in line 4 of

baseNodeFactory. The existence of an extension object for a language means that the

extension objects for all its superlanguages have already been created also. This check

effectively prunes further invocations of extension factory methods in parent languages.

2.6 Composable dispatch mechanism

The next step after having defined the data structure for abstract syntax trees is to

implement operations on ASTs. These implementations should encourage code reuse,
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account for the potential evolution of the node class hierarchy, and enable composability

across language extensions. One important objective is to resolve the diamond problem

that occurs when an AST node inherits two conflicting implementations of an operation.

Let us return to the evolution of the Java compiler from Java 1.4 to Java 5 as im-

plemented in the Polyglot compiler framework (recall Figure 2.7), and consider how

type checking for method declarations changes between the two Java versions. The type

checker for the Java 1.4 compiler works as follows:

u In MethodDecl, the method flags are checked for conformance, e.g., that the abstract

flag only appears in abstract method declarations. Then, the ProcedureDecl imple-

mentation is called to do the rest of type checking.

u In ProcedureDecl, the types in throws clause are checked to be a subtype of Throw-

able.

u In Node, nothing is checked by default; the node is simply returned as is.

The introduction of annotations in Java 5 adds new type-checking obligations:

u In AnnotatedElement, annotations are checked to ensure no duplicates.

To integrate this addition into type-checking method declarations, we need to invoke the

implementations in MethodDecl, ProcedureDecl, and AnnotatedElement at some point.

Depending on the first implementation invoked, certain changes need to be made either

to the Java 1.4 implementation or to the code in AnnotatedElement:

u If the code in MethodDecl is to be invoked first: In ProcedureDecl, a call to the type-

checking implementation in AnnotatedElement must be added so that type checking

for annotations occurs. This approach corresponds to asymmetric multiple dispatching

in which the node type has higher priority than the language. This dispatch ordering is

also used in the J& language [80].
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Figure 2.14: Determination of the most specific type-checking implementation for Java
5’s method declarations. A boxed node type contains a type-checking implementa-
tion, while a grayed-out node type has no implementation and inherits a type-checking
implementation from its ancestors.

u If the code in AnnotatedElement is to be invoked first: In AnnotatedElement, a call to

the implementation in MethodDeclmust be added so that type checking for Java 1.4 still

occurs. This approach corresponds to asymmetric multiple dispatching in which the lan-

guage has higher priority than the node type. That is, even though AnnotatedElement

is a superclass of MethodDecl, the implementation in AnnotatedElement is more spe-

cific than that in MethodDecl because the code for AnnotatedElement is implemented

in Java 5 and the code for MethodDecl is implemented in Java 1.4. Figure 2.14 depicts

this dispatch ordering.

Either way, we need to implement multiple dispatching while taking the evolution of

class hierarchy into account. Although choosing between the two dispatch orderings

could be a matter of taste, we argue that the latter approach—where languages have

higher priority—better supports extensibility. In both approaches, new code is added for
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AnnotatedElement, but the first dispatch ordering also requires modifying existing code.

This modification is only possible if the source code for the existing implementation is

available. Plus, the resulting code is now specialized to the Java 5 compiler and would be

incompatible with other, orthogonal extensions. In contrast, the second dispatch ordering

only requires new code to be added in one place, without specializing existing code.

2.6.1 Implementing dispatch mechanism

Method dispatch occurs in two scenarios. Dispatch happens when client code requests

that an operation be performed, e.g., type checking of method declarations. In Java, this

is simply a method invocation. Dispatch also happens within a method implementation.

In Java, this is the super method call to the superclass implementation, which is uniquely

defined thanks to single inheritance. Unlike in Java, however, our desire to compose

compilers means multiple inheritance may yield multiple superclass implementations,

resulting in an ambiguity. Multiple inheritance also occurs at the language level when

extensions are composed. Our multiple dispatch mechanism handles multiple inheritance

in both dispatch scenarios; we describe each of them in turn.

Determining the most specific implementation Suppose an operation on a given node

type T0 in a given language L0, denoted (L0,T0), is requested. If (L0,T0) itself implements

(or overrides) this operation, then we have found the most specific implementation. In the

general case, this operation might not be implemented in (L0,T0), but instead inherited

from a supertype of T0, from a superlanguage of L0, or both, so we need to explore

the hierarchy of node types and possibly the hierarchy of languages to find the desired

implementation.

We introduce some notation before defining the most specific implementation. For

any languages L1 and L2, let L1 <: L2 denote that L1 is a sublanguage of L2. For any node

types T1 and T2, let T1 <: T2 denote that T1 is a subtype of T2, e.g., MethodDecl <: Node.
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Next, we define a partial ordering <: on (L,T )-pairs corresponding to our dispatch

ordering as follows:

u If L1 <: L2, then (L1,T1) <: (L2,T2) for any T1 and T2.

u For a fixed L, if T1 <: T2 in L, then (L,T1) <: (L,T2).

Then, given a set P of (L,T )-pairs, call (L′,T ′) ∈ P maximally specific if (L′,T ′) <: (L,T )

for any (L,T ) ∈ P. Notice that, due to multiple inheritance, P could contain multiple

maximally specific pairs, all of which are pairwise incomparable. Finally, let M(P) ={
(L,T ) ∈ P | (L,T ) is maximally specific in P

}
.

Now we are ready to define the most specific implementation for (L0,T0). Let predi-

cate I(L,T ) denote that (L,T ) implements or overrides the desired operation. Given a set

PI(L0,T0) = {(L,T ) | I(L,T ) ∧ (L0,T0) <: (L,T ) ∧ T0 <: T } of all applicable implemen-

tations for (L0,T0), consider M(PI(L0,T0)):

u If M(PI(L0,T0)) = ∅, then there is no applicable implementation for (L0,T0): a

message not understood error.

u If M(PI(L0,T0)) is a singleton, then its unique element has the most specific imple-

mentation for (L0,T0).

u If |M(PI(L0,T0))| > 1, there are multiple applicable implementations for (L0,T0): a

message ambiguous error.

To determine I(L,T ), we define an operator factory containing operator factory

methods, each of which returns an implementation for each node type within a language.

By default, each node type inherits the operation, so the operator factory methods return

null, as shown in the JLOperatorFactory interface in Figure 2.15. The default operator

factory for an extension simply extends one or more existing operator factory interfaces

in the same way as for the hierarchy factory interfaces, as shown in JL5OperatorFactory.

For a language composed of multiple immediate superlanguages, multiple inheritance
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1 public interface JLOperatorFactory<O extends Operator> {
2 default O Node() { return null; }
3 default O CodeDecl() { return null; }
4 default O ProcedureDecl() { return null; }
5 default O MethodDecl() { return null; }
6 ...

7 }

1 public interface JL5OperatorFactory<O extends Operator>
2 extends JLOperatorFactory<O> {
3 default O AnnotatedElement() { return null; }
4 ...

5 }

Figure 2.15: Example declarations of operator factory classes

for interfaces takes care of collecting the operator factory methods for all the node types

in the composed language.

To define an operator, we extend the Operator interface and add the desired method

declaration, as in TypeCheckOperator in Figure 2.16(a). To implement an operator, we

implement the operator factory interface and override an operator factory method for each

node type of interest, as shown in JLTypeCheckFactory in Figure 2.16(b). An overridden

operator factory method returns a Java’s lambda expression [42], which implements the

declared operator.

The dispatcher method, called by client code to invoke the operator on (L0,T0),

computes M(PI(L0,T0)). To avoid exploring all operator factories in all extensions, the

dispatcher first determines I(L0,T0) by querying the operator factory method for T0 in

L0’s operator factory. If this is null, the dispatcher queries operator factory methods for

superclasses of T0, as defined by L0’s node class hierarchy factory, in the same operator

factory. If there is still no applicable implementation, the dispatcher then explores

operator factories for L :> L0. Appendix A.3 describes the implementation of exploration

code and data structure for quickly computing M(PI(L0,T0)). This exploration code is

shared by all operators and only needs to be implemented once. Furthermore, the dispatch
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1 public interface TypeCheckOperator extends Operator {
2 Node typeCheck(Node n, TypeChecker tc);

3 }

(a) Operator declaration

1 public class JLTypeCheckFactory implements
2 JLOperatorFactory<TypeCheckOperator> {

3 public static final instance = new JLTypeCheckFactory();
4 @Override

5 public TypeCheckOperator Node() {
6 return (n, tc) -> n; // Do nothing.
7 }

8 @Override

9 public TypeCheckOperator MethodDecl() {
10 return (n_, tc) -> {
11 MethodDecl n = (MethodDecl) n_;

12 ...

13 };

14 }

15 ...

16 }

1 public class JL5TypeCheckFactory implements
2 JL5OperatorFactory<TypeCheckOperator> {

3 public static final instance = new JL5TypeCheckFactory();
4 @Override

5 public TypeCheckOperator AnnotatedElement() {
6 return (n, tc) -> {
7 ...

8 // Do Java 1.4 type checking.

9 return Typed.typeCheckSuper(n, ...);
10 };

11 }

12 ...

13 }

(b) Factory method implementations

Figure 2.16: Example implementations of type-checking operator
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ordering can be changed by simply altering the definition of <: and the exploration code.

In other words, our design pattern makes both symmetric and asymmetric multiple

dispatch implementable with similar effort.

Invoking the next most specific implementation To invoke the next most specific

implementation according to <:, we need to determine the superclass S associated with

the call site. In Java, S is the superclass of the enclosing class of the method whose

body contains the super call. By contrast, operators in our design pattern are no longer

implemented in the traditional object-oriented style, so we have to specify the enclosing

class explicitly. Moreover, since the superclasses of a given enclosing class may differ

depending on a particular node class hierarchy, we also have to specify the current

language explicitly. For example, line 9 of JL5TypeCheckFactory in Figure 2.16(b) has

a super call to handle the rest of type-checking an AnnotatedElement node in Java 5. In

full, this call is as follows:

Typed.typeCheckSuper(n, tc, JL5Lang.instance,

JL5NodeClassFactory.AnnotatedElement);

Appendix A.3 contains the listing of typeCheckSuper, which uses the same exploration

code mentioned above to find the most specific superclass implementation.

Multiple implementation inheritance could result in ambiguous superclass imple-

mentations. To resolve conflicts, the call site can specify the pair (L,T ) for the desired

superclass implementation. For instance, the following code invokes the most specific

type-checking implementation applicable to (JL5, CodeDecl):

Typed.typeCheck(n, tc, JL5Lang.instance, JLNodeClassFactory.CodeDecl);

The implementation of this method is also listed in Appendix A.3.

Operator factory factories The last step in implementing operations on ASTs is to

inform the compiler for a specific language about these new implementations. One way

to do so is to add a method in the language definition interface that returns the operator
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factory for each operation, or null if that operation is not overridden at all for any AST

node type in the language. This approach, however, can be difficult to maintain, as

the number of methods to be added to the language definition interface is proportional

to the number of operators that have changed. To make language definition interfaces

more manageable, we introduce operator factory factories as a level of indirection. An

operator factory factory interface is a Java interface that declares factory methods, one

per operation. Each factory method returns the operator factory for the operation that has

been overridden in a given language.

Figure 2.17 lists some examples of operator factory factory interfaces and classes.

Suppose that the base language declares an operator that pretty-prints the AST. The

operator factory factory interface for the base language (baseOperatorFactoryFactory)

defines a corresponding method that returns null by default to indicate the absence of

overriding pretty-printing. However, the base language itself does override this operation

for Node, to implement printing nothing. This override requires a concrete implementa-

tion of the operator factory factory interface (baseOperatorFactoryFactory_c), which

overrides the prettyPrint() factory method to return the appropriate operator factory.

A language extension that introduces a new operation extends an existing operator

factory factory interface with an appropriate factory method. For instance, typed de-

clares an operation for type-checking AST nodes, so typedOperatorFactoryFactory

adds the typeCheck() factory method. For a language composed of multiple par-

ent languages, multiple inheritance for interfaces once again takes care of combin-

ing all available operations into the composed operator factory factory interface, as in

stlcOperatorFactoryFactory. In this way, a concrete implementation of the composed

interface can override factory methods for operators that are overridden in the composed

language. For example, stlc adds new type-checking implementations for the λ-calculus
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1 public interface baseOperatorFactoryFactory
2 extends OperatorFactoryFactory {
3 default OperatorFactory<PrettyPrintOperator> prettyPrint() {
4 return null;
5 }

6 ...

7 }

8 public class baseOperatorFactoryFactory_c
9 implements baseOperatorFactoryFactory {

10 @Override

11 public basePrettyPrintFactory prettyPrint() {
12 return basePrettyPrintFactory.instance;
13 }

14 ...

15 }

1 public interface typedOperatorFactoryFactory
2 extends baseOperatorFactoryFactory {
3 default OperatorFactory<TypeCheckOperator> typeCheck() {
4 return null;
5 }

6 }

7 public class typedOperatorFactoryFactory_c
8 implements typedOperatorFactoryFactory {
9 @Override

10 public typedTypeCheckFactory typeCheck() {
11 return typedTypeCheckFactory.instance;
12 }

13 }

1 public interface stlcOperatorFactoryFactory
2 extends lcOperatorFactoryFactory,
3 typedexprOperatorFactoryFactory { }

4 public class stlcOperatorFactoryFactory_c
5 implements stlcOperatorFactoryFactory {
6 @Override

7 public stlcTypeCheckFactory typeCheck() {
8 return stlcTypeCheckFactory.instance;
9 }

10 }

Figure 2.17: Example implementations of operator factory factories
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constructs. The stlcOperatorFactoryFactory_c class overrides the typeCheck() fac-

tory method to return the operator factory containing the additional type-checking code.

Each language that overrides any operator at all has a corresponding operator factory

factory instance. Like language definition instance and node type hierarchy instance,

operator factory factory instance is the part of the identity of the language, hence singleton.

Like with the nodeClassFactory() method, we declare another factory method in the

Lang interface to enforce the singleton property:

default OperatorFactoryFactory opFactoryFactory() { return null; }

The method returns null by default to indicate no overriding. A language that overrides

some operations overrides this method to return a unique instance of the operator factory

factory interface. For example, the following code is added to stlcLang.instance:

protected stlcOperatorFactoryFactory off =

new stlcOperatorFactoryFactory_c();

@Override

public OperatorFactoryFactory opFactoryFactory() {

return off;

}

2.7 Composable translations

In Section 2.6.1, we described an implementation of multiple dispatch that enables com-

position of language extensions. There, the dispatcher follows the <: relation, walking

up the node-type and language hierarchies to find the most specific implementation. An

extension can simply reuse operator implementations from its base language. Trans-

lations, on the other hand, are a bit more complicated to implement because they are

defined in terms of source–target language pairs. We can no longer rely on the language

hierarchy for dispatching. A slightly different design pattern is needed to ensure that
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translations are composable, and that one language can define multiple translations to a

number of target languages. Despite this difference at the language level, we can still

treat a translation as another set of operations at the AST level. We declare a new operator

Transformer, extending the previously mentioned Operator interface:

public interface Transformer extends Operator {

/**

* Translate the given node n using translation driver t.

* Return either a translated node in the target language,

* or null if n’s children should be translated

* but there is no change to n itself after translating children.

*/

Node translate(Node n, Translator t);

}

A translation driver provides the AST node factory for the target language, and imple-

ments a method to facilitate the translation of children within the AST.

For any translation, some constructs may be translated, while others can remain if the

target language also recognizes them. For example, when translating lcpair into lc, pair

constructors and projections must be rewritten, while λ-abstractions and applications can

be preserved, provided their children are translated as appropriate. First, we implement

the most trivial translation, the identity translation, which serves as a basis for any other

translation. In the base language, a transformer factory provides the identity translation

for all node types:

public interface baseTransformerFactory

extends baseOperatorFactory<Transformer> {

@Override

default Transformer Node() {

// No translation defined; translate children as needed.
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1 public interface lcpairTransformerFactory_lc
2 extends lcpairOperatorFactory<Transformer>,
3 baseTransformerFactory {

4 @Override default Transformer Pair() {
5 return (n_, t) -> {
6 Pair n = (Pair) n_;

7 LCNodeFactory nf = t.tgtNodeFactory();

8 Position pos = n.position();

9 // ~(e1, e2)� , λ f . f ~e1� ~e2�
10 Expr fst = t.translate(n.fst());

11 Expr snd = t.translate(n.snd());

12 return nf.Abs(pos, nf.Var(...), nf.App(...));
13 };

14 }

15 @Override default Transformer Fst() { ... }
16 @Override default Transformer Snd() { ... }
17 }

Figure 2.18: Example implementation of a transformer factory

return (n, t) -> null;

}

}

Other, more concrete translations extend baseTransformerFactory to include trans-

lator method implementations for appropriate node types. An example of a transformer

factory that translates lcpair to lc is shown in Figure 2.18.

The main difference between normal operator factories and transformer factories is

that operator factories do not inherit other operator factories, while transformer factories

inherit other transformer factories that contain desired translator methods. In this way,

we need not rely on the language hierarchy for dispatching, since we have all the

translation code in one factory. To demonstrate composability of transformer factories,

suppose further that we have implemented a translation from lcsum, the untyped λ-

calculus with sums, to lc by translating away injections and case expressions using

lambda expressions; have implemented lcpairsum, a composition of lcpair and lcsum;

and would like to add three translations: (1) from lcpairsum to lcsum, rewriting pairs,
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Node : id

baseTransformerFactory

(any) (any)

InjL : . . .
InjR : . . .
Case : . . .

lcsumTransformerFactory lc

lcsum lc

Pair : . . .
Fst : . . .
Snd : . . .

lcpairTransformerFactory lc

lcpair lc

lcpairsumTransformerFactory lc

lcpairsum lc

lcpairsumTransformerFactory lcpair

lcpairsum lcpair

lcpairsumTransformerFactory lcsum

lcpairsum lcsum

Figure 2.19: Compositions of transformer factory interfaces

(2) from lcpairsum to lcpair, rewriting sums, and (3) from lcpairsum to lc, rewriting

both pairs and sums. Figure 2.19 shows how existing translations can be reused in

these three translations. Since we already have a translation for pairs from lcpair to lc

(denoted lcpair lc), we can reuse this translation for lcpairsum lcsum by simply

extending lcpairTransformerFactory_lc, without adding any more implementations,

and similarly for lcpairsum lcpair. Finally, multiple inheritance on interfaces allows

us to compose both translations on pairs and sums, yielding a translation for lcpairsum 

lc.

2.8 Experience and evaluation

Our implementation and compositions of language extensions aim to answer the following

questions:

u Are our design patterns effective for implementing extensible compilers and transla-

tions between languages?

u Are our design patterns effective for composing compilers and translations?
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Figure 2.20: Portion of the language hierarchy and translation ordering for implemented
extensions. A solid edge means the lower language extends the upper language. A
directed edge indicates an available translation from one language to another. These
edges may be superimposed to indicate that a language both extends from and translates
to another.

u Do our design patterns scale to deeply layered language extensions?

u Are our design patterns applicable to compilers for industrial-scale languages?

u What are the primary sources of boilerplate code that could be reduced by additional

language constructs?
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2.8.1 Language extensions and their compositions

To evaluate the extensibility and composability of compilers based on our design patterns,

we implemented compilers for 35 language extensions. Figure 2.20 illustrates the

relationships on a subset of extensions, showing that among the languages implemented

are every possible combination of four independent extensions: lc, pair, sum, and

typedexpr. The descriptions of the 35 extensions follow:

u base is the root of the language hierarchy that includes Node class to represent all

possible language constructs, and Id type to represent string identifiers.

u expr is the abstract language that contains expressions. Untyped variables, and arith-

metic and logical expressions are also implemented here.

u typed is the mixin that adds typed constructs. An AST node of type Typed has a type

attribute. Type-checking operators are declared here.

u typedexpr is the composition of expr and typed, adding type-checking to arithmetic

expressions. Additionally, type nodes are introduced so that variables can be annotated

with types such as int and bool. For instance, the operands of a binary addition are

checked to have an integer type.

u lc is the untyped λ-calculus, extending expr with abstractions and applications.

u stlc is the simply-typed λ-calculus, composing lc and typedexpr. Type-checking for

abstractions and applications is implemented here.

u pair extends expr with pair constructors and projections.

u typedpair is the composition of pair and typedexpr, adding type-checking to pair

constructors and projections.

u lcpair is the composition of pair and lc.
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u stlcpair is the composition of lcpair, stlc, and typedpair. No additional type-checking

code is required since every construct needing type-checking has already been handled

in either stlc or typedpair.

u sum extends expr with injections and case expressions.

u typedsum is the composition of sum and typedexpr, adding type-checking to injections

and case expressions.

u lcsum is the composition of sum and lc.

u stlcsum is the composition of lcsum, stlc, and typedsum. No additional type-checking

code is required.

u pairsum is the composition of pair and sum.

u typedpairsum is the composition of pairsum, typedpair, and typedsum.

u lcpairsum is the composition of pairsum, lcpair, and lcsum.

u stlcpairsum is the composition of lcpairsum stlcpair, stlcsum, and typedpairsum.

u let adds the let expressions.

u typedlet is the composition of let and typedexpr, adding type-checking to let expres-

sions.

u lclet is the composition of let and lc.

u stlclet is the composition of lclet, stlc, and typedlet. No additional type-checking

code is required.

u stmt is the abstract language that contains statements, extending base. Statement

blocks and empty statements are also implemented here.

u typedstmt is the composition of stmt and typed, adding type-checking code to state-

ment blocks. (Empty statements need not be type-checked.)
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u imp is the imperative language, extending both expr and stmt, and contains statements

such as variable declarations, assignments, and loops.

u typedimp is the composition of imp, typedstmt, and typedexpr, adding type-checking

code to new constructs declared in imp.

u lcir1 and lcir2 are intermediate languages for translating lc into an assembly-like

target language. The lcir1 language contains administrative lambdas [38] that result

from CPS-converting λ-expressions. Expressions in lcir1 are then closure-converted

to ones in lcir2 that closely resembles an assembly language.

u polytype adds type variables for use in type inference, extending typedexpr. Infras-

tructure for performing type inference is implemented here.

u polystlc is the composition of stlc and polytype, adding type inference to simply-

typed λ-calculus so that type annotations can be omitted.

u polystlclet is the composition of stlclet and polystlc, adding type inference to let

expressions so that variable bindings do not require annotated types.

u letpoly extends polystlclet to implement let-polymorphism. Universal types are intro-

duced here for use in inferring and checking types on let-polymorphism expressions.

u cond adds the conditional expressions to expr.

u typedcond is the composition of cond and typedexpr, adding type-checking code to

conditional expressions.

u letrec implements recursive let expressions, composing polystlc and typedcond. The

let-rec construct is introduced here along with code for type checking the construct

and code for inferencing the type of recursive functions.

The most sophisticated languages implemented are letrec and letpoly, which provide

recursive function definitions and ML-style let-polymorphism, respectively. Thus, the
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languages implemented in this highly decomposed fashion come close to reaching the

richness of core ML [73].

2.8.2 Extensibility and composability of compilers

Table 2.1 shows the number of Java source files that need to be created to implement the

validation phase of the compiler for each extension, along with the number of lines of

code, excluding comments and blank lines, to implement various components. Other

components include type objects for extensions of typed, and utility functions such as

the free-variable finder for lambda expressions.

The “skeleton” is code providing shared infrastructure. The 182 lines of skeleton

language definition provide most of the functionality for adding a new language extension

to the hierarchy. On average, 47 lines of code are needed to implement a language

definition class, which declares parent languages, creates factory objects for a new

extensions, and refines return types of various methods. Specifications of supported

target languages, included in the reported lines of code, significantly influence the length

of a language definition. For instance, stlcpairsum has three translations that require 15

lines of specifications, while lc’s only translation requires just five lines.

Additions of syntactic constructs and associated operations require a modest amount

of code for AST definitions and operators that is proportional to the number of new

constructs and operations. For example, lc’s two new constructs require an average

of 103 lines of code per construct, while expr adds 18 new constructs, requiring an

average of 39 lines each. These averages differ depending on the similarity among added

constructs. In our example, 13 kinds of binary expressions share code for traversing

children and pretty-printing the node.

Compositions involving mixin languages introduce interactions between mixin states

and existing constructs. For instance, adding types to expr requires that every expression
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Extension # files
Total

Language definitio
n

Hierarchy factory

Node factory

AST definitio
ns

Operators

Other components

(skeleton) 62 3758 182 79 N/A N/A 67 3430
base 13 586 38 47 49 335 117 0
expr 30 1284 41 315 225 482 221 0
typed 30 598 57 55 11 121 111 243
typedexpr 30 902 60 61 81 128 356 216
lc 13 446 50 56 56 93 113 78
stlc 18 332 54 7 7 0 116 148
pair 12 418 41 82 65 110 120 0
typedpair 15 306 55 8 8 0 96 139
lcpair 5 71 38 7 7 0 19 0
stlcpair 6 102 53 9 9 0 23 8
sum 12 479 41 82 70 145 141 0
typedsum 22 696 63 44 84 95 272 138
lcsum 5 71 38 7 7 0 19 0
stlcsum 6 101 52 9 9 0 23 8
pairsum 5 62 29 7 7 0 19 0
typedpairsum 6 92 43 9 9 0 23 8
lcpairsum 5 96 55 9 9 0 23 0
stlcpairsum 6 119 65 10 10 0 25 9
let 9 266 41 43 40 53 89 0
typedlet 8 145 47 7 8 0 77 6
lclet 6 96 38 7 7 0 19 25
stlclet 6 101 52 9 9 0 23 8
stmt 11 298 41 68 48 56 85 0
typedstmt 10 145 44 14 6 5 72 4
imp 13 644 42 96 102 209 195 0
typedimp 8 196 52 9 9 0 118 8
lcir1 13 462 48 69 65 81 155 44
lcir2 13 606 41 95 102 176 192 0
polytype 28 718 47 6 11 0 48 606
polystlc 6 90 41 7 8 0 19 15
polystlclet 6 93 50 8 8 0 19 8
letpoly 20 469 52 6 6 0 92 313
cond 9 271 42 43 42 52 92 0
typedcond 8 138 47 8 8 0 69 6
letrec 15 512 59 58 61 88 207 39

Table 2.1: Code statistics for implementations of 35 language extensions
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Source Target Translator
lcir1 lcir2 353
lc lcir1 182
lclet lc 25
lcpair lc 72
lcsum lc 69
stlc lc 21
lcpairsum lcpair 7
lcpairsum lcsum 7
lcpairsum lc 9
stlclet stlc 7
stlcpair stlc 7
stlcsum stlc 7
stlcpairsum stlcpair 8
stlcpairsum stlcsum 8
stlcpairsum stlc 8

Table 2.2: Lines of code for implementing translations between extensions.

be type-checked, incurring 484 lines of code that implement type checking in extension

classes (24 lines per construct on average). Composing independent language extensions

is trivial, requiring no additional AST classes whatsoever, even if these extensions share

a mixin language. For example, typedpairsum extends typedpair and typedsum, both

of which extend typedexpr. No new AST classes are needed because type checking is

already implemented fully in the parent extensions. These results indicate that our design

patterns make ASTs highly composable.

2.8.3 Extensibility and composability of translations

Table 2.2 reports the line counts of Java code, excluding comments and blank lines,

needed to implement the translation phase of the compiler between certain pairs of

extensions. The amount of rewriter code is proportional to the number and complexity of

constructs that need rewriting. For example, an average of 39 lines is needed to rewrite
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each of the nine constructs in lcir1 into lcir2, while 24 lines are needed on average to

rewrite one of the three constructs in lcpair into lc.

Translations can be reused and composed easily for deeper extensions than the

ones they were developed for. As an example, to translate lcpairsum into lcsum, the

translation from lcpair to lc is reused completely; the only glue code needed is the

additional translator factory. Meanwhile, the translation from lcpairsum to lc is the

composition of the translations from lcpair to lc and from lcsum to lc, using multiple

interface inheritance on translator factories. Again, only one more factory specific to

this translation is needed. The code size shows that highly reusable and composable

translations are achievable with our design patterns.

2.8.4 Scalability for deeply layered extensions

Our results indicate that the extension depth, i.e., the distance in the language hierarchy

from base to the extension of interest, does not affect the amount of code that implements

a new extension. As an example, stlcpairsum, a depth-5 extension, requires nearly

the same amount of code as lclet, a depth-3 extension. Also, the amount of code for

translations between extensions is not affected by extension depth. These observations

suggest that our design patterns enable scalable composition of compiler extensions.

2.8.5 Application to larger-scale compilers

To demonstrate adaptability of our design pattern to real-world implementations of

compilers, we ported the Polyglot extensible compiler framework [78] and compared

the number of lines of code, excluding comments and blank lines, between the two

implementations. Table 2.3 lists these numbers for Java extensions within Polyglot,

along with the percentage change in the number of lines between the original and ported
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Polyglot Polyglot⊕
Language # files # lines # files # lines % line change
Java 1.4 499 52060 461 52074 0.03
Java 5 201 19999 196 20655 3.28
Java 7 34 2076 40 2218 6.84

Table 2.3: Comparisons of number of source files and lines of code between the original
Polyglot extensible compiler framework and the implementation using our design pattern
(denoted Polyglot⊕)

versions. The results show that, in terms of the amount of code, not much change is

needed to make compilers composable.

2.8.6 Language constructs for mainstream languages

A primary goal of our design patterns is to encourage adoption. One way to accom-

plish this goal is to ensure that programmers write only as much code as necessary.

Nevertheless, some code duplication and boilerplate are still required to implement our

composable compilers. We now identify language features unavailable in Java 8 that

would have minimized such unnecessary code.

Protected default methods To enforce encapsulation in AST node factory interfaces,

extension factory methods are only used by master factory methods and should be

protected to prevent client code from invoking them by accident. Although default

methods in Java 8 interfaces can only be public, future support for protected default

methods looks promising, as private default methods will be permitted in Java 9 [1].

Multiple dispatch Most type casts in our implementation of extensions are required

because the formal types in method declarations must be fixed for overriding to work

properly. Covariant formal types can eliminate these casts. One way to support covariant

formal types is multimethods [17], where actual argument types, in addition to the

receiver type, play a role in determining the correct method implementation to be invoked.
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MultiJava [24, 72] extends Java with multimethods by allowing a formal type to be

appended with a desired type refinement, e.g., Node@Pair to indicate that the associated

method implementation is only applicable when the argument is of type Pair.

Higher-order polymorphism As an alternative to multiple dispatch, higher-order poly-

morphism can eliminate node type casts appearing in operator implementations. The

Operator interface could be parameterized with the operator’s input node type, but

without higher-order polymorphism, the return types of all operator factory methods

need to be the same, e.g., TypeCheckOperator<Node>. With higher-order polymorphism,

however, the type arguments of these return types could be tailored to specific node types,

eliminating casts. A decidable type system for higher-order polymorphic multimethods

has been proposed [19].

Pattern matching Some rewriting is applicable only to a specific form of the AST node

and its children. Additional checks on the children are needed on top of method dispatch

based on the type of the parent AST node. These checks are similar to deep pattern

matching on the type of children nodes. Some extensions in our implementation contain

basic pattern-matching support to make such rewriting more convenient to write. Native

support for pattern matching, as in Scala [84], F# [111], or JMatch [49], would eliminate

the need for this boilerplate code.

2.9 Related work

Extensibility of compilers is an extension of the expression problem [122], which ad-

dresses the tension between adding new data variants and adding new operations. Com-

posability of compilers can be formulated as the independent extensibility criterion [82],

or the expression families problem [85], a larger-scale version of the expression problem

that addresses the reusability and composability of families of data variants and associated
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operations. One requirement of a solution to the expression problem is static type safety:

no casts should be used. We choose to trade this requirement for multiple-view ASTs, as

casts in our framework are either checked or appear where the target type is clear from

context.

Erdweg et al. [34] define terminology concerning programming language evolution

and provide a survey on related technologies. In their terminology, our framework sup-

ports language extension (implementation of the base language can be reused unchanged

to implement extension) and language unification (implementation of existing languages

can be reused unchanged by adding glue code only), but not self-extension (embedding

domain-specific language into host language), as Java remains our host implementation

language.

Class hierarchy mutation can be traced back to approaches in metamorphic program-

ming [67, 108]. In those approaches, the run-time type of an object can change depending

on its state, allowing different implementations of the same method to be used. Instead

of relying on conditional statements to select a desired method behavior based on the

object’s state value, dynamic class hierarchy mutation redirects pointers in the object’s

virtual function table to a desired method implementation specialized to a particular

state value, thereby improving performance. Unlike metamorphic programming, which

focuses on changing the run-time types to exhibit different behaviors at the object level,

our approach in making the node class hierarchy evolvable focuses on changing the

relationship between AST node types to exhibit different behaviors at the programming-

language extension level. Once the extension is fixed, the type of an AST node created in

that extension and the relationship between node types remains unchanged.

To address the multiple implementation inheritance problem, new host languages

such as gbeta [35], Scala [83], and J& [80] were designed. Scala provides traits that may

contain implementations, but not states; ambiguities are resolved by textual ordering of
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trait names in a subclass declaration. Meanwhile, gbeta assumes that such ambiguity

does not arise for composition to succeed. Our design patterns do not make these

assumptions, yet still handle multiple inheritance gracefully.

The Grace object-based language [14, 15] builds on an observation that fully qualified

class names used in object creation expressions such as new in Java are inimical to

extensibility. Like in our approach, Grace uses factory methods to defer determination of

the actual class to be instantiated until run time. Grace supports independent extensibility,

but only along orthogonal dimensions.

Covariant type refinement [124] may be used to refine the possible types of fields,

thereby widening the available operations on AST nodes. This approach is similar to

our interface subtyping for AST node types and does support independent extensibility,

but requires more boilerplate code than our approach and does not address the object

construction of mixin compositions.

The Turnstile metalanguage [22] uses Racket macros to implement composable type

systems. To improve performance, Turnstile simultaneously type-checks and rewrites

source programs into a target language, as opposed to running these two passes separately

as in the nanopass approach. As usual with approaches using macros, the implemented

translations tightly couple source languages to a limited number of target languages.

In this case, the target languages can only be Racket or extensions thereof, restricting

the resulting executables to the platforms targeted by the Racket compiler. Our design

patterns do not have this limitation, allowing translations to any target language of choice.

One advantage of traditional, monolithic compilers is better performance, as multiple,

small compiler passes require repetitive traversals of the AST, each with only slight

changes. For larger programs, larger ASTs may not fit in memory, incurring more cache

miss across multiple traversals. Design patterns for the Miniphases approach [93] in

the Dotty compiler for Scala reconcile these two camps, allowing compiler passes to be
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implemented in a modular way, but providing infrastructure for noninterfering passes to

be run in a single AST traversal. Implemented in Scala, Miniphases design patterns use

sealed classes that sacrifice code inheritance and extensibility of AST node types for the

convenience of pattern matching. Our design patterns would be complementary to these

performance improvements, and vice versa.

Although this paper has focused on composability of ASTs, grammar extension and

composition remain important for most programming languages. Previous work does

addresses grammar extension and composition [78, 116, 120].

2.10 Conclusion

The research frontier in compiler technology is moving towards domain-specific solutions,

but the burden for understanding these ideas and the shortage of supporting tools delay

the widespread, practical adoption of these solutions. Our design patterns narrow this gap:

a mainstream programming language can address most of the composability problem, but

to fully solve it, more language constructs are needed. With these constructs identified,

mainstream languages can evolve in the right direction. We are now one step closer to

providing a language feature toolbox to programmers and language designers.
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CHAPTER 3

FINDING COUNTEREXAMPLES FROM PARSING CONFLICTS

The design patterns to support compiler evolution and composition presented in the

last chapter only deal with the compilation process once abstract syntax trees are available.

To make evolution and composition possible at the front end, syntax engineering should

receive the same level of attention. The classification of context-free grammars based

on the number of lookahead symbols needed to uniquely determine the next action

a parser should take has made parsing a largely solved problem [54]. In particular,

LR(1) grammars, which require only one lookahead token, can be easily recognized;

parser generators can automatically construct parsers for such grammars. Nevertheless,

upon encountering a non-LR(1) grammar, these parser generators still emit cryptic error

messages that do not pinpoint the source of errors in the grammar. In other words, the

problem of troubleshooting erroneous grammars remains largely unaddressed.

One impediment to debugging grammars is that determining whether a grammar is

ambiguous is undecidable [47], but discouraging theoretical findings should not be an

excuse for not improving error messages given by parser generators. Whenever possible,

parser generators should give sample derivations from an erroneous grammar to suggest

why the grammar itself should be altered.

In this chapter, we present a practical method for constructing counterexamples from

LALR parsing conflicts to help programmers diagnose faulty grammars. This joint work

with Andrew Myers appeared in the Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation [50].

3.1 Introduction

An early triumph of programming language research was the development of parser

generators, tools that in principle provide a concise, declarative way to solve the ubiqui-
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tous problem of parsing. Although LALR parser generators are powerful and have been

available since the 1970s [51], they remain difficult to use, largely because of the chal-

lenges that arise when debugging grammars to eliminate shift/reduce and reduce/reduce

conflicts.

Currently, debugging LALR grammars requires a solid understanding of the internal

mechanism of LR parsers, a topic that is often but not always taught in undergraduate-

level compiler courses. Even with this understanding, language designers can spend

hours trying to understand how a grammar specification leads to the observed conflicts.

The predictable result is that software developers tend to hand-code parsers even for

tasks to which parser generators are ideally suited. Hand-coded parsers lead to code

that is more verbose, less maintainable, and more likely to create security vulnerabilities

when applied to untrusted input [26, 27]. Developers may also compromise the language

syntax in order to simplify parsing, or avoid domain-specific languages and data formats

altogether.

Despite the intrinsic limitations of LL grammars, top-down parser generators such as

ANTLR [89, 90] are popular perhaps because their error messages are less inscrutable. It

is surprising that there does not seem to have been much effort to improve debugging

of conflicts in the more powerful LR grammars. Generalized LR parsers [114] enable

programmers to resolve ambiguities programmatically, but even with GLR parsers, ambi-

guities could be better understood and avoided. Moving towards this goal, Elkhound [69]

reports parse trees but only when the user provides a counterexample illustrating the ambi-

guity. Some LALR parser generators attempt to report counterexamples [78, 125] but can

produce misleading counterexamples because their algorithms fail to take lookahead sym-

bols into account. Existing tools that do construct correct counterexamples [12, 103] use

a brute-force search over all possible grammar derivations. This approach is impractically

slow and does not help diagnose unambiguous grammars that are not LALR.
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We improve the standard error messages produced by LR parser generators by giving

short, illustrative counterexamples that identify ambiguities in a grammar and show how

conflicts arise. For ambiguous grammars, we seek a unifying counterexample, a string

of symbols having two distinct parses. Determining whether a context-free grammar is

ambiguous is undecidable, however [47], so the search for a unifying counterexample

cannot be guaranteed to terminate. When a unifying counterexample cannot be found in

a reasonable time, we seek a nonunifying counterexample, a pair of derivable strings of

symbols sharing a common prefix up to the point of conflict. Nonunifying counterex-

amples are also reported when the grammar is determined to be unambiguous but not

LALR.

Our main contribution is a search algorithm that exploits the LR state machine to

construct both kinds of counterexamples. Our evaluation shows that the algorithm is

efficient in practice. A key insight behind this efficiency is to expand the search frontier

from the conflict state instead of the start state.

The remainder of the chapter is organized as follows. Section 3.2 reviews how LR

parser generators work and how parsing conflicts arise. Section 3.3 outlines properties of

good counterexamples. Sections 3.4 and 3.5 explore algorithms for finding nonunifying

and unifying counterexamples. An implementation of the algorithm that works well in

practice is discussed in Section 3.6. Using various grammars, we evaluate the effective-

ness, efficiency, and scalability of the algorithm in Section 3.7. Section 3.8 discusses

related work, and Section 3.9 concludes.

3.2 Background

We assume the reader has some familiarity with LR grammars and parser generators.

This section briefly reviews the construction of an LR parser and shows how LR parsing

conflicts arise.
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stmt → if expr then stmt else stmt
| if expr then stmt
| expr ? stmt stmt
| arr [ expr ] := expr

expr → num | expr + expr
num → 〈digit〉 | num 〈digit〉

Figure 3.1: An ambiguous CFG

3.2.1 Parser state machine

Starting from a context-free grammar like the one in Figure 3.1, the first step in generating

an LR(1) parser is the construction of a parser state machine for the grammar. Each state

contains a collection of transitions on symbols and a collection of production items. Each

transition is either a shift action on a terminal symbol or a goto on a nonterminal symbol.

A production item (abbreviated item) tracks the progress on completing the right-hand

side of a production. Each item contains a dot (•) indicating transitions that have already

been made on symbols within the production, and a lookahead set of possible terminals

that can follow the production.

The items within a state include those that result from taking transitions from a

predecessor state, and also those generated by the closure of all the productions of any

nonterminal that follows a dot. For the start state, the items include those of productions

of the start symbol and their closure1. Figure 3.2 shows a partial parser state diagram for

the example grammar.

A parser maintains a stack of symbols during parsing. A shift action on the next

input symbol t is performed when a transition on t is available in the current state; t is

pushed onto the stack. A reduction is performed when the current state contains an item

1The actual parser construction adds a special start symbol and production, which are omitted in this
section.
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stmt → • if expr then stmt else stmt {$ }

stmt → • if expr then stmt {$ }

stmt → • expr ? stmt stmt {$ }

stmt → • arr [ expr ] := expr {$ }

expr → • num {?, + }

expr → • expr + expr {?, + }

num → • 〈digit〉 {?, +, 〈digit〉}
num → • num 〈digit〉 {?, +, 〈digit〉}

State 0

stmt → if • expr then stmt else stmt {$, else, . . . }

stmt → if • expr then stmt {$, else, . . . }

expr → • num {then, + }

expr → • expr + expr {then, + }

num → • 〈digit〉 {then, +, 〈digit〉}
num → • num 〈digit〉 {then, +, 〈digit〉}

State 6

stmt → if expr • then stmt else stmt {$, else, . . .}
stmt → if expr • then stmt {$, else, . . .}
expr → expr • + expr {then, + }

State 7

stmt → if expr then • stmt else stmt {$, else, . . .}
stmt → if expr then • stmt {$, else, . . .}
stmt → • if expr then stmt else stmt {$, else, . . .}
stmt → • if expr then stmt {$, else, . . .}

. . .

State 9

stmt → if expr then stmt • else stmt {$, else, . . .}
stmt → if expr then stmt • {$, else, . . .}

State 10

stmt → if expr then stmt else • stmt {$, else, . . .}
stmt → • if expr then stmt else stmt {$, else, . . .}
stmt → • if expr then stmt {$, else, . . .}

. . .

State 11

stmt → if expr then stmt else stmt • {$, else, . . .}

State 12

if

expr

then

stmt

else

stmt

if

if

Figure 3.2: Selected parser states for the ambiguous CFG. Symbol $ indicates the end
of input.
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of the form A→ X1 X2 · · · Xm •, whose lookahead set contains the next input symbol; m

symbols are popped from the stack, and the nonterminal A is then pushed onto the stack.

If neither a shift action nor a reduction is possible, a syntax error occurs.

3.2.2 Shift/reduce conflicts

For LR(1) grammars, actions on parser state machines are deterministic: given a state

and the next input symbol, either a shift action or a reduction is executed. Otherwise, a

state may contain a pair of items that create a shift/reduce conflict on a terminal symbol t:

u a shift item of the form A → X1 X2 · · · Xk • Xk+1 · · · Xm, where Xk+1 = t for some

k ≥ 0 and m ≥ 1, and

u a reduce item of the form B→ Y1 Y2 · · · Yn •, whose lookahead set contains t.

The example grammar has a shift/reduce conflict, because the two items in State 10

match the criteria above on lookahead else. This is the classic dangling else problem.

The grammar is ambiguous because there are two ways to parse this statement:

if expr then if expr then stmt • else stmt

Even though the grammar is ambiguous, not every conflict must contribute to the

ambiguity. Conflicts may also occur even if the grammar is not ambiguous. For instance,

the grammar in Figure 3.3 has a shift/reduce conflict between shift action Y → a • a b

and reduction X → a • under symbol a. Nevertheless, this grammar is LR(2) and hence

unambiguous. In fact, any LR(k) grammar can be transformed to an LR(1) grammar [54].

The transformation procedure is orthogonal to our work, however.

3.2.3 Reduce/reduce conflicts

A state may also contain a pair of distinct reduce items that create a reduce/reduce conflict

because their lookahead sets intersect:
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S → T | S T
T → X | Y
X → a

Y → a a b

Figure 3.3: An unambiguous CFG with a shift/reduce conflict

u A→ X1 X2 · · · Xm •, with lookahead set LA, and

u B→ Y1 Y2 · · · Yn •, with lookahead set LB such that LA ∩ LB , ∅.

3.2.4 Precedence

To simplify grammar writing, precedence and associativity declarations can be used to

resolve shift/reduce conflicts. For example, the grammar in Figure 3.1 has a shift/reduce

conflict between shift item expr → expr • + expr and reduce item expr → expr + expr •

under symbol +, exhibited by the counterexample expr + expr • + expr. Declaring

operator + left-associative causes the reduction to win.

3.3 Counterexamples

The familiar shift/reduce conflicts in the previous section are easily diagnosed by experi-

enced programming language designers. In general, the source of conflicts can be more

difficult to find.

3.3.1 A challenging conflict

The example grammar in Figure 3.1 has another shift/reduce conflict in State 1 (not

shown in Figure 3.2) between

u shift item num→ num • 〈digit〉, and
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u reduce item expr → num •

under terminal symbol 〈digit〉. It is probably not immediately clear why this conflict is

possible, let alone what counterexample explains the conflict. In fact, an experienced

language designer in our research group spent some time to discover this counterexample

by hand2:

expr ? arr [ expr ] := num • 〈digit〉 〈digit〉 ? stmt stmt.

This statement can be derived in two ways from the production stmt → expr ? stmt1 stmt2.

First, we can use the reduce item:

u stmt1 →
∗ arr [ expr ] := num

u stmt2 →
∗ 〈digit〉 〈digit〉 ? stmt stmt

Second, we use the shift item:

u stmt1 →
∗ arr [ expr ] := num 〈digit〉

u stmt2 →
∗ 〈digit〉 ? stmt stmt

This counterexample, along with its two possible derivations, immediately clarifies

why there is an ambiguity and helps guide the designer towards a better syntax, e.g.,

demarcating stmt1 and stmt2. Our goal is to generate such useful counterexamples

automatically.

3.3.2 Properties of good counterexamples

Useful counterexamples should be concise and simple enough to help the user understand

parsing conflicts effortlessly. This principle leads us to prefer counterexamples that are

no more concrete than necessary. Although a sequence of terminal symbols that takes

2This conflict was originally part of a larger grammar.
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the parser from the start state to the conflict state through a series of shift actions and

reductions might be considered a good counterexample, some of these terminals may

distract the user from diagnosing the real conflict. For example, the following input takes

the parser from State 0 to State 10 in Figure 3.2:

if 2 + 5 then arr[4] := 7

But the expression 2 + 5 could be replaced with any other expression, and the statement

arr[4] := 7 with any other statement. Good counterexamples should use nonterminal

symbols whenever the corresponding terminals are not germane to the conflict.

As discussed earlier, LALR parsing conflicts may or may not be associated with an

ambiguity in a grammar. Counterexamples should be tailored to each kind of conflict.

Unifying counterexamples When possible, we prefer a unifying counterexample: a

string of symbols (terminals or nonterminals) having two distinct parses. A unifying

counterexample is a clear demonstration that a grammar is ambiguous. The counterexam-

ple given for the challenging conflict above is unifying, for example.

Good unifying counterexamples should be derivations of the innermost nonterminal

that causes the ambiguity, rather than full sentential forms, to avoid distracting the user

with extraneous symbols. For instance, a good unifying counterexample for the conflict

in Section 3.2.4 is expr + expr • + expr, a derivation of the nonterminal expr, rather than

expr + expr • + expr ? stmt stmt, a derivation of the start symbol.

Nonunifying counterexamples When a unifying counterexample cannot be found, there

is still value in a nonunifying counterexample: a pair of derivable strings of symbols

sharing a common prefix up to the point of conflict but diverging thereafter. The common

prefix shows that the conflict state is reachable by deriving some nonterminal in the

grammar. For example, Figure 3.4 shows a possible nonunifying counterexample for the

challenging conflict.
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expr ? arr [ expr ] := num • 〈digit〉 ? stmt stmt
expr ? arr [ expr ] := num • 〈digit〉 stmt

stmt stmt

stmt

Figure 3.4: A nonunifying counterexample for the challenging conflict. Each bracket
groups symbols derived from the nonterminal stmt.

Like unifying counterexamples, good nonunifying counterexamples should be deriva-

tions of the innermost nonterminal that can reach the conflict state.

Nonunifying counterexamples are produced for unambiguous grammars that are not

LALR. Additionally, since ambiguity detection is undecidable, no algorithm can always

provide a unifying counterexample for every ambiguous grammar. In this case, providing

a nonunifying counterexample is a suitable fallback strategy.

3.4 Constructing nonunifying counterexamples

We first describe an algorithm for constructing nonunifying counterexamples that are

derivations of the start symbol. The algorithm for constructing unifying counterexamples,

described in Section 3.5, identifies the innermost nonterminal that can reach the conflict

state.

Recall that certain terminals in a counterexample can be replaced with a nonterminal

without invalidating the counterexample. Such terminals must have been part of a

reduction. Therefore, a counterexample can be constructed from a walk along transition

edges in the parser state diagram from the start state to the conflict state. Not all such

walks constitute valid counterexamples, however. In particular, the shortest path is often

invalid. For example, the input if expr then stmt forms the shortest path to State 10 in

Figure 3.2, but a conflict does not arise at this point. If the next input symbol is else,

the shift action is performed; if the end of input is reached, the reduction occurs. For a
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(s, itm = A → X1 · · · Xk • Xk+1 Xk+2 · · · Xm, L)

(s′, itm′ = A → X1 · · · Xk Xk+1 • Xk+2 · · · Xm, L)

Xk+1

(a) Transition

(s, itm = A → X1 · · · Xk • Xk+1 · · · Xm, L)

(s, itm′ = Xk+1 → • Z1 · · · Zm′ , followL(itm))

[prod] where Xk+1

is a nonterminal

(b) Production step

Figure 3.5: Edges of a lookahead-sensitive graph

counterexample to be valid, the lookahead sets of parser items must be considered as

well.

Instead of finding the shortest path in the state diagram, our algorithm finds the

shortest lookahead-sensitive path to the conflict state. Intuitively, a lookahead-sensitive

path is a sequence of transitions and production steps3 between parser states that also

keeps track of terminals that actually can follow the current production.

To define lookahead-sensitive paths formally, we first define a lookahead-sensitive

graph, an extension of an LR(1) parser state diagram in which production steps are

represented explicitly. Each vertex is a triple (s, itm, L), where s is a state number, itm is

an item within s, and L is a precise lookahead set. The edges in this graph are defined as

follows:

u transition (Figure 3.5(a)): For every transition in the parser, there is an edge between

appropriate parser states and items, preserving the precise lookahead set between the

vertices.
3A production step picks a specific production of a nonterminal to work on. These steps are implicit in

an LR closure.
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u production step (Figure 3.5(b)): For every item whose symbol after • is a nonterminal,

there is an edge from this item to each item associated with a production of the

nonterminal within the same state. The precise lookahead set changes to the set of

terminals that actually can follow the production. Denoted followL(itm), the precise

follow set for itm in L’s context is defined as follows:

– followL(A→ X1 · · · Xn−1 • Xn) , L.

– followL(A→ X1 · · · Xk • Xk+1 Xk+2 · · · Xn) , {Xk+2} if Xk+2 is a terminal.

– followL(A → X1 · · · Xk • Xk+1 Xk+2 · · · Xn) , FIRST(Xk+2) if Xk+2 is a nonnul-

lable nonterminal, i.e., a nonterminal that cannot derive ε. FIRST(N) is the set of

terminals that can begin a derivation of N.

– followL(A → X1 · · · Xk • Xk+1 Xk+2 · · · Xn) , FIRST(Xk+2) ∪ followL(A →

X1 · · · Xk+1 • Xk+2 · · · Xn) if Xk+2 is a nullable nonterminal.

A shortest lookahead-sensitive path is a shortest path in the lookahead-sensitive graph.

To construct a counterexample, the algorithm starts by finding a shortest lookahead-

sensitive path from (s0, itm0, {$}) to (s′, itm′, L′), where s0 is the start state, itm0 is the

start item, s′ is the conflict state, itm′ is the conflict reduce item4, and L′ contains the

conflict symbol. The symbols associated with the transition edges form the first part of a

counterexample. For instance, Figure 3.6(a) shows the shortest lookahead-sensitive path

to the conflict reduce item in State 10 of Figure 3.2. This path gives the prefix of the

expected counterexample:

if expr then if expr then stmt •

To avoid excessive memory consumption, our algorithm does not construct the

lookahead-sensitive graph in its entirety. Rather, vertices and edges are created as they

are discovered.
4The conflict shift item cannot be used because we have no information about the lookahead symbol

after the completion of the shift item.
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(0, START → • stmt $, {$})

(0, stmt → • if expr then stmt else stmt, {$})

(6, stmt → if • expr then stmt else stmt, {$})

(7, stmt → if expr • then stmt else stmt, {$})

(9, stmt → if expr then • stmt else stmt, {$})

(9, stmt → • if expr then stmt, {else})

(6, stmt → if • expr then stmt, {else})

(7, stmt → if expr • then stmt, {else})

(9, stmt → if expr then • stmt, {else})

(10, stmt → if expr then stmt •, {else})

1[prod]

2if

3expr

4then

5[prod]

6if

7expr

8then

9stmt

(a) The shortest lookahead-sensitive path to the conflict reduce item

(10, stmt → if expr then stmt • else stmt)

(9, stmt → if expr then • stmt else stmt)

(7, stmt → if expr • then stmt else stmt)

(6, stmt → if • expr then stmt else stmt)

(9, stmt → • if expr then stmt else stmt)

(9, stmt → if expr then • stmt)

(7, stmt → if expr • then stmt)

(6, stmt → if • expr then stmt)

(0, stmt → • if expr then stmt)

(0, START → • stmt $)
[prod]

if

expr

then

[prod]

if

expr

then

stmt

(b) The path to the conflict shift item obtained from the shortest lookahead-sensitive path

Figure 3.6: Paths to the dangling-else shift/reduce conflict
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The partial counterexample constructed so far takes the parser to the conflict state.

Counterexamples can be constructed in full by completing all the productions made

on the shortest lookahead-sensitive path. Since the conflict terminal is a vital part of

counterexamples, this terminal must immediately follow •. In the example above, a

production step was made in State 9 (step 5 in Figure 3.6(a)), where the next symbol to

be parsed is the conflict terminal else. In this case, the production can be completed

immediately, yielding the counterexample

if expr then if expr then stmt • else stmt

On the other hand, if the symbol immediately after • is a nonterminal, a derivation of

that nonterminal beginning with the conflict symbol is required. Consider once again the

conflict between expr → num • and num→ num • 〈digit〉 under lookahead 〈digit〉. The

shortest lookahead-sensitive path to the reduce item gives the prefix

expr ? arr [ expr ] := num •

but the next symbol to be parsed is stmt. In this case, we must find a statement that starts

with a digit, e.g., 〈digit〉 ? stmt stmt, yielding the counterexample

expr ? arr [ expr ] := num • 〈digit〉 ? stmt stmt

The shortest lookahead-sensitive path only reveals a counterexample that uses the

conflict reduce item. A counterexample that uses the conflict shift item can be discovered

by exploring the states on the shortest lookahead-sensitive path as follows. Since transi-

tions on input symbols must be between the same states for both counterexamples, the

only difference is that the derivation using the shift item may take different production

steps within such states. To determine these production steps, our algorithm starts at the

conflict shift item and explores backward all the productions that may be used in the

states along the shortest lookahead-sentitive path, until an item used in the derivation

using the reduce item is found. For example, Figure 3.6(b) shows the reverse sequence
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leading to the shift item of the dangling-else conflict. Observe that this sequence follows

the same states as in the shortest lookahead-sensitive path when making transitions,

namely, [0, 6, 7, 9, 6, 7, 9, 10]. Even though this sequence yields the same counterexample

as above, the derivation is different.

3.5 Constructing unifying counterexamples

The algorithm for constructing nonunifying counterexamples does not guarantee that the

resulting counterexamples will be ambiguous if the grammar is. To aid the diagnosis of

an ambiguity, the symbols beyond the conflict terminal must agree so that the entire string

can be parsed in two different ways using the two conflict items. Since these conflict

items force parser actions to diverge after the conflict state, the algorithm must keep track

of both parses simultaneously.

3.5.1 Product parser

The idea of keeping track of two parses is similar to the intuition behind generalized LR

parsing [114], but instead of running the parser on actual inputs, our approach simulates

possible parser actions and constructs counterexamples at parser generation time. Two

copies of the parser are simulated in parallel. One copy is required to take the reduction

and the other to take the shift action of the conflict. If both copies accept an input at the

same time, then this input is a unifying counterexample. A distinct sequence of parser

actions taken by each copy describes one possible derivation of the counterexample.

More formally, the parallel simulation can be represented by actions on a product

parser, whose states are the Cartesian product of the original parser items. Two stacks

are used, one for each original parser. This construction resembles that of a direct product

of nondeterministic pushdown automata [2], but here the states are more tightly coupled
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to make parser actions easier to understand. Like a lookahead-sensitive graph, a product

parser represents production steps explicitly. Actions on a product parser are defined as

follows:

u transition: If both items in a state of the product parser have a transition on symbol

Z in the original parser, there is a corresponding transition on Z in the product parser

(Figure 3.7(a)). When this transition is taken, Z is pushed onto both stacks.

u production step: If an item in a state of the product parser has a nonterminal after •,

there is a production step on this nonterminal in the product parser (Figure 3.7(b)).

Both stacks remain unchanged when a production step is taken.

u reduction: If an item in a state of the product parser is a reduce item, a reduction can be

performed on the original parser associated with this item, respecting its loookahead

set, while leaving the other item and its associated stack unchanged.

For a conflict between items itm1 and itm2, a string accepted by the product parser

that also takes the parser through state (itm1, itm2) is a unifying counterexample for the

conflict.

Although any algorithms that simulate the product parser through the conflict state

are theoretically sufficient to exhibit a unifying counterexample, many are impractical

because of the size of the search space. The remainder of this section describes an

algorithm that explores no more search states than necessary.

3.5.2 Outward search from the conflict state

The strategy of using shortest lookahead-sensitive paths to avoid exploring too many

states does not work in general, because symbols required after • might be incompatible

with the productions already made on these paths. For example, the grammar in Figure 3.8

has two shift/reduce conflicts in the same state, between reduce item A→ a • and two
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itm1 = A → X1 · · · Xk • Xk+1 Xk+2 · · · Xm

itm2 = B → Y1 · · · Y` • Y`+1 Y`+2 · · · Yn

State (itm1, itm2)

itm′1 = A → X1 · · · Xk Xk+1 • Xk+2 · · · Xm

itm′2 = B → Y1 · · · Y` Y`+1 • Y`+2 · · · Yn

State (itm′1, itm
′
2) Z, where Z = Xk+1 = Y`+1

(a) Transition

itm1 = A → X1 · · · Xk • Xk+1 · · · Xm

itm2 = . . .

State (itm1, itm2)

itm′1 = Xk+1 → • Z1 · · · Zm′

itm2 = . . .

State (itm′1, itm2) [prod] where Xk+1

is a nonterminal

(b) Production step on the first parser

Figure 3.7: Components of the state machine for a product parser
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S → N | N c

N → n N d | n N c | n A b | n B
A → a

B → a b c | a b d

Figure 3.8: An ambiguous grammar where the shortest lookahead-sensitive path does
not yield a unifying counterexample

I1 = [itm1
1, . . . , itm

m1
1 ]

D1 = [d1
1, . . . , d

n1
1 ]

I2 = [itm1
2, . . . , itm

m2
2 ]

D2 = [d1
2, . . . , d

n2
2 ]

(a) General form

I1 = [conflict-item1]
D1 = []

I2 = [conflict-item2]
D2 = []

(b) Initial configuration

Figure 3.9: Configurations. Each itm is an item in the original parser, and each d is a
derivation associated with a transition between items.

shift items B → a • b c and B → a • b d under symbol b. The shortest lookahead-

sensitive path gives prefix n a •, which is compatible with a unifying counterexample

for the first shift item, namely, n a • b c. Still, no unifying counterexamples that use

the second shift item can begin with n a •. An extra n is required before •, as in n n a

• b d c. This example suggests that deciding on the productions to use before reaching

the conflict state is inimical to discovering unifying counterexamples.

To avoid making such decisions, our search algorithm starts from the conflict state

and completes derivations outward. Each search state, denoted configuration henceforth,

contains two pairs of (1) a sequence of items representing valid transitions and produc-

tion steps in the original parser, and (2) partial derivations associated with transitions

between items, as shown in Figure 3.9(a). The initial configuration contains (1) singleton

sequences of the conflict items and (2) empty derivations, as shown in Figure 3.9(b). As

partial derivations are expanded, configurations progress through four stages, which are
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illustrated in Figure 3.10 for the challenging conflict from Section 3.3.1. The four stages

are as follows:

1. Completion of the conflict reduce item: the counterexample must contain derivations

of all symbols in the reduce item. For shift/reduce conflicts, some of the symbols

before • in the shift item will also be derived in this stage. For reduce/reduce conflicts,

both conflict items are completed in this stage.

2. Completion of the conflict shift item: the counterexample must also contain derivations

of all symbols in the shift item after •, and of any remaining symbols before • that

were not derived in Stage 1. This stage is not needed for reduce/reduce conflicts.

3. Discovery of the unifying nonterminal: the counterexample must be a derivation of a

single nonterminal. This stage is completed when the derivations on both paths of the

parser originate from the same nonterminal. This stage also identifies the innermost

nonterminal for nonunifying counterexamples.

4. Completion of the entire unifying counterexample: the final counterexample must

complete all the unfinished productions. This stage attempts to find the remaining

symbols so that the derivation of the nonterminal found in Stage 3 can be completed

at the same time on both copies of the parser.

3.5.3 Successor configurations

We now present a strategy for computing successor configurations. Figure 3.11 pictures

some of the possible successor configurations that can be reached from the configuration

shown in Figure 3.9(a) via various actions in the product parser:

u transition (Figure 3.11(a)): If the product parser has a transition on symbol Z from the

last item in the current configuration, append the current configuration with appropriate

items and symbols.
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Stage 1:

num •
expr

Stage 2:

arr[ expr ]:= num • 〈digit〉

. . .
numexpr

. . .
stmt num

. . .
expr

. . .
stmt

. . . . . .stmt

num

Stage 3:

arr[ expr ]:= num • 〈digit〉
expr num

. . .
stmt num

. . .
expr

. . .
stmt

. . . . . .stmt

num
expr

stmt
. . . . . .stmt

unifying
nonterminal

Stage 4:

expr ? arr[ expr ]:= num • 〈digit〉 〈digit〉 ? stmt stmt
expr num

stmt num
expr

stmt
stmt

num num
expr expr

stmt stmt
stmt

Figure 3.10: Counterexamples and derivations associated with configurations after fin-
ishing each stage for the challenging conflict. The derivation above each counterexample
uses the reduce item; the one below uses the shift item. The gray portion of the configu-
ration is not required for completing the stage.
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itmm1
1

itmm2
2

itm′1
itm′2

Z

I1 ++ [itm′1]
D1 ++ [Z]
I2 ++ [itm′2]
D2 ++ [Z]

(a) Transition

itmm1
1

itmm2
2

itm′1
itmm2

2

[prod]

I1 ++ [itm′1]
D1

I2

D2

(b) Production step on the first parser

itm′1
itm′2

itm1
1

itm1
2

Z

[itm′1] ++ I1

[Z] ++ D1

[itm′2] ++ I2

[Z] ++ D2

where itmm1
1 is a reduce item

and itm′1, itm
′
2 are in same state

(c) Reverse transition

itm′1
itm1

2

itm1
1

itm1
2

[prod]

[itm′1] ++ I1

D1

I2

D2

where itmm1
1 is a reduce item of the form

A→ X1 · · · X` •, and m1 = ` + 1
(d) Reverse production step on the first parser

itm1
1

itm′2

itm1
1

itm1
2

[prod]

I1

D1

[itm′2] ++ I2

D2

where itmm1
1 is a reduce item of the form

A→ X1 · · · X` •, and m1 < ` + 1
(e) Reverse production step on the second parser

Figure 3.11: Successor configurations. Each kind of edge in the product parser corre-
sponds to a particular successor configuration. Operator ++ denotes list concatenation.
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itmm1−`−1
1 = B→ Y1 · · · Yk • A · · · Ym

itm′1 = B→ Y1 · · · Yk A • · · · Ymitmm1−`
1 = A→ • X1 · · · X`

...

itmm1
1

[prod] A

I′1 = [itm1
1, . . . , itm

m1−`−1
1 , itm′1]

D′1 = [d1
1, . . . , d

n1−`
1 , (A→ dn1−`+1

1 · · · dn1
1 )]

I2 = . . .

D2 = . . .

where itmm1
1 is a reduce item of the form

A→ X1 · · · X` •, and m1 > ` + 1
(f) Reduction on the first parser

Figure 3.11: Successor configurations (continued). Each kind of edge in the product
parser corresponds to a particular successor configuration.

u production step on the first parser (Figure 3.11(b)): If the product parser has a

production step on the first parser from the last item in the current configuration,

append the item resulting from taking the production step (itm′1) to the sequence of

items for the first parser (I1). A production step on the second parser is symmetric.

u preparation of the first parser for a reduction: If the last item for the first parser is a

reduce item, but there are not enough items to simulate a reduction moving forward,

then more items must be prepended to the configuration. That is, we must work back-

ward to ready the reduction. Preparing the second parser for a reduction is symmetric.

Successor configurations depend on the first item in the current configuration:

– reverse transition (Figure 3.11(c)): If the product parser has a transition on symbol

Z to the first item in the current configuration, prepend the current configuration

with appropriate items and symbols. The prepended items must belong to the same

state in the original parser. Additionally, the lookahead set of the item prepended to

the first parser (itm′1) must contain the conflict symbol if the current configuration
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is yet to complete Stage 1 so that the derivation of the conflict symbol remains

possible.

– reverse production step on the first parser (Figure 3.11(d)): If the product parser

has a production step on the first parser to the first item in the current configuration,

prepend the item prior to taking the production step (itm′1). to the sequence of items

for the first parser (I1).

– reverse production step on the second parser (Figure 3.11(e)): Occasionally, the

second parser will require a reverse production step so that further reverse transitions

can be made. In this case, prepend the item prior to taking the production step (itm′2)

to the sequence of items for the second parser (I2).

u reduction on the first parser (Figure 3.11(f)): If the last item for the first parser is a

reduce item of the form A → X1 · · · X` •, and the configuration has enough items,

then the first parser is ready for a reduction. A successor configuration is obtained by

(1) removing the last ` + 1 items that are part of the reduction from I1, which simulates

popping the parser stack, (2) appending the result of taking the goto on A (itm′1) to I1,

and (3) rearranging the partial derivations (D1) to complete the derivation for A. The

second parser remains unchanged throughout the reduction. A reduction on the second

parser is symmetric.

3.5.4 Completing the search

The search algorithm computes successor configurations until it encounters a configura-

tion C f that has completed Stages 1 and 2, where both sequences of items in C f are of

the form

[?→ · · · • A · · · , ?→ · · · A • · · · ]
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for some nonterminal A. The partial derivations associated with these sequences, which

must be of the form [A → · · · ], show that nonterminal A is ambiguous. The unifying

counterexample is the sequence of the leaf symbols within these derivations.

Several observations can be made about the algorithm. First, the algorithm maintains

an invariant that the head of both sequences of items in any configuration belong to the

same parser state, as the sequence of states prior to the conflict must be identical for

different derivations of the unifying counterexample. Second, a configuration generates

multiple successor configurations only when a production step (forward or backward) or

a reverse transition is taken. Therefore, the branching factor of the search is proportional

to the ratio of the number of these actions to the number of items in the parser.

The third observation is that a production step may be taken repeatedly within the

same state, such as one for items of the form A→ • A · · · . To avoid infinite expansions

on one configuration without making progress on others, the search algorithm must post-

pone such an expansion until other configurations have been considered. The algorithm

imposes different costs on different kinds of actions and considers configurations in order

of increasing cost.

Finally, the algorithm is guaranteed to find a unifying counterexample for every

ambiguous grammar, but the search will not terminate when infinite expansions are

possible on unambiguous grammars. In other words, this semi-decision procedure for

determining ambiguity is sound and complete. Since a naive implementation of this

algorithm is too slow for practical use, the next section discusses techniques that speed

up the search but still maintain the quality of counterexamples.
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Warning : *** Shift/Reduce conflict found in state #13

between reduction on expr ::= expr PLUS expr •

and shift on expr ::= expr • PLUS expr

under symbol PLUS

Ambiguity detected for nonterminal expr

Example: expr PLUS expr • PLUS expr

Derivation using reduction:

expr ::= [expr ::= [expr PLUS expr •] PLUS expr]

Derivation using shift :

expr ::= [expr PLUS expr ::= [expr • PLUS expr]]

Figure 3.12: A sample error message reported by the implementation. The first four
lines are original to CUP.

3.6 Implementation

Our counterexample finder has been implemented in Java as a module extending the CUP

LALR parser generator [48] version 0.11b 201503265. The module contains 1478 non-

comment, nonempty lines of code. Whenever a conflict is detected, the counterexample

finder is run by default. The option -noexamples can be used to turn off the search.

Figure 3.12 shows an error message reported by our implementation for the shift/reduce

conflict in Section 3.2.4. Whenever a unifying counterexample is found, the nonterminal

that permits two different derivations using the conflict items is reported along with

the counterexample discovered. The actual derivations are then reported to let the user

pinpoint the location of the conflict. One interesting design choice was the tradeoff

between finding unifying counterexamples when they exist, and avoiding long, possibly

fruitless searches when a nonunifying counterexample might suffice.

Data structures The search algorithm requires many queries on possible parser actions,

but parser generators usually do not provide an infrastructure for fast lookups. In

particular, reverse transitions and production steps are not represented directly. Before

5Available at https://github.com/polyglot-compiler/polyglot/tree/master/tools/
java_cup.
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working on the first conflict within a grammar, our implementation generates these lookup

tables:

u transition map of type Item × Symbol→ Item

u reverse transition map of type Item × Symbol→ P(Item), as many items can make a

transition on a given symbol to a given item

u production step map of type Item→ P(Item), as the nonterminal immediately after •

may have multiple productions

u reverse production step map of type State × NonTerminal → P(Item), i.e., given

a parser state and a nonterminal, this map returns a set of items that can make a

production step on the nonterminal.

A search configuration is an object containing two lists of items and two lists of

derivations for the two parser paths, a complexity associated with the cost of parser actions

that have already been made, and boolean flags indicating whether the two conflict items

have been completed, i.e., completion of Stages 1 and 2. A derivation is a tree of symbols,

where a leaf may be a terminal or a nonterminal whose derivations are not important to

the counterexample.

The search algorithm uses a priority queue to consider configurations in increasing

order of complexity. Instead of holding configurations directly, the priority queue main-

tains sets of configurations having the same complexity. We choose this representation

because many configurations have the same complexity, but inserting an element into

a priority queue has a running time logarithmic in size. This design choice reduces the

size of the priority queue to the number of distinct configuration complexities. Also, the

computation of successor configurations could result in duplicates, e.g., when reductions

on the two paths are made in different orders. Using sets prevents the algorithm from

considering identical configurations more than once.
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Finding shortest lookahead-sensitive path When our tool receives a conflict, it finds

the shortest lookahead-sensitive path to the reduce conflict item as the first step. This path

can be used in the main search algorithm as a tradeoff between performance and discovery

of all unifying counterexamples, discussed below. The shortest lookahead-sensitive path

is also used occasionally to construct nonunifying counterexamples when the main search

algorithm fails.

Blindly searching for the shortest path from the start state might explore all parser

states. As an optimization, only states that can reach the reduce conflict item need

be considered. These states can be found quickly using the lookup tables for reverse

transitions and reverse production steps.

Constructing unifying counterexamples Next, the main search algorithm is invoked.

Our implementation uses a variant of the aforementioned computation of successor

configurations. First, transitions on nullable nonterminals should not incur additional

costs, as they do not alter unifying counterexamples. For this reason, such transitions

are made immediately after any other transitions and after any reductions. Making

costless transitions along with other actions that incur cost ensures that the configuration

complexity is strictly increasing. As a result, all configurations of any given cost will

have been discovered when they are removed from the priority queue, guaranteeing that

the algorithm will make progress.

Second, this search algorithm is unguided, like one for finding the shortest lookahead-

sensitive path. As a tradeoff, the algorithm only considers states on the shortest lookahead-

sensitive path when making reverse transitions. This restriction makes the algorithm

incomplete, causing it to miss unifying counterexamples that use parser states outside

the shortest path. Nevertheless, a counterexample that follows the shortest lookahead-

sensitive path will take the parser to the conflict state as quickly as possible. These
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Action Cost
transition 1

production step 50
reverse transition 1

reverse production 50
reduction 1

extended search 10000

Table 3.1: Cost model used in the implementation of the search algorithm

compact counterexamples seem as helpful as unifying ones, so our tool does report them.

The option -extendedsearch can be used to force a full search.

As stated earlier, the algorithm requires costs associated with different parser actions

to ensure progress. The current implementation uses the cost model shown in Table 3.1.

The cost for the extended search applies when a reverse transition is made to a state not

on the shortest path.

Constructing nonunifying counterexamples The search for unifying counterexamples

may fail in two cases: first, when eligible configurations run out; second, when a produc-

tion step in an unambiguous grammar is taken repeatedly, resulting in nontermination.

Therefore, our implementation imposes a 5-second time limit on the main search algo-

rithm. When the search fails, a nonunifying counterexample is constructed and reported

instead.

How nonunifying counterexamples are constructed depends on the configuration

stages the main search has encountered at failure. If a configuration that have completed

Stage 3 was encountered, the nonunifying counterexamples are two derivations of the

unifying nonterminal in that configuration. Otherwise, they are derivations of the start

symbol.

The implementation also imposes a 2-minute time limit on the cumulative running

time of the unifying counterexample finder. After two minutes, at least 20 conflicts must
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have been accompanied with counterexamples, so the user is likely to prefer resolving

them first. Our tool seeks only nonunifying counterexamples thereafter.

Exploiting precedence Precedence and associativity are not part of the parser state

diagram, and hence are not part of the generated lookup tables. Therefore, our implemen-

tation inspects precedence declared with relevant terminals and productions during the

search. Alternatively, precedence and associativity could be considered when generating

the lookup tables. We choose not to do so because these properties are inexpensive to

check and because the lookup tables are simpler to generate when they are not taken into

account.

3.7 Evaluation

Our evaluation aims to answer three questions:

u Is our implementation effective on different kinds of grammars?

u Is our implementation efficient compared to existing ambiguity detection tools?

u Does our implementation scale to reasonably large grammars?

3.7.1 Grammar examples

We have evaluated our implementation on a variety of grammars. For each grammar,

Table 3.2 lists the complexity (the numbers of nonterminals and productions, and the

number of states in the parser state machine) and the number of conflicts. The grammars

are partitioned into the following categories:

Our grammars All grammars shown in this paper are evaluated. Other grammars that

motivated the development of our tool, and a few grammars in previous software projects

that pose challenging parsing conflicts are also part of the evaluation.
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Grammar # nonterms

# prods
# states

# conflicts

Amb?

figure3.1 3 9 24 3 4

figure3.3 4 7 10 1 7

figure3.8 4 10 16 2 4

ambfailed01 6 10 17 1 4

abcd 5 11 22 3 4

simp2 10 41 70 1 4

xi 16 41 82 6 4

eqn 14 67 133 1 4

java-ext1 185 445 767 2 7

java-ext2 234 599 1255 1 7

stackexc01 2 7 13 3 4

stackexc02 6 11 15 1 7

stackovf01 2 5 9 1 7

stackovf02 2 5 9 4 4

stackovf03 2 6 10 1 4

stackovf04 5 9 13 1 7

stackovf05 5 10 14 1 4

stackovf06 6 10 15 2 7

stackovf07 7 12 17 3 4

stackovf08 3 13 21 8 7

stackovf09 6 12 27 1 7

stackovf10 9 20 53 19 4

SQL.1 8 23 46 1 4

SQL.2 29 81 151 1 4

SQL.3 29 81 149 1 4

SQL.4 29 81 151 1 4

SQL.5 29 81 151 1 4

Pascal.1 79 177 323 3 4

Pascal.2 79 177 324 5 4

Pascal.3 79 177 321 1 4

Pascal.4 79 177 322 1 4

Pascal.5 79 177 322 1 4

C.1 64 214 369 1 4

C.2 64 214 368 1 4

C.3 64 214 368 4 4

C.4 64 214 369 1 4

C.5 64 214 370 1 4

Java.1 152 351 607 1 4

Java.2 152 351 606 1133 4

Java.3 152 351 608 2 4

Java.4 152 351 608 14 4

Java.5 152 351 607 3 4

# nonterms
Number of nonterminals
in the grammars.

# prods
Number of productions in
the grammars.

# states
Number of states in the
parser state machine.

# conflicts
Number of conflicts in
the parser state machine.

Amb?
Whether the grammar is
ambiguous.

Table 3.2: Characterization of grammars used in the evaluation.
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Time (seconds)
Grammar # unif

# nonunif

# tim
e out

Total Average
figure3.1 3 0 0 0.072 0.024
figure3.3 0 1 0 0.010 0.010
figure3.8 2 0 0 0.016 0.008
ambfailed01 0 1 0 0.010 0.010
abcd 3 0 0 0.024 0.008
simp2 1 0 0 0.548 0.548
xi 6 0 0 0.155 0.026
eqn 1 0 0 0.169 0.169
java-ext1 0 0 2 T/L T/L
java-ext2 0 0 1 T/L T/L
stackexc01 3 0 0 0.023 0.008
stackexc02 0 1 0 0.008 0.008
stackovf01 0 1 0 0.009 0.009
stackovf02 4 0 0 0.043 0.011
stackovf03 1 0 0 0.017 0.017
stackovf04 0 1 0 0.009 0.009
stackovf05 1 0 0 0.010 0.010
stackovf06 0 2 0 0.012 0.006
stackovf07 3 0 0 0.028 0.009
stackovf08 0 8 0 0.025 0.003
stackovf09 0 1 0 0.017 0.017
stackovf10 19 0 0 0.140 0.007
SQL.1 1 0 0 0.024 0.024 (1.8s)
SQL.2 1 0 0 0.060 0.060 (0.1s)
SQL.3 1 0 0 0.024 0.024 (0.1s)
SQL.4 1 0 0 0.031 0.031 (0.0s)
SQL.5 1 0 0 0.030 0.030 (0.4s)
Pascal.1 2 0 1 0.196 0.098 (0.3s)
Pascal.2 5 0 0 0.296 0.059 (0.1s)
Pascal.3 1 0 0 0.070 0.070 (1.2s)
Pascal.4 1 0 0 0.081 0.081 (0.3s)
Pascal.5 1 0 0 0.113 0.113 (0.3s)
C.1 1 0 0 0.327 0.327 (1.3s)
C.2 1 0 0 0.219 0.219 (1.11h)
C.3 4 0 0 1.015 0.254 (0.5s)
C.4 0 0 1 T/L T/L (1.3s)
C.5 1 0 0 0.212 0.212 (4.9s)
Java.1 1 0 0 0.569 0.569 (32.4s)
Java.2 141 0 9 (983) 35.384 0.251 (0.4s)
Java.3 2 0 0 0.435 0.218 (35.1s)
Java.4 6 2 6 2.042 0.255 (6.5s)
Java.5 3 0 0 0.526 0.175 (3.3s)

# unif
Number of conflicts for
which unifying coun-
terexamples are found
within the time limit.

# nonunif
Number of conflicts for
which nonunifying coun-
terexamples are found
within the time limit.

# time out
Number of conflicts for
which the tool times out.
Nonunifying counterex-
amples are reported for
these conflicts.

Total time
Time used when coun-
terexamples are found
within the time limit.
(Average of 15 runs,
with a standard devia-
tion of at most 15%, so
the margin of error is at
most 9% at 95% confi-
dence.)

Average time
Total time

# unif + # nonunif

T/L
5-second time limit ex-
ceeded on all conflicts.

Times in parentheses indi-
cate running time for the
state-of-the-art ambiguity
detector [3, 7].

Table 3.3: Evaluation results on finding counterexamples.
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Grammars from StackOverflow and StackExchange We evaluate our tool against

grammars posted on StackOverflow and StackExchange by developers who had difficulty

understanding the conflicts. This section of Table 3.2 links to the corresponding web

pages.

Grammars from existing tool To compare our implementation with the state of the art,

we run our tool against the grammars used to evaluate the grammar filtering technique [7].

These grammars, which we call the BV10 grammars hereafter, were constructed by

injecting conflicts into correct grammars for mainstream programming languages. In

some grammars (e.g., Java.2), the addition of a nullable production generates a large

number of conflicts.

3.7.2 Effectiveness

Our tool always gives a counterexample for each conflict in every grammar. Table 3.3

reports the numbers of conflicts for which our tool successfully finds a unifying coun-

terexample (if the grammar is ambiguous), for which our tool determines that no unifying

counterexample exists, and for which our tool times out and hence reports a nonunifying

counterexample. For grammars requiring more than two minutes of the main search algo-

rithm, the number of remaining conflicts is shown in parentheses. Our implementation

finishes within the time limit on 92% of the conflicts.

The main search algorithm may fail to find a unifying counterexample even if the

grammar is ambiguous. One reason is the tradeoff used to reduce the number of con-

figurations, as explained in Section 3.6. Grammar ambfailed01 illustrates this problem.

Another reason is that the configuration describing the unifying counterexample has a

cost too high for the algorithm to reach within the time limit. For instance, the ambiguous

counterexample for grammar C.4 requires a long sequence of production steps. For these

failures, nonunifying counterexamples are reported instead.
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We also compare effectiveness against prior versions of the Polyglot Parser Generator

(PPG) [78], which attempt to report only nonunifying counterexamples. PPG produces

misleading results on ten benchmark grammars: figure3.1, figure3.8, abcd, simp2, SQL.5,

Pascal.3, C.2, Java.1, Java.3, and Java.4. Incorrect counterexamples are generated because

PPG’s algorithm ignores conflict lookahead symbols. For instance, PPG reports this

invalid counterexample for the dangling-else conflict:

if expr then stmt • else

if expr then stmt • else stmt

For grammar SQL.5, the reported counterexample is

delete from y table where y boolean • order

delete from y table where y boolean • order by y order

which does not even constitute a valid SQL syntax allowed by the grammar, as opposed

to the unifying counterexample reported by our tool:

select y columns from y table where y boolean • order by y order

The unifying counterexamples given by our algorithm provide a more accurate explana-

tion of how parsing conflicts arise. Our algorithm has been integrated into a new version

of PPG.

3.7.3 Efficiency

We have measured the running time of the algorithm on the conflicts that our tool runs

within the time limit. These measurements were performed on an Intel Core2 Duo E8500

3.16GHz, 4GB RAM, Windows 7 64-bit machine. The results are shown in the last

two columns of Table 3.3. For the BV10 grammars, we also include in parentheses the

time used on a similar machine by a grammar-filtering variant of CFGAnalyzer [3, 7],
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which is the fastest, on average, among the ambiguity detection tools we have found.

This state-of-the-art ambiguity detector terminates as soon as it finds one ambiguous

counterexample, whereas our tool finds a counterexample for every conflict. Hence, the

running time of the state-of-the-art tool is compared against the average time taken per

conflict in our implementation.

On average, when the time limit is not exceeded, the algorithm spends 0.18 seconds

per conflict to construct a counterexample. For grammars taken from StackOverflow and

StackExchange, the average is 8 milliseconds. Instead of posting these grammars on the

Internet and waiting for others to respond, programmers can use our tool to diagnose the

grammars almost instantly, thereby increasing productivity.

For the BV10 grammars, our algorithm outperforms the filtering technique. Based

on a geometric average, our tool is 10.7 times faster than the variant of CFGAnalyzer,

which takes more than 30 seconds to find a counterexample for certain grammars. (One

grammar takes 0.0s for both tools and therefore dropped from the average.) For most

of these grammars, the time our implementation takes to find counterexamples for all

conflicts is less than that of the state-of-the-art tool trying to find just one counterexample.

For grammar C.4, the CFGAnalyzer variant finds a unifying counterexample, but our

tool fails to do so within the time limit. This result suggests that grammar filtering would

be a useful addition to our approach.

3.7.4 Scalability

The evaluation results show that the running time of our algorithm only increases

marginally on larger grammars, such as those for mainstream programming languages.

The performance shown here demonstrate that, unlike prior tools, our counterexample

finder is practical and suitable for inclusion in LALR parser generators.
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3.8 Related work

Generating counterexamples is just one way to help address parsing conflicts. In general,

several lines of work address ways to deal with such problems. We discuss each of them

in turn.

Ambiguity detection Several semi-decision procedures have been devised to detect

ambiguity. Pandey provides a survey [88] on these methods, some of which we discuss

below.

One way to avoid undecidability is to approximate input CFGs. The Noncanoni-

cal Unambiguity (NU) test [101] uses equivalence relations to reduce the number of

distinguishable derivations of a grammar, reducing the size of the search space but over-

approximating the language. Its mutual accessibility relations are analogous to actions in

our product parser. Basten extends the NU test to identify a nonterminal that is the root

cause of ambiguity [5]. One challenge of the NU test is choosing appropriate equivalence

relations.

A brute-force way to test ambiguity is to enumerate all strings derivable from a given

grammar and check for duplicates. This approach, used by AMBER [103], is accurate

but prohibitively slow. Grammar filtering [7] combines this exhaustive approach with

the approximative approach from the NU test to speed up discovery of ambiguities. Am-

biDexter [6] uses parallel simulation similar to our approach, but on the state machine of

an LR(0), grammar-filtered approximation that accepts a superset of the actual language.

This allows false positives.

CFGAnalyzer [3] converts CFGs into constraints in propositional logic that are

satisfiable if any nonterminal can derive an ambiguous phrase whose length is within a

given bound. This bound is incremented until a SAT solver finds the constraints satisfiable.
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CFGAnalyzer does report counterexamples, but never terminates on unambiguous input

grammars even if there is a parsing conflict.

Schmitz’s experimental ambiguity detection tool [102] for Bison constructs a non-

deterministic automaton (NFA) of pairs of parser items similar to our product parser

states. Its reports of detected and potential ambiguities remain similar to parsing conflict

reports and hence difficult to interpret. Counterexample generation remains future work

for Schmitz’s tool. To obtain precise ambiguity reports for LALR(1) construction, this

tool must resort to constructing NFAs for LR(1) item pairs.

SinBAD [119] randomly picks a production of a nonterminal to expand when gen-

erating sentences, increasing the chance of discovering ambiguity without exhaustively

exploring the grammar. SinBAD’s search still begins at the start symbol, so reported

counterexamples might not identify the ambiguous nonterminal.

Counterexample generation Some additional attempts have been made to generate

counterexamples that illustrate ambiguities or parsing conflicts in a grammar.

Methods for finding counterexamples for LALR grammars can be traced back to

the work of DeRemer and Pennello [29], who show how to generate nonunifying coun-

terexamples using relations used to compute LALR(1) lookahead sets. Unfortunately,

modern implementations of parser generators do not compute these relations. Our method

provides an alternative for finding nonunifying counterexamples without requiring such

relations, and offers a bonus of finding unifying counterexamples when possible.

DMS [12] is a program analysis and transformation system whose embedded parser

generator allows users to write grammars directly within the system. When a conflict is

encountered, DMS uses an iterative-deepening [55] brute-force search on all grammar

rules to find an ambiguous sentence [11]. This strategy can only discover counterexamples

of limited length in an acceptably short time.
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CUP2 [125] reports the shortest path to the conflict state, while prior versions of

PPG [78] attempt to report nonunifying counterexamples. These parser generators often

produce invalid counterexamples because they fail to consider lookahead symbols.

Menhir [94] is an LR(1) parser generator for the OCaml programming language

that explains conflicts in terms of counterexamples like our approach, but only with

nonunifying counterexamples. In other words, there is no guarantee that a unifying

counterexample will be produced even if the grammar is ambiguous. Although Menhir

does factor common derivation contexts when reporting counterexamples, it does not

identify the innermost nonterminal that causes an ambiguity like in our approach. Fur-

thermore, counterexamples in Menhir may be unclear if conflicts are caused by built-in

nonterminals that shorthand common production descriptions, such as nullable and list

productions. The lack of clarity is caused by the underlying implementation of these

built-in nonterminals left unexplained in the counterexamples.

While less powerful than LR grammars, LL grammars can also produce conflicts.

The ANTLR 3 parser generator [89] constructs counterexamples, but they can be difficult

to interpret. For instance, ANTLR 3 provides the counterexample 〈digit〉〈digit〉 for the

challenging conflict in Section 3.3.16. Our technique describes the ambiguity more

clearly.

Conflict resolution Generalized LR parsing [114] keeps track of all possible inter-

pretations of the input seen so far by forking the parse stack. This technique avoids

LR conflicts associated with having too few lookahead symbols but requires users to

merge the outcomes of ambiguous parses at parse time. Our approach, which pinpoints

ambiguities at parser construction time, is complementary and applicable to GLR parsing.

The GLR parsing algorithm is asymptotically efficient for typical grammars, but its

constant factor is impractically high. Elkhound [69] is a more practical hybrid between

6The example grammar was modified to eliminate left recursion.
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GLR and LALR parsing. The GLR algorithm is used only when forking parse stacks is

necessary; otherwise, the usual LALR algorithm is used. Elkhound is almost as fast as

LALR parsers yet supports a more general class of grammars. It can display different

derivations of ambiguous sentences, but the user must provide these sentences.

The eyapp tool [97], a yacc-like parser generator for Perl, postpones conflict resolution

until actual parsing. Users can write code that inspects parser states and provides an

appropriate resolution.

SAIDE [91, 92] is an LALR parser generator that automatically removes conflicts

arising from insufficient number of lookaheads, and attempts to detect ambiguities by

matching conflicts with predefined patterns of known cases. Although this approach

guarantees termination, conflicts could be miscategorized.

Dr. Ambiguity [8] provides diagnostics explaining causes of ambiguities as an

Eclipse [30] plugin, but a collection of parse trees demonstrating ambiguities must

be provided as input.

ANTLR 4 [90] uses textual ordering of productions as precedence and abandons static

detection of conflicts. Textual ordering makes grammars less declarative, but ambiguous

inputs can still exist; any ambiguities are discovered only at parse time.

3.9 Conclusion

Better tools that help language designers quickly find potential flaws within language

syntax can accelerate the design and implementation of programming languages and

promote the use of parser generators for problems involving custom data formats. Our

method finds useful counterexamples for faulty grammars, and evaluation of the imple-

mentation shows that the method is effective and practical. This paper suggests that the

undecidability of ambiguity for context-free grammars should not be an excuse for parser

generators to give poor feedback to their users.
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CHAPTER 4

RECONCILING EXHAUSTIVE PATTERN MATCHING WITH OBJECTS

In Chapter 2, we identified pattern matching as a useful language feature that would

make the translations of language features easier to implement, and hence could sim-

plify how compilers are written. While pattern matching is predominant in functional

languages, it struggles to make way into object-oriented languages. This is because

functional languages can exploit the availability of information on the concrete represen-

tations of instances of algebraic data types. On the contrary, abstraction in object-oriented

programming hides this information from being inspected freely.

One important mechanism for ensuring the correctness of pattern matching is exhaus-

tiveness verification—proving that every instance of a data type will be handled by some

case when pattern-matched. Again, abstraction in object-oriented programming poses a

challenge for checking exhaustiveness if pattern matching were made available.

In this chapter, we explore a language-design approach based on modal abstraction

that reconciles safe pattern matching with data abstraction. This joint work with An-

drew Myers appeared in the Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation [49].

4.1 Introduction

Despite being an important feature of modern functional programming languages, pattern

matching has not been adopted by most object-oriented languages. Data abstraction

and extensibility, both primary goals of object-oriented languages, conflict with pattern

matching. This work explores a language design for integrating pattern matching with

object-oriented programming.
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The following is a simple implementation of natural numbers in OCaml. The algebraic

data type nat, with two constructors Zero and Succ, represents a natural number; the

recursive plus function adds two naturals by matching them with one of three patterns.

type nat = Zero | Succ of nat

let rec plus m n =

match (m, n) with

(Zero, x)

| (x, Zero) -> x

| (Succ m’, _) -> plus m’ (Succ n)

This example illustrates two benefits of pattern matching in ML and other functional

programming languages such as Haskell.

The first benefit is that patterns serve a dual role that enables algebraic reasoning and

results in concise, intuitive code. A constructor such as Succ is also a pattern that matches

the values produced by that constructor. Patterns can be nested to match complex values

in a natural way, so a pattern like Succ(Succ(n)) matches exactly the values constructed

by expressions using the same syntax.

The second benefit is that pattern matching helps catch common programming errors.

Patterns in a match expression can be checked to ensure that they are exhaustive and not

redundant: that all possible values are matched by some pattern, and that every pattern

can match some value. Without such checks, if the programmer forgot the first of the

three cases above, the program could crash with an exception. With such checks, the

compiler would warn that no cases match values of the form (Zero, Succ _).

Relying on access to the concrete representation of data, however, makes the ML-style

pattern matching inimical to data abstraction [121]. A value produced by one module

can only be matched by patterns in another module if the second module knows the

underlying representation of the value. Agreement on the concrete representation tightly

109



couples the two modules in a way usually considered undesirable for large software

systems. For example, we might initially implement natural numbers as above, then

later want to change the representation to be an int. This change is not possible in ML

without breaking client code.

To make pattern matching compatible with data abstraction, prior work has developed

pattern-matching constructs that can be implemented by arbitrary code. Examples of

this approach include views [121], extractors [33], and active patterns [111]. These

mechanisms permit matching on deep patterns over abstract data, but sacrifice other

benefits of algebraic pattern matching. There is no check that patterns are consistent

with their corresponding constructors, so algebraic reasoning is weakened. Further, data

abstraction interferes with checking exhaustiveness and redundancy.

The JMatch language [61] introduced another way to harmoniously integrate pattern

matching into object-oriented languages, through modal abstractions that support mul-

tiple directions of computation. Modal abstractions allow a constructor and its pattern

to be implemented by the same invertible computation, ensuring that they are inverses.

Determining whether patterns are exhaustive or redundant, however, remained impossi-

ble under the data abstraction provided by JMatch. Furthermore, the added expressive

power of patterns implemented by complex computations means that programmers can

accidentally omit patterns more easily than with algebraic data types.

The challenge for analysis of exhaustiveness and redundancy is to reason statically

without violating data abstraction. The main contribution of this paper is, therefore, a

way to extend modal abstractions with concise specifications that enable static reasoning

about exhaustiveness and redundancy of pattern matching and, more generally, about the

totality of computations.

Object-oriented programming involves more than just data abstraction; subtyping

and inheritance are key ingredients supporting extensibility. For extensibility, different

110



implementations of (subtypes of) the same interface should support the same patterns

without clients knowing which implementation has been used. We therefore introduce

named constructors that can be used as patterns in this way. We also introduce two

first-class or-patterns that generalize both data-type constructors and or-patterns in ML.

We proceed as follows. Section 4.2 reviews modal abstraction in JMatch. Section 4.3

introduces mechanisms that improve the expressive power of pattern matching and

its integration with objects. Section 4.4 describes new static annotations that support

reasoning about exhaustiveness and redundancy. The verification procedure is explained

in Section 4.5. Section 4.6 describes our implementation of an extended version of

JMatch. Using various code examples, we evaluate its expressiveness, analytic power,

and efficiency in Section 4.7. Section 4.8 discusses related work, and Section 4.9

concludes.

4.2 Background

Some background will be helpful on JMatch [61, 62], an extension to Java 1.4 that

supports pattern matching and iteration through modal abstraction.

4.2.1 Modal abstraction

Section 4.1 observed that in OCaml, natural numbers cannot support pattern matching

while being represented internally with an int. Figure 4.1 shows how this can be done in

JMatch. The key idea is that JMatch methods may declare multiple modes that correspond

to different “directions” of evaluation, analogously to predicate mode declarations in the

logic programming language Mercury [107]. In addition to the ordinary forward mode,

which acts like a Java method, a JMatch method may also provide backward modes

which, given a desired result, compute corresponding argument values. Backward modes
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1 class Nat {
2 private int value;
3 private Nat(int n) returns(n)
4 ( value = n )

5 public static Nat zero() returns()
6 ( result = Nat(0) )

7 public static Nat succ(Nat n) returns(n)
8 ( result = Nat(n.value + 1) )

9 }

10 ...
11 static Nat plus(Nat m, Nat n) {
12 switch (m, n) {
13 case (zero(), Nat x):
14 case (x, zero()):
15 return x;
16 case (succ(Nat k), _):
17 return plus(k, Nat.succ(n));
18 }

19 }

Figure 4.1: Natural numbers with data abstraction in JMatch.

support pattern matching. For example, the method succ may be used in the forward

mode to compute the successor of a number. As indicated by the clause returns(n) on

line 7, it also has a backward mode that computes the number n for which the value given

in result is the successor.

This implementation of Nat is more complex than in OCaml because the abstract

view that supports pattern matching must be related to its concrete representation as an

int. The methods of Nat demonstrates that JMatch programs can define patterns that

both preserve data abstraction, because the field value is private, and are also usable

outside the module that defines them. Lines 11–19 show how the backward modes of

these methods can be used to implement the method plus similarly to the earlier OCaml

code.

In general, a JMatch method implements a relation over its arguments and its result.

Each of its modes is a different way of exploring the relation. For example, the succ

operation is a binary relation on Nat, a subset of Nat × Nat. In each mode, some of
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the arguments or the return value are knowns supplied by the caller, and the others are

unknowns to be solved for.

Individual method modes may be implemented by imperative, Java-like code, but one

single declarative-style implementation of multiple modes is often more concise. As in

each of Nat’s methods in Figure 4.1, a declarative method implementation is a boolean

formula placed inside parentheses, directly expressing the implemented relation. For

example, the equation result = Nat(n.value + 1) at line 8 exactly captures the succ

relation.1 For each mode of a method, the compiler generates an imperative algorithm

that, given values for knowns, finds values of all unknowns that satisfy the formula. Thus,

the backward mode often comes nearly for free, unlike with related approaches such as

extractors [33].

Not only user-defined abstractions but also built-in types such as primitive types

support modal abstractions. For example, integer operations such as + and - can solve

for either of their arguments, given a result to match against.

4.2.2 Iterative modes

Modes need not be functions; viewed as relations, they may be one-to-many or many-to-

many. A mode is iterative when there may be more than one solution to the unknowns

for given knowns; the keyword iterates is used in place of returns to indicate such a

mode. For example, the contains method of the Collection class has the signature

boolean contains(Object x) iterates(x)

meaning that its backward mode can be used to iterate over all contained objects. Using

iterative modes, the Java collections framework could be made 35% more concise by

implementing its operations, including iterators, as modes of relatively few methods [62].

1Note that the operator = is an equality test, which unambiguously subsumes its usual Java role as
imperative assignment.
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As another simple example of implementing an iterator in this style, the following

method could be added to class Nat.

boolean greater(Nat x) iterates(x)

(this = succ(Nat y) && (y = x || y.greater(x)))

...

Nat n = ...;

foreach (n.greater(Nat x)) {

... // x in scope here

}

In the forward mode, the method tests whether this is greater than x. In the backward

mode, it iterates over all numbers smaller than this, allowing code like the foreach loop

that follows. The forward mode of greater is also its predicate mode because its return

type is boolean.

In the body of greater, only one boolean formula needs to be expressed to define

how both the forward and backward computations are carried out. In the forward mode,

the JMatch compiler first generates the code that solves for y, and the subsequent boolean

formula can then be evaluated directly; in the backward mode, the JMatch compiler

generates the obvious recursive algorithm for finding all satisfying assignments to the

output x.

The JMatch type system also checks that the multiplicity of solved unknowns matches

their use in the mode declaration. In non-iterative modes, unknowns can only have one

solution. For example, the use of disjunction in greater is permitted only because the

backward mode is explicitly iterative.

Some built-in types have iterative modes. For example, array indexing can be inverted

to obtain an iterator over the array elements.
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4.2.3 Semantics and solving

The semantics of JMatch is defined as a syntax-directed, type-preserving translation to

Javayield [60], which extends Java with coroutine methods in which control is yielded to

the caller via the yield statement, much as in languages like C#, Ruby, and, originally,

CLU [59]. The semantics of Javayield is defined similarly as a syntax-directed translation

to Java. This translation is analogous to the CPS conversion. These translations also

describe the JMatch compiler implementation, modulo some optimizations.

JMatch supports imperative Java code, the translation of which is relatively straight-

forward. The interesting parts of the translation involve the solving of boolean formulas

and pattern expressions. JMatch considers a formula or pattern solvable when the com-

piler can generate an algorithm that either finds satisfying assignments to unknowns or

determines that there are none. In the latter case, the formula or pattern is not satisfiable

but is still solvable. A formula or pattern may also be satisfiable but not solvable if

the compiler does not know how to generate an appropriate algorithm for determining

satisfying assignments.

As an extension to Java, JMatch allows side effects, although its new features encour-

age a declarative programming style. With side effects, programmers need to reason about

the order in which computations occur. The JMatch solver therefore solves formulas in a

well-defined order that is left-to-right as much as possible.

After the JMatch solver determines the order of the unknowns to be solved, it

generates the algorithm for solving formulas using the following inductively defined

functions, which translate to Javayield:

u F ~ f � U s is the translation of a formula f . It is a sequence of Javayield statements

that solve the formula f to find bindings for the unknowns in the set U. The translation

executes statement s for each solution found.
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u M~p� U x s generates code to match a pattern p against a known value x and find

bindings for the unknowns in the set U. The translation produces a statement that

solves for the unknowns in U satisfying the formula p = x, and then executes statement

s.

u P~p� U w s is a pattern translation that solves for the value of the pattern p and its

unknowns in the set U without a value to match against. The output code executes

s for every solution. The statement s may refer to the unknowns in U, which are

assigned a binding to produce the desired value for p, and the variable w, which is

assigned the value of the pattern p itself.

Given these translation specifications, their definitions for the various language

constructs are fairly straightforward and are available in full in [60].

For example, Figure 4.2 shows the translation of the formula x - 2 = 1 + y, where x

is known and y is unknown. Figure 4.3(a) shows a pretty-printed version of the translation

result. To confirm that the translation is correct, Figure 4.3(b) shows a hand-optimized

version of the result. If s were the statement System.out.println(y);, then the value

of y would be displayed to the console.

4.3 Pattern-matching extensions

We extend JMatch, adding new pattern-matching constructs to better support object-

oriented programming and data abstraction and to increase expressive power in other

ways.

4.3.1 Named constructors

In JMatch, pattern matching using procedures is successful only if the value being

matched is either their result or one of their arguments. Therefore, a JMatch procedure
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F ~x - 2 = 1 + y� {y} s = int z; P~x - 2� ∅ z (M~1 + y� {y} z s)
= int z; P~x - 2� ∅ z (

int y1, y2; P~1� ∅ y1 (
{ y2 = z - y1; (M~y� {y} y2 s) }))

= int z; P~x - 2� ∅ z (
int y1, y2; P~1� ∅ y1 (

{ y2 = z - y1; y = y2; s }))
= int z; P~x - 2� ∅ z (

int y1, y2; y1 = 1;

{ y2 = z - y1; y = y2; s })
= int z; int x1, x2; P~x� ∅ x1 (

P~2� ∅ x2 ({ z = x1 - x2;
int y1, y2; y1 = 1;

{ y2 = z - y1; y = y2; s }}))
= int z; int x1, x2; x1 = x; x2 = 2; {

z = x1 - x2; int y1, y2; y1 = 1; {

y2 = z - y1; y = y2; s }}

Figure 4.2: The translation of the formula x - 2 = 1 + y, where x is known and y is
unknown

int z;

int x1, x2;

x1 = x;

x2 = 2;

{

z = x1 - x2;

int y1, y2;

y1 = 1;

{

y2 = z - y1;

y = y2;

s
}

}

(a) Pretty-printed result

y = x - 2 - 1;

s

(b) Hand-optimized result

Figure 4.3: Pretty-printed and optimized versions of the translation result in Figure 4.2

117



interface Nat {
constructor zero() returns();
constructor succ(Nat n) returns(n);
...

}

Figure 4.4: Natural number interface with named constructors.

can successfully match on its own receiver object (this) only if the procedure is a

constructor or happens to return its receiver object as the result. Since a constructor

belongs to a particular class, code using a constructor pattern is tightly coupled to that

particular implementation. This tight coupling interferes with extensibility and code

reuse.

To support implementation-oblivious pattern matching, we extend JMatch with named

constructors that can pattern-match an object whose run-time class is unknown. Named

constructors have an explicit name different from that of their class, and they can be

declared in interfaces.

For example, Figure 4.4 shows a Nat interface exposing two named constructors,

zero and succ. Figure 4.5 shows two partial implementations of Nat. The first (ZNat)

corresponds to the implementation of Figure 4.1. The second is analogous to the OCaml

version and consists of two classes: PZero, representing zero, and PSucc, representing

the successor of its field pred at line 18.

Named constructors can be invoked as if it is a static method to construct new objects

of their class, as in the expression ZNat.zero(). In the forward mode, the fields of this

are in scope as unknowns to be solved for either directly in the formula or via another

constructor. For example, val in the equation val = 0 at line 6 is solved directly by

assigning zero to it. In addition, unlike ordinary constructors, a named constructor can

also be invoked as if it is an instance method. When an object of type Nat or of any

subtype of Nat is passed as a receiver object to the named constructor zero, zero acts as

a boolean predicate. For example, ZNat(0).zero() evaluates to true because ZNat(0)
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1 class ZNat implements Nat {
2 int val;

3 private ZNat(int n) returns(n)
4 ( val = n && n >= 0 )

5 constructor zero() returns()
6 ( val = 0 )

7 constructor succ(Nat n) returns(n)
8 ( val >= 1 && ZNat(val - 1) = n )

9 ...

10 }
11
12 class PZero implements Nat {
13 constructor zero() returns() ( true )
14 constructor succ(Nat n) returns(n) ( false )
15 ...

16 }
17 class PSucc implements Nat {
18 Nat pred;

19 constructor zero() returns() ( false )
20 constructor succ(Nat n) returns(n) ( pred = n )
21 ...

22 }

Figure 4.5: Three implementations of Nat.
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1 class ZNat extends Nat {
2 ...

3 constructor equals(Nat n)
4 ( zero() && n.zero() | succ(Nat y) && n.succ(y) )

5 }

6
7 class PZero extends Nat {
8 ...

9 constructor equals(Nat n)
10 ( n.zero() )

11 }
12 class PSucc extends Nat {
13 ...

14 constructor equals(Nat n)
15 ( n.succ(pred) )

16 }

Figure 4.6: Equality constructors.

is zero; its implementation tests the equation val = 0. Finally, a named constructor

declared in type T may be invoked without an explicit receiver object when it is used

to pattern-match a value of type T . In this case, the receiver object is the value being

matched against. For instance, we can use named constructors to write code like plus in

Figure 4.1. The parameter m of the plus function becomes the implicit receiver of the

pattern succ(Nat k) on line 16.

4.3.2 Equality constructors

As written, the implementations of Nat in Figure 4.5 are incomplete. The problem is

that the forward mode of succ in ZNat promises to construct a ZNat from an arbitrary

Nat predecessor n. If n is not a ZNat, the equality test at line 8 between ZNat(val - 1)

and n will fail. We fix this by adding an operation to Nat that allows solving for equality

between objects of different classes:

constructor equals(Nat n);
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Because equals is used for creating objects of the class in which it is implemented,

equals becomes a special named constructor—an equality constructor—rather than an

ordinary boolean method as in Java. If defined, equals is used for solving equality in

addition to JMatch’s default strategy of direct assignment. The code of equals for the

classes implementing Nat is given in Figure 4.6.

Using equals, the equality ZNat(val - 1) = n is solved for non-ZNat objects n

by invoking ZNat.equals, defined at lines 3–4. This method tests whether n is zero

or the successor of some number. If the former, it returns ZNat.zero; if the latter,

it invokes ZNat.succ recursively to retrieve the predecessor of n, which is bound to

y by the constructor invocation n.succ(y). Operationally, ZNat’s equals and succ

interoperate to find successive predecessors until either zero or a ZNat representation (as

in PSucc.succ(ZNat(3)), which is legal!) is encountered. Once equals converts n to a

ZNat object, succ matches the internal representation of this ZNat object with val - 1,

solving for val, which internally represents the desired successor.

4.3.3 Other extensions

A complete overview of the existing patterns in JMatch can be found in Section 2.2 of

the JMatch technical report [60]. We extend the language with additional operators and a

new pattern that increase expressive power:

u JMatch already has a pattern conjunction operator called as, which generalizes ML’s

pattern operator of the same name by requiring two arbitrary patterns to match the

same value. We add a pattern disjunction operator, #, that combines two patterns into a

single pattern that matches either or both of the two, and solves for the same unknowns.

For example, the formula int x = y-1 # y+1 (which should be read as int x = (y-1

# y+1)) generates the two solutions x = y-1 and x = y+1 when solving for x, and y

121



1 public Expr CPS(Expr e) returns(e) (
2 Var k = freshVar("k", e) &&

3 (e, result) =

4 (Var(_), // ~v� k , k v
5 Lambda(k, Apply(k, e)))

6 | (Lambda(Var vl, Expr body), // ~λx.e′� k , k (λxk′.~e� k′)
7 Lambda(k,

8 Apply(k, Lambda(vl, CPS(body)))))

9 | (Apply(Expr fn, Expr arg), // ~e1 e2� k , ~e1� (λ f .~e2� (λv. f v k))
10 Lambda(k, Apply(CPS(fn),

11 Lambda(f, Apply(CPS(arg),

12 Lambda(Var("v") as Var v,
13 Apply(Apply(f, v), k))))))

14 where Var f = freshVar("f", arg))
15 )

Figure 4.7: Invertible CPS conversion.

= x+1 and y = x-1 when solving for y. Unlike Icon’s alternation expression [43], a

match is attempted against all alternatives even if one of them fails.

u We also add a disjoint disjunction operator, |, that behaves like # except that the

patterns must be disjoint. A pattern constructed with this operator produces at most

one solution when a value is matched against it, unlike #. The number of solutions is

important because the pattern-matching statements require that there be only a single

solution. The compiler verifies that patterns combined via | are disjoint. The formula

x = 1 | 2 would therefore be legal but x = y-1 | y+1 would not if used to solve for

y.

u A tuple pattern, written (p1, . . . , pn), may be used to match multiple values at once.

Tuples are not first-class values; uses of tuple patterns are equivalent to, but often more

concise than, a set of equations expressed over the tuple components. Tuples are most

helpful when used in conjunction with the # and | operators.

These new constructs add expressiveness. For example, the JMatch 1.1.6 release [60]

includes an example of invertible conversion to continuation-passing style (CPS). The

same two computations, CPS conversion and its inverse, are both expressed even more
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concisely in Figure 4.7 using the new pattern operators. With the CPS method we can

invert the CPS conversion by writing let CPS(Expr source) = target to obtain non-

CPS source code corresponding to CPS code target. In this code, the use of tuples

enables the translation rules to be expressed essentially as inference rules. The pattern

(p where f ) on line 14 refines pattern p to succeed only when formula f is also satisfiable.

The use of | ensures that CPS is one-to-one, though not total in its backward mode.

Without |, the JMatch compiler would be unable to conclude that the three cases are

disjoint and would raise the error that CPS is not one-to-one.

4.4 Static annotations for exhaustiveness reasoning

Several pattern-matching forms in JMatch can benefit from verification of exhaustiveness.

As we saw in Figure 4.1, switch statements are one such form. Whether switch (e)

{
−−−−−−−−−−−−→
case pi: si} is exhaustive corresponds to (roughly) whether

n∨
i=1

e = pi (4.1)

is a tautology. A second such form is the JMatch statement cond {
−−−−−−−−→
( fi) {si}}, which

executes the first statement si such that its corresponding formula fi is true. For exhaus-

tiveness, at least one such formula must be true. A third pattern-matching form is let

f , which is analogous to cond {( f) {}}, except that variable bindings made in f are in

scope for the remainder of the statement’s block. For example, the declaration int x =

2 is syntactic sugar for let int x = 2. Since the values of these variables may be used

later in the scope, the formula f in a let statement should always be satisfiable.

In principle, exhaustiveness checking seems simple. Reasoning about exhaustive-

ness while preserving data abstraction, however, is challenging because the client code

performing pattern matching is oblivious to the concrete representation (e.g., private

fields) of objects. For example, given the code in Figure 4.8, the compiler does not
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Nat n;

...

switch (n) {
case succ(Nat p): ...
case succ(succ(Nat pp)): ...

case zero(): ...
}

Figure 4.8: Redundant switch statement.

know the implementation of succ and zero with which n will be matched. Even if it

did know, using this knowledge would violate modularity, coupling correctness of this

code to implementation choices internal to Nat. Moreover, given a value of type Nat, the

compiler may not assume that succ and zero are the only ways to construct the value;

there could be another constructor defined in Nat that could produce the same value. As

a result, the compiler does not have enough information about the patterns to show that

disjunction (4.1) is a tautology.

To enable the compiler to reason modularly about exhaustiveness, we must expose

enough information to the client about the relation implemented by a method without ex-

posing implementation details. Supplied with this information for the code in Figure 4.8,

the compiler should be able to determine that all values of type Nat will be matched

by some case. If that were not true (e.g., if the first case were omitted), the compiler

should issue a warning. Also, in the code as written, the second case is redundant because

anything matching succ(succ(Nat pp)) must have matched succ(Nat p). Redundant

code often indicates errors in programmer’s reasoning; the compiler ought to report this

too. At the same time, the exposed information should let the compiler know that zero

and succ are indeed disjoint and conclude that the third case is not redundant with the

first two. Without such information, the compiler could generate a false redundancy

warning.
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To support static verification of exhaustiveness and other properties, three new kinds

of concise and intuitive specifications provide the missing information: class invariants,

matches clauses, and ensures clauses. As an orthogonal benefit, all of these specifications

can exploit the new pattern operator | to prove patterns disjoint. We now explore these

new features in more detail.

4.4.1 Class and interface invariants

One way to provide the information needed to determine exhaustiveness is as a class or

interface invariant. For example, we can express that all instances of Nat match either

zero() or succ() by adding the following invariant to the Nat interface, using | to assert

that the two patterns are disjoint:

interface Nat {

invariant(this = zero() | succ(_));

...

}

As another example, suppose we wanted to verify exhaustiveness of a switch state-

ment like the following:

Nat n;

...

switch (n) {

case ZNat z: ...

case PZero _: ...

case PSucc p: ...

}

Again, an invariant on Nat suffices (underscores here are wild cards on variables or

patterns):
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1 class ZNat implements Nat {
2 int val;

3 private invariant(val >= 0);
4 private ZNat(int n) matches(n >= 0) returns(n)
5 ( val = n && n >= 0 )

6 ...

7 }

Figure 4.9: Private invariant and matches clause.

invariant(this = ZNat _ | PZero _ | PSucc _);

These example invariants show how to can obtain the exhaustiveness analysis pro-

vided by algebraic data types, while preserving data abstraction and allowing extensibility.

The first example permits new implementations of the Nat interface without invalidat-

ing the invariant. The second one prevents the definition of new classes that directly

implement Nat; however, new subclasses of the three listed classes are permitted.

Class and interface invariants can be thought of as a kind of boolean-valued method

whose value is always asserted to be true and whose implementation is visible to callers.

Invariants may be given visibility modifiers (public, protected, or private). To main-

tain modularity, an invariant may only mention methods and fields that are at least as

visible as the invariant itself.

Invariants not publicly visible may be useful for verifying the implementation of

a class, such as the totality of the implementation of its methods. For instance, in the

ZNat code of Figure 4.5, the field val cannot be negative. We can add a private invariant

asserting this constraint, as in Figure 4.9. This invariant supports successful verification

of the backward mode of the implementation of the constructor ZNat(), which should

be total among all ZNat values. The invariant plus the first conjunct imply the second

conjunct, n >= 0. The private invariant also helps verify both modes of succ().
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4.4.2 Matches clauses

One impediment to checking exhaustiveness is that a method mode may implement

partial functions: on some inputs, its body might be unsatisfiable, in which case the

method will fail rather than returning values for its unknowns. We extend the JMatch

language with a way to specify when a method will successfully produce a result. This

“matching precondition” is analogous to a precondition, but rather than specifying when

a method call is legal, it specifies when pattern matching is guaranteed to succeed. The

specification is conservative in that matching could succeed even when the condition

does not hold.

For example, consider the constructor ZNat() in Figure 4.5. Any ZNat object must

have a representation as a nonnegative integer. The corresponding matching precondition

for the forward mode is n >= 0, meaning that for any nonnegative n, there exists a

ZNat object matching that n. This matching precondition implies the constructor body,

allowing successful verification of the forward mode. The backward mode of ZNat(), on

the other hand, is total, corresponding to the matching precondition true.

Asking the programmer to specify matching preconditions for each mode would

be verbose and repetitive, since different modes may share knowns (i.e., inputs). Our

insight is that the programmer can write a single condition that captures when matching

will succeed for the entire relation implemented by a method. We call this condition

the matches clause for the method. Methods having no matches clause defaults to

matches(false), meaning that matching is not guaranteed to succeed for any input. The

JMatch 2.0 compiler must extract the matching precondition for each mode from the

consolidated matches clause. The extraction is described formally in Section 4.4.3; the

rest of this section illustrates how extraction works for ZNat().

The matches clause for ZNat() is shown in Figure 4.9. Figure 4.10(a) shows the actual

relation implemented by ZNat; Figure 4.10(b) shows the matches clause, describing the
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Figure 4.10: The ZNat relation.

relation consisting of integral points in the shaded region. This relation can be viewed

as an approximation to the true ZNat relation. Informally, the extraction obtains the

matching precondition by projecting this relation onto the axis corresponding to an

appropriate mode, obtaining matching preconditions shown as thick arrows. For the

forward mode (returns(result)), the relation is protected onto the n axis, obtaining n

>= 0. This corresponds to the fact that the creation of a ZNat object succeeds whenever

n is nonnegative. For the backward mode (returns(n)), it is projected onto the result

axis, obtaining true. This corresponds to the fact that the decomposition of a ZNat object

always succeeds.

4.4.3 Extracting matching precondition from matches clause

In general, the body of a method implements some relation B and the matches clause

specifies another relation M. Suppose that the method is a relation over a set of variables{
~x
}
. For each modeM of the method, this set is partitioned into disjoint sets of knowns

(inputs)
{
~k
}

and unknowns (outputs)
{
~u
}
. We can then view the relations M and B as

predicates over knowns and unknowns, M(~k, ~u) and B(~k, ~u), respectively. Given ~k, the
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precise condition in which the body guarantees success is therefore ∃~u. B(~k, ~u). We call

this formula the precise matching precondition.

For brevity, we define a function πM that constructs the precise matching precondition

for modeM by projecting an arbitrary predicate B onto the knowns:

(πMB)(~k)
a

⇐⇒ ∃~u. B(~k, ~u)

GivenM and B, πMB is a predicate on ~k that holds when ~k provides some way to satisfy

B in modeM and hence to successfully pattern-match.

To preserve abstraction, reasoning about exhaustiveness must be done using the

matches clause M, not B. Intuitively, if M ⇒ B, the body will be satisfiable whenever

the matches clause holds; however, to require this implication would be unnecessarily

restrictive. In the case of ZNat relation, for example, n >= 0 does not imply the actual

relation, and the only matches clause that does so while preserving abstraction is false.

A more useful correctness condition is
∧
M′ πM′M ⇒ πM′B, whereM′ is ranges over

declared modes. In other words, we only need the matching specification to imply the

precise matching precondition for each mode actually available.

This suggests that given the modeM =
({
~k
}
,
{
~u
})

, we should verify exhaustiveness by

using (πMM)(~k) as the matching precondition. Unfortunately, the existential quantifiers in

this formula make it ill-suited to automated reasoning. Instead, we construct a weakening

of πMM that does not mention existential quantifiers. Let us denote this weakened

predicate on ~k as ExtractMM.

The construction of ExtractMM proceeds as follows. We first convert the matches

clause into negation normal form (NNF) so that the formula uses only positive logical

operators over atomic formulas. We then use a variant of the usual JMatch algorithm

for generating solutions to a formula. The first step is to reorder the atoms so that as

many unknowns as possible can be solved from left to right. After this reordering, atoms

that do not mention unknowns are left unchanged, as are atoms in which all unknowns
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are solvable in the left-to-right order. Atoms mentioning any unsolvable unknowns are

dropped; that is, they are replaced with true. Any remaining occurrences of unknowns

can be thought of as existentially quantified, but because each remaining unknown is

solvable, it represents a solution expressed entirely in terms of knowns.

For instance, in the backward mode of the ZNat example, the specified match-

ing precondition n >= 0 is existentially quantified as ∃n.n >= 0 because n is an un-

known. That is, the matching precondition is equivalent to true. Correspondingly, the

extraction algorithm drops the atomic formula n >= 0 because n is unsolvable, leav-

ing only true. As another example, consider extracting a matching precondition for

x > 0 && y >= 0 && x+1 = y, where x is unknown and y known. The formula is

first reordered to allow solving for x, yielding y >= 0 && x+1 = y && x > 0. The

first atom is left unchanged because it only mentions y. The second is also kept because

it solves for x, allowing the third atom to be retained as well. Because x is solved by

the value y-1, the extracted precondition is y >= 0 && (y-1)+1 = y && (y-1) > 0,

which is equivalent to y > 1. In general, x might be solved by a user-defined method.

Section 4.5 explains how atoms containing such unknowns are handled.

Dropping unsolvable atoms is a heuristic, but it seems effective because such atoms

are typically satisfiable for all possible values of the knowns. In general, however, dropped

atoms might not be satisfiable, in which case ExtractMM may not be conservative. For

example, if the matches clause were instead y >= 0 && x < y && x > 0, dropping

the atoms x < y and x > 0 would result in the extracted precondition y >= 0. The

precise matching precondition (πMM)(y) is rather y >= 2, since there is no satisfying

assignment for x when y < 2.

ExtractMM can be used not only for analyzing exhaustiveness, but also for verifying

that the method body implements its extracted precondition in modeM. That is, when

the method body is implemented as a formula, the compiler verifies in each modeM that
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for all inputs ~k, (ExtractMM)(~k)⇒ (πMB)(~k). This ensures soundness for exhaustiveness

analysis done using ExtractMM. Verification is done using an SMT solver, as described

in Section 4.6. For imperative method implementations, this verification is left to the

programmer, though existing program logics might be used to obtain a verifiable logical

interpretation in many cases. Also left to future work is the extraction of more precise

preconditions and conservative detection of unsoundness from the matches clause alone.

4.4.4 Opaquely refining matches

In general, we may want to support modes in which precondition extraction fails because

the matches clause does not or cannot capture the relationship among the arguments.

For example, consider adding to ZNat() a predicate mode returns(), in which there

are no unknowns. In this mode, the matches clause n >= 0 does not correctly capture

the matching precondition, yet the existing implementation is correct. To support such

modes, matches clauses may be refined using the special opaque predicate notall.

During precondition extraction, an atom notall(−→xi) is treated as unsolvable if any of the

variables xi is unknown, and is therefore dropped; if all of the variables are known or

already solved, however, the predicate is treated as false.

Thus, to support a predicate mode for ZNat(), the predicate notall(result, n) is

conjoined with n >= 0 to indicate that pattern matching is not guaranteed to succeed

when both result and n are known. This notall predicate corresponds to the refinement

that converts the gray area in Figure 4.10(b) into just the black dots in Figure 4.10(a).

The opaque notall is needed because this refinement cannot be characterized abstractly.

4.4.5 Ensures clauses

Matches clauses are a kind of multimodal precondition. To improve the precision

of verification and exhaustiveness reasoning in JMatch, we add the ensures clause, a
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multimodal postcondition whose syntax resembles previous, unimodal postcondition

specifications (e.g., [98, 109]). The ensures clause for a method is an abstraction of the

relation implemented by the method, expressed in terms that client code can understand;

that is, it only mentions names a legal caller could name, similar to the specifications

proposed in JML by Leavens and Müller [57].

Unlike the matches clause, the ensures clause must define an overapproximation (a

superset) of the implemented relation. Thus, in any context where a method call is known

to have succeeded, the ensures clause can be assumed to hold with respect to the values

supplied as knowns and the values returned as unknowns.

Because the clauses for both matches and ensures are often identical, the syntax

matches ensures( f) may be used as a shorthand for matches( f) ensures( f). For

example, the constructor ZNat() from earlier might declare matches ensures(n >=

0). Using matches ensures might cause the opaque predicate notall to appear in an

ensures clause. Because the ensures clause overapproximates the implemented relation,

treating both notall and its negation as true is sound when the clause is in NNF.

4.5 Checking exhaustiveness and totality

JMatch 2.0 must show the exhaustiveness of various pattern-matching statements (switch,

cond, and let). Similar verification is required for methods with a matches or ensures

clause, since they promise to succeed in each mode when the extracted matching pre-

condition is true, and since the postcondition must hold if the methods succeed. In

addition, both arms of | must be verified as disjoint. In each case, the analysis constructs

quantifier-free formulas that can be satisfied only if some cases are not handled by the

appropriate patterns or formulas.
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Section 4.4 described verification informally while pretending that formulas can be

verified directly, e.g., by an SMT solver. This is not true in general, because formulas

may contain user-defined predicates that must be treated abstractly.

To aid in constructing formulas to be verified the SMT solver, we introduce an

intermediate representation language F that is similar to the language of quantifier-free

logical formulas. F is different from that of quantifier-free formulas in two respects. First,

negations can only appear at the atomic level. This property is enforced by defining a

function negate to negate formulas in F. The operator ¬ is introduced and eliminated

only by this function. Second, an additional right-associative assume operator B can be

used. Using the metavariable F to represent formulas in F, F1 B F2 is a formula in which

F1 captures knowledge about the environment in which F2 is being evaluated. Therefore,

F1 remains true even when F1 B F2 is negated, i.e.,

negate(F1 B F2) , F1 B negate(F2)

Intuitively, F1 solves for some variable v appearing in F2. F1 B F2 acts like substituting v

appearing in F2 with the solution from F1. F1 is usually an assignment to v, though in

general it could solve for v via user-defined methods.

We need a little more notation to define the translations. We assume the function

fresh(F) renames all unknown variables declared in F ∈ F to fresh ones. For a JMatch

formula f and a JMatch pattern p, let µ f and µp denote the set of variables declared

in f and p, respectively. Furthermore, let type(x, τ) be an F-predicate representing the

instantiation of the invariant associated with type τ on variable x.

Each formula is transformed to an F-formula using three functions defined inductively

on the syntax of formulas and patterns:

u VF is the transformation of a JMatch formula. It takes a formula f to be transformed,

along with the set U of unknowns to be solved in f , and an additional F formula F
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that represents the rest of the constraint. VF ~ f � U F is a formula in F that holds if

both of the following hold:

– f is satisfiable.

– F also holds under any solution to all u ∈ U satisfying f .

u VM is the transformation of a JMatch pattern with a known value to match against. It

takes a pattern p to be transformed, along with the set U of unknowns to be solved

in p, a variable x representing the known value, and an additional F formula F that

represents the rest of the constraint. VM~p� U x F is a formula in F that holds if both

of the following hold:

– The formula p = x is satisfiable.

– F also holds under any solution to all u ∈ U satisfying p = x.

u VP is the transformation of a JMatch pattern without a value to match against. It takes

a pattern p to be transformed, along with the set U of unknowns to be solved in p, a

variable w that will store the value of p, and an additional F formula F that represents

the rest of the constraint and may mention w. VP~p� U w F is a formula in F that

holds if both of the following hold:

– A solution to p exists.

– F also holds under any solution to p, which is assigned to w, and to all u ∈ U that

are solved when p is solved.

These functions are similar in structure to the syntax-directed translation from JMatch

to Javayield [60]. However, that prior translation only ensures that JMatch formulas are

solvable, whereas the new translations, given solvability, also ensure satisfiability.

The types of F-related functions are summarized in Figure 4.11, and their definitions

are partially shown in Figure 4.12. For example, the translationVP~x� ∅ w F has the
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negate : F→ F
fresh : F→ F
type : Var→ Type→ F
VF : JF → U→ F→ F
VM : JP → U→ Var→ F→ F
VP : JP → U→ Var→ F→ F

where
JF = set of JMatch formulas
JP = set of JMatch patterns

Var = set of variable names
U = P(Var)

Type = set of Java types

Figure 4.11: The types of F-related functions.

following interpretation. Because w is yet to have a value to match against, it is assumed

to have the same value as x. Then, assuming that w has the same type as that of x, F

holds. As another example, consider the translationVF ~p1 = p2� U F. First, a solution

to p1 that solves for all the variables in U ∩ µp1 must exist. Such a solution is then

assigned to a fresh variable y. Finally, y must equals p2, which solves for the remaining

variables in U \ p1, and F holds for such solutions to p2.

To see the transformation in action, Figure 4.13(a) shows how a constraint for the

formula x - 2 = 1 + y, where x is known and y is unknown, is generated. Figure 4.13(b)

shows a hand-optimized version of the transformation result, under the assumption that

the predicate type(x,Tx) is already valid in the scope of the transformation and can be

omitted. The transformation has the following interpretation: under the assumption that

y2 has the same value as x − 2 − 1, there are two proof obligations:

u y2 satisfies the invariant associated with the type of y.

u F, under the further assumption that y2 has the same value as y.

For the appropriate modeM =
({
~k
}
,
{
~u
})

of method m(~x), let matches(m,~v) be an

F-predicate representing the instantiation of the matches clause in modeM of m with
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Formula translations

VF ~ f1 && f2� U F , VF ~ f1� (U ∩ µ f1) (VF ~ f2� (U \ µ f1) F)
VF ~ f1 || f2� U F , VF ~ f1� U F ∨VF ~ f2� U F
VF ~p1 = p2� U F , VP~p1� (U ∩ µp1) y (VM~p2� (U \ µp1) y F)

y fresh
VF ~p1 != p2� U F , VP~p1� (U ∩ µp1) y1

(VP~p2� (U \ µp1) y2 (y1 , y2 ∧ F))
y1, y2 fresh

VF ~p1 <= p2� U F , VP~p1� (U ∩ µp1) y1
(VP~p2� (U \ µp1) y2 (y1 ≤ y2 ∧ F))

y1, y2 fresh
VF ~m(p1, . . . , p`)� U F , mP(pk1 , . . . , pkm ,U,matches(m, yk1 , . . . , ykm) ∧

(ensures(m, y1, . . . , y`) BmM(pu1 , . . . , pun ,U
′, F)))

yu j’s fresh
yki’s and U′ are as defined

in the auxiliary functions

Auxiliary functions

mP(pk1 , . . . , pkm ,U, F) , VP~pk1� U1 yk1 (VP~pk2� U2 yk2 ( . . .
VP~pkm� Um ykm F . . . ))

yki’s fresh
mM(pu1 , . . . , pun ,U

′, F) , VM~pu1� U′1 yu1 (VM~pu2� U′2 yu2 ( . . .
VM~pun� U′n yun F . . . ))

yu j’s defined prior to mM’s invocation

where
V1 = U, Vi = Vi−1 \ µpki−1 for 1 < i ≤ m,

Ui = Vi ∩ µpki for 1 ≤ i ≤ m,
U′ = Vm \ µpkm ,

V ′1 = U′, V ′j = V ′j−1 \ µpu j−1 for 1 < j ≤ n,
U′j = V ′j ∩ µpu j for 1 ≤ j ≤ n.

Figure 4.12: Selected definitions of F-related functions.
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Pattern translations Let Tx be the type of x.

VM~x� ∅ x F , type(x,Tx) ∧ x = x ∧ F
VP~x� ∅ w F , w = x B type(w,Tx) B F
VM~_� ∅ x F , F

VM~x� {x} x F , type(x,Tx) ∧ (x = x B F)
VM~p1 as p2� U x F , VM~p1� (U ∩ µp1) x (VM~p2� (U \ µp1) x F)
VP~p1 as p2� U w F , VP~p1� (U ∩ µp1) w (VM~p2� (U \ µp1) w F)
VM~p1 + p2� U x F , VP~p1� (U ∩ µp1) y1 (

y2 = x − y1 B (VM~p2� (U \ µp1) y2 F))
y1, y2 fresh

VP~p1 + p2� U w F , VP~p1� (U ∩ µp1) y1 (
VP~p2� (U \ µp1) y2 (w = y1 + y2 B F))

y1, y2 fresh
VM~m(p1, . . . , p`)� U x F , type(x,Tresult) ∧ x = y0 ∧

mP(pk1 , . . . , pkm ,U,
matches(m, y0, yk1 , . . . , ykm) ∧

(ensures(m, y0, y1, . . . , y`) B
mM(pu1 , . . . , pun ,U

′, F)))
yu j’s fresh

VP~m(p1, . . . , p`)� U w F , mP(pk1 , . . . , pkm ,U,matches(m, yk1 , . . . , ykm) ∧
(ensures(m, y0, y1, . . . , y`) B w = y0 B

type(w,Tresult) BmM(pu1 , . . . , pun ,U
′, F)))

yu j’s fresh
yki’s and U′ are as defined

in the auxiliary functions

Figure 4.12: Selected definitions of F-related functions (continued).
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VF ~x - 2 = 1 + y� {y} F = VP~x - 2� ∅ z (VM~1 + y� {y} z F)
= VP~x - 2� ∅ z (VP~1� ∅ y1 (

y2 = z − y1 B (VM~y� {y} y2 F))
= VP~x - 2� ∅ z (VP~1� ∅ y1 (

y2 = z − y1 B (type(y2,Ty) ∧ (y2 = y B F))))
= VP~x - 2� ∅ z (y1 = 1 B type(y1,T1) B (

y2 = z − y1 B (type(y2,Ty) ∧ (y2 = y B F))))
= VP~x� ∅ x1 (VP~2� ∅ x2 (

z = x1 − x2 B (y1 = 1 B type(y1,T1) B (
y2 = z − y1 B (

type(y2,Ty) ∧ (y2 = y B F))))))
= VP~x� ∅ x1 (x2 = 2 B type(x2,T2) B (

z = x1 − x2 B (y1 = 1 B type(y1,T1) B (
y2 = z − y1 B (

type(y2,Ty) ∧ (y2 = y B F))))))
= x1 = x B type(x1,Tx) B (x2 = 2 B type(x2,T2) B (

z = x1 − x2 B (y1 = 1 B type(y1,T1) B (
y2 = z − y1 B (

type(y2,Ty) ∧ (y2 = y B F))))))

(a) Transformation

y2 = x − 2 − 1 B (type(y2,Ty) ∧ (y2 = y B F))

(b) Hand-optimized result

Figure 4.13: Constraint generation for the formula x - 2 = 1 + y, where x is known
and y is unknown
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values ~v in place of the known arguments ~k, and let ensures(m,~v) be an F-predicate

representing the instantiation of the ensures clause of m with values ~v replacing all

formal arguments ~x = {~k, ~u}. Denoting the matches and ensures clauses of m by M and

E, and recalling that ExtractM(M) is a predicate over ~k, we have:

matches(m,~v) , ExtractM(M)(~v)

ensures(m,~v) , (VF ~E� µE true){~v/~x}

If m requires a receiver object and has result, they are added to the definitions appropri-

ately.

The Z3 theorem prover [28] is used to find a model satisfying these F-formulas. This

model can be used to construct a counterexample to explain the failure of exhaustiveness

or totality to the user. The verification done by Z3 does not affect the dynamic semantics

of JMatch 2.0; it only affects warnings given to the programmer.

4.5.1 Verifying exhaustiveness

Each switch statement

switch (v) { −−−−−−−−−−−→case pi: si default: s }

is converted into a cond statement

Tv y = v;

cond {
−−−−−−−−−−−−−−→
(y = pi) {si} else s }

where Tv is the type of v and y is fresh. Thus, verification of switch statements reduces

to that of cond statements.

To verify a cond statement cond {
−−−−−−−−→
( fi) {si} else s }, we begin by asserting the

invariants of all the known variables in the context. We then proceed case by case. Let Ii

be the invariant prior to the verification of the ith cond arm. The algorithm first checks
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whether fi yields a solution to its unknowns; that is, Ii ∧VF ~ fi� µ fi true is satisfiable.

If not, the compiler issues a warning that this arm is redundant. In either case, Ii+1 is

defined as Ii ∧ negate(fresh(VF ~ fi� µ fi true)). The updated invariant rules out patterns

matched up to the current arm. The else arm, if present, generates the formula true.

Let I′ be the invariant after all arms are checked. The cond statement is exhaustive if

I′ is unsatisfiable. If not, a counterexample is generated from a satisfying assignment,

and a nonexhaustive warning is reported.

A cond statement can be used to refine patterns in the same way as a where pattern.

Since both switch and if are syntactic sugar for cond, so can they. Let I be the invariant

prior to the verification of a conditional case ( f) {s}. We verify s with the stronger

invariant I′ , I ∧ (VF ~ f � µ f true).

To verify let f , we check whether negate(VF ~ f � µ f true) is satisfiable. If so, a

warning that the let statement may not always be total is reported to the programmer.

4.5.2 Verifying matching specifications

As described in Section 4.4.3, the bodies of methods are checked against the matches

clause of the method to ensure that the body succeeds whenever the matches clause is

true. Recall that this entails verifying the proposition ExtractMM ⇒ πMB.

One complication is that the matches clause M of a method may refer to other

methods. These method references may solve for unknown variables in M. In turn, these

unknowns may be further referenced by other atoms in M, imposing additional matching

preconditions.

The matches and ensures clauses of the referenced methods are used to resolve this

complication. The matches clause imposes additional matching precondition to M, and

the ensures clause constrains the values of unknowns that may be referenced later in M.

In the following example, the matches clause of method bar refers to foo:
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int foo(int x)

matches(x > 2) ensures(result >= x);

int bar(int y)

matches(y > 0 && result = foo(y) && result < 4);

Now, suppose we want to extract bar’s matching precondition for the forward mode,

i.e., when y is known. The reordering and atom-dropping procedure does not alter the

matches clause. This means bar(y) succeeds if y > 0, foo(y) returns a result, and

foo(y) < 4. The invocation of foo in bar’s matches clause succeeds if y > 2, and

foo’s ensures clause says result ≥ y. Therefore, bar(y) is guaranteed to succeed if

y > 0 ∧ y > 2 ∧ result ≥ y ∧ result < 4, which is equivalent to y = 3.

We now give the formal translation for ExtractMM, whereM =
({
~k
}
,
{
~u
})

. If M̂ is

the result of reordering and dropping atoms in M, and
{
~̂u
}
⊆

{
~u
}

is the set of unknowns

remaining in M̂, then we have

ExtractMM , VF ~M̂�
({
~̂u
}
∪ µM̂

)
true

That is, we translate M̂, where the variables to be solved for are those in
{
~̂u
}

and those

declared in M̂ itself. Similarly, the precise matching precondition is defined as

πMB , VF ~B�
({
~u
}
∪ µB

)
true

With the above definitions, we are ready to formally define the verification conditions

for JMatch methods. To verify a method

Tr foo(
−−−−→
Ti xi) matches(M) ensures(E)

in modeM with body B, we prove these two assertions:

ExtractMM ⇒ πMB (4.2)

πMB⇒VF ~E� µE true (4.3)
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Assertion (4.2) says that if the extracted matching precondition for M holds, then B

succeeds in generating a solution to all of its unknowns, which can be part of the

arguments or declared in B itself. Assertion (4.3) says that if B succeeds in generating a

solution, then the postcondition of the method holds. Equivalently, we show that

ExtractMM ∧ negate(πMB) (4.4)

πMB ∧ negate(VF ~E� µE true) (4.5)

are unsatisfiable. A satisfying assignment for Assertion (4.4) means that the method

body may not generate a solution to all of the unknowns when the matching precondition

holds. A satisfying assignment for Assertion (4.5) means that the postcondition of the

method may not hold when the body successfully generates a solution.

For a method declared in an interface or declared abstract, and for each modeM

declared in that method, the assertion

ExtractMM ⇒ ExtractME

is proven instead. Since the matches clause must specify an underapproximation of the

(unimplemented) relation and the ensures clause an overapproximation, this assertion

says that by transitivity, if the matching precondition holds, then the postcondition should

hold as well. A satisfying assignment for ExtractMM ∧ negate(ExtractME) means that

the postcondition of the method may not hold when the matching precondition is true.

When a satisfying assignment is available in these verifications, a totality warning,

that the method does not respect its specifications, is reported to the programmer.

4.5.3 Verifying disjoint patterns

JMatch 2.0 verifies multiplicity of formulas and patterns, ensuring that they generate at

most one solution in non-iterative modes. Disjoint pattern disjunctions allow disjunctions
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to be expressed without generating multiple solutions, but this property must be verified.

We also overload the | symbol as a logical operator; the formula f1 | f2 is a disjunction

that may be used only if at most one of f1 or f2 is satisfiable. Let U be the set of

unsolved unknowns in p1 | p2, and let p′1 be the result of substituting each unsolved

unknown in p1 with a fresh variable, and similarly for p′2. Patterns p1 and p2 are

disjoint if (VF ~x = p′1� U true) ∧ (VF ~x = p′2� U true), where x is a fresh variable,

is unsatisfiable. Similiarly, when | is used as a logical operator, formulas f1 and f2 are

disjoint if (VF ~ f ′1� U true) ∧ (VF ~ f ′2� U true) is unsatisfiable.

Consider the examples in Section 4.3.3. The pattern 1 | 2 is disjoint because

x = 1 ∧ x = 2 is unsatisfiable. The disjunction y-1 | y+1 is disjoint when y is known.

When y is unknown, the verification procedure renames y in each arm to a fresh variable,

yielding x = y1 − 1∧ x = y2 + 1, which is satisfiable, so the compiler generates a warning.

4.5.4 Soundness

As in most functional programming languages, we consider failures of exhaustiveness not

as errors but rather as a reason to warn the programmer. Our goal is to help programmers

be effective. Therefore, some unsoundness or incompleteness may be tolerable or even

desirable if it rarely limits or annoys the programmer. Our verification procedures

establish two main sources of unsoundness, possibly leading to erroneous warnings or

lack of warnings. An obvious source is that JMatch is an imperative language, yet the

reasoning procedures described here do not take side effects into account. We do not

consider this a serious problem because JMatch encourages a programming style in which

side effects are used sparingly and are encapsulated inside data abstractions. A second

source of unsoundness arises from recursively defined methods, which are discussed in

Section 4.6.2. In some cases, the compiler may report that it cannot prove exhaustiveness

or lack of redundancy. This does not seem to be a problem in practice.
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4.6 Implementation

We have built a prototype implementation of JMatch 2.0 by extending the JMatch

1.1.6 compiler [60] to add the new pattern matching features in Section 4.3 and the static

annotations in Section 4.4, and to use the Z3 theorem prover [28] to verify exhaustiveness,

totality, and multiplicity.

4.6.1 Translating new features

Each named constructor foo(...) defined in class C is translated into two JMatch

methods having the same visibility as that of foo. The first method is boolean foo(...)

and handles all the modes where result is known. The other method is static C

create$foo(...) and handles the remaining modes where a fresh result object needs

to be created. For named constructors defined in an interface, the latter translation is

omitted. An invocation of a named constructor is also transformed to use one of the

translated methods accordingly, with the exception of invocations appearing in invariants

and matches and ensures clauses. The invocations appearing as part of specifications

are not part of the dynamic semantics, and can be used directly during verifications. An

example translation of Nat and PSucc is shown in Figure 4.14.

In the JMatch implementation, when a variable w of type Tw is matched against a

value x of type Tx, only an instanceof check is introduced if Tw is not a supertype

of Tx. To use the equality constructor, JMatch 2.0 further checks whether an equality

constructor accepting one argument of type Tx exists in the implementation of Tw and

invokes it on x if the instanceof check fails.
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interface Nat {
boolean zero() returns();
boolean succ(Nat n) returns(n);
...

}

class PSucc implements Nat {
Nat pred;

boolean zero() returns() ( false )
static PSucc create$zero() ( false )
boolean succ(Nat n) returns(n)
( pred = n )

static PSucc create$succ(Nat n)
( result = PSucc() && result.pred = n )

...

}

Figure 4.14: Translation of named constructors.

4.6.2 Handling recursion

The verification functions defined in Section 4.5 unwind all method invocations appear-

ing in a formula being translated into assertions expressed in terms of the matches and

ensures clauses of the methods. In general, these translations may not be well-founded

when the matches and ensures clauses of methods are mutually dependent, or in in-

variants of mutually recursive types. Nevertheless, the verification may be successful

without fully unrolling all facts about method calls and types. We use Z3’s external

theory plugin to implement lazy assertions by introducing interpreted theory predicates

and functions. Our external theory for Z3 expands facts about type invariants and about

matching preconditions and postconditions only when instances of the theory predicates

are assigned a truth value. For example, if an instance of the predicate on procedure

invocation is assigned true, the ensures clause of the associated procedure is asserted on

the procedure inputs, expanding the verification context with facts about the successful

execution of the procedure. If the instance is assigned false, the negation of the matches

clause is asserted, expanding the verification context with facts about the failure of the
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procedure. An interpreted theory function is used to enforce the uniqueness of procedure

outputs when the procedure is a (partial) function.

Because Z3 treats each asserted axiom as global, every instantiated axiom is asserted

as an implication whose premise is the assigned predicate. Z3 also keeps track of every

asserted theory predicate in its logical context, which allows proving exhaustiveness

using class invariants without unrolling them entirely. To prevent unbounded unrolling,

iterative deepening [55] is used to unroll as deeply as possible within a time budget.

When our external theory plugin to Z3 does not further expand facts beyond the maximum

depth, Z3 concludes that no satisfying assignment exists. If this happens when checking

exhaustiveness, the compiler warns that it did not find a counterexample to exhaustiveness,

but that there might be one.

4.7 Evaluation

Our evaluation of JMatch 2.0 aims to answer three kinds of questions:

u Is the extended language expressive? In particular, does it permit concise implementa-

tions? What annotation burden is incurred by programmers using the new verification

procedures?

u Is the verification performed by our implementation effective on different kinds of

code?

u What is the compile-time overhead of verification?

4.7.1 Code examples

We have evaluated our prototype JMatch 2.0 implementation on a variety of different

coding problems. For each of these code examples, we have shown that the compiler

correctly performs the three verification tasks described above, and we have measured
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the time taken by verification and compared it to total compilation time. To evaluate

expressiveness, we have also implemented each example as concisely as we could using

Java.

Natural numbers The implementations of natural numbers shown earlier in the paper

are also used for our evaluation.

Lists A JMatch 2.0 interface List for immutable lists is shown in Figure 4.15. We

implement this interface in four very different ways: the empty list (EmptyList), regular

cons lists (ConsList), snoc lists (SnocList) in which elements are appended to the end,

and lists with an array representation (ArrList) in which the underlying array object

can be shared among lists having the same suffix. More concretely, each ArrList has an

index indicating the first element of the list in the underlying array; changing this index

gives different views of the array as different lists. The underlying array is copied in

the forward mode of cons, as the resulting list may break the shared-suffix invariant. To

give the flavor of these implementations, the figure shows how the multimodal named

constructor snoc is defined for ConsList. As the remaining code in the figure shows,

these four list implementations interoperate smoothly, and list operations, even including

reverse, can be used as patterns.

CPS We implement CPS conversion of a simple abstract syntax tree (AST) for lambda

calculus; though Figure 4.7 shows only the key code, the implementation also includes

AST classes.

Type inference We implement unification-based type inference over the same ASTs,

augmented with type declarations. The code for type inference is placed within the AST

node classes.

Trees A JMatch 2.0 interface Tree for binary trees is shown in Figure 4.16. We imple-

ment the AVL tree based on this interface. The rebalance method, also shown in the
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interface List {
invariant(this = nil() | cons(_, _));
constructor nil() matches(notall(result));
constructor cons(Object hd, List tl)
matches(notall(result)) returns(hd, tl);

constructor snoc(List hd, Object tl)
matches ensures(cons(_, _)) returns(hd, tl);

constructor equals(List l);
constructor reverse(List l) matches(true) returns(l);
boolean contains(Object elem) iterates(elem);
int size();

}

constructor snoc(List h, Object t) // in ConsList
matches ensures(cons(_, _)) returns(h, t) (
h = EmptyList.nil() && cons(t, h)

| h = cons(Object hh, List ht) && cons(hh, snoc(ht, t))

)

static int length(List l) {
switch (l) {
case nil(): return 0;
case snoc(List t, _): return length(t) + 1;
case cons(_, List t): return length(t) + 1;
// detected as redundant

}

}

List l = EmptyList.nil(); // l = []

l = SnocList.cons(0, l); // l = [[], 0]

l = ConsList.snoc(l, 1); // l = [0, [1, []]]

l = ArrList.snoc(l, 2); // l = [0, 1, 2]

l = ConsList.cons(3, l); // l = [3, [0, 1, 2]]

let l = reverse(List r1); //r1 = [2, [1, [0, [3, []]]]]

l = ArrList.cons(4, l); // l = [4, 3, 0, 1, 2]

let l = reverse(List r2); //r2 = [2, 1, 0, 3, 4]

Figure 4.15: List interface and sample usage.
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figure, returns the balanced version of the input subtree having v as the value at the root

and l and r as its children. The invariant of Tree and the ensures clause of branch are

crucial for the JMatch 2.0 compiler to verify that the formula in rebalance covers all the

possible input subtrees. Checking the disjoint disjunctions also ensures that there is only

one way to match each tree.

Collections We convert the prior JMatch reimplementation of the key collection classes

from the Java collections framework [62] into JMatch 2.0. This code base includes

implementations of various data structures: hash tables, red-black trees, and resizable

arrays.

4.7.2 Expressiveness

We can assess the expressiveness of JMatch 2.0 by comparing the number of language

tokens needed to implement each of the examples. The resulting token counts shown in

Table 4.1 indicate that JMatch 2.0 code is considerably more concise than in Java: 42.9%

shorter on average. This conciseness is largely due to the JMatch support for modal

abstraction and for equality constructors.

4.7.3 Effectiveness

There are three new verification tasks. First, switch and related constructs (let, cond,

etc.) should be exhaustive. Second, method implementations must be correct with

respect to both their declared matches clause and their ensures clause. Third, disjoint

disjunctions must indeed be disjoint, to verify multiplicity.

All of the examples shown in the table, and all prior examples shown in the paper, are

successfully verified for exhaustiveness, (non-)redundancy, and multiplicity. The com-

piler caught several subtle exhaustiveness bugs during development of this code, such as
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interface Tree {
invariant(this = leaf() | branch(_,_,_));
constructor leaf()
matches(height() = 0)
ensures(height() = 0);

constructor branch(Tree l, int v, Tree r)
matches(height() > 0)
ensures(height() > 0 &&
(height() = l.height() + 1 && height() > r.height()

|| height() > l.height() && height() = r.height() + 1))

returns(l, v, r);
int height()

ensures(result >= 0);
}

static Tree rebalance(Tree l, int v, Tree r) // in AVLTree
matches(true) (

result = Branch(Branch(Tree a, int x, Tree b),

int y,

Branch(Tree c, int z, Tree d))

&& ( // rotation from left

l.height() - r.height() > 1 && d = r && z = v

&& ( // case 1: single rotation

l = branch(Tree ll, y, c) &&

ll = branch(a, x, b) && ll.height() >= c.height()

| // case 2: double rotation

l = branch(a, x, Tree lr) &&

lr = branch(b, y, c) && a.height() < lr.height())

| // rotation from right

r.height() - l.height() > 1 && a = l && x = v

&& ( // case 3: double rotation

r = branch(Tree rl, z, d) &&

rl = branch(b, y, c) && rl.height() > d.height()

| // case 4: single rotation

r = branch(b, y, Tree rr) &&

rr = branch(c, z, d) && b.height() <= rr.height()))

| abs(l.height() - r.height()) <= 1 && result = Branch(l, v, r)

)

Figure 4.16: Tree interface and the AVL tree rebalance method, which uses the inter-
face to check for totality.
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Implementation JMatch Java w/o verif w/ verif
Nat 41 (21) 29 0.100 0.104

PZero 85 189 0.258 0.331
PSucc 98 226 0.280 0.435
ZNat 161 319 0.377 0.459
List 114 (72) 91 0.129 0.123

EmptyList 164 455 0.416 0.510
ConsList 309 1007 0.807 2.47
SnocList 311 1006 1.05 3.36
ArrList 473 1208 0.864 1.90
Expr 96 (57) 80 0.710 0.846

Variable 192 434 0.689 0.852
Lambda 239 500 1.20 1.52

TypedLambda 86 92 1.38 1.57
Apply 232 506 1.15 2.31
CPS 325 1279 7.88 8.37
Type 154 187 0.218 0.307

BaseType 73 163 0.350 0.443
ArrowType 82 189 0.357 0.444

UnknownType 154 245 0.372 0.490
Environment 211 310 0.695 0.862

Tree 114 (44) 69 0.165 0.170
Leaf 124 351 0.420 0.510

Branch 202 553 0.529 0.682
AVLTree 439 720 2.84 9.01

ArrayList 773 1098* 1.67 1.81
LinkedList 886 1232* 2.00 2.20
HashMap 1082 1874* 3.41 3.66
TreeMap 3606 3955* 5.90 6.43

Table 4.1: The number of tokens for implementations in JMatch 2.0 versus Java. In-
terface token counts are reported both with and without (in parentheses) matches and
ensures clauses. Verification overhead is given in seconds as the average of 24 runs,
with a standard deviation of at most 15%. Some comparisons (*) are versus a PolyJ [75]
implementation that is more concise than the Java one. For example, the PolyJ TreeMap
is 20% shorter than the Java equivalent [62].
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incorrect order of arguments to methods and invocation to an unexpected implementation

of overloaded or overridden methods. In case of TreeMap, the absence of red-black tree

invariants results in a nonexhaustive warning in the balance method.

4.7.4 Efficiency

Table 4.1 shows that verification time is reasonable for all of the code examples, even with

our unoptimized prototype implementation. The reported numbers include compilation

time of dependencies but exclude the overhead of initializing the compiler (689 ms) and

the Z3 solver (680 ms). On average, the verification overhead on the evaluated code is

37.5% compared to the regular compilation time.

The speed of verification is not surprising, because verification is performed one

method at a time. Verification is simple and tractable because the abstraction mechanisms

we introduced to JMatch allow both programmers and the SMT solver to reason locally

about code.

Because JMatch 2.0 does not significantly change the dynamic semantics of JMatch,

the translation to Java is essentially unchanged. The performance of the compiled

programs is therefore similar to one in the previous evaluation [62].

4.8 Related work

Integrating pattern matching with objects and data abstraction has been the subject of

quite a few research efforts.

Case classes in the Scala programming language [84], as in Pizza [81], provide pattern

matching by allowing case-class constructors in case arms. Scala uses sealed classes

to limit the number of case classes that can inherit them. This makes exhaustiveness

easy to verify, but sacrifices extensibility because only one implementation is allowed

152



per declaration of a sealed class. Our invariant declaration achieves the same level of

exhaustiveness checking but allows programmers to extend classes freely. Closely related

approaches include extensible algebraic data types [126] and polymorphic variants [41],

which support some extensibility and deep pattern matching, but tie pattern matching to

the data representation more than is ideal.

Wadler’s views [121] were an early, influential generalization of pattern matching.

Views require an explicitly defined bijection between the abstract view and the represen-

tation. Unlike in our language, views do not reconcile pattern matching with subtyping

and do not allow matching without knowing the identity of the implementation.

Extractors are introduced in [33] as an alternative to case classes that is compatible

with data abstraction. Each extractor contains apply and unapply methods, called

implicitly during construction and pattern matching. There is no check that these methods

are inverses, however. Modal abstractions in JMatch are less verbose and reduce the

chance of such errors. No exhaustiveness checking was proposed for extractors. Dotta et

al. [31] verify extractors by relying on sealed classes, and support user-defined constructor

patterns. Their work does check for pattern disjointedness; abstraction prevents us from

making this guarantee.

Active patterns in F# [111] are similar to extractors, but support exhaustiveness

checking by allowing the declaration that a set of patterns is complete. Because they

offer only a backward mode, they do not support algebraic reasoning in the same way as

modal abstractions. They also do not support object-oriented extensibility.

The RINV language of Wang et al. [123] also uses invertible computation to imple-

ment pattern matching that is compatible with data abstraction. Rather than extracting

computations from a logical characterization of the computation, RINV instead uses a

restricted language for abstraction functions that guarantees invertibility. These functions

are bidirectional rather than fully multimodal and do not support iterative modes. RINV
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analyzes exhaustiveness via specifications of complete sets of constructors, but does not

verify these specifications. RINV supports neither subtyping nor extensibility.

Suter et al. [109] also use abstraction functions to reduce algebraic data types to

abstract values such as multisets, and use known theories of these abstract values to

reason about data types. Methods may be annotated with a postcondition in terms of

abstraction functions. Leon [110] extends this reasoning to recursive programs. Used

in conjunction with sealed classes, these decision procedures assist in a more precise

analysis of pattern exhaustiveness by taking type refinement into account. These decision

procedures do not support modal abstraction.

An orthogonal approach to integrating pattern matching into object-oriented lan-

guages is predicate dispatch [36, 71], which extends multimethods with the ability to

choose an implementation based on general predicates over the arguments. Predicate

dispatch appears to be largely orthogonal and complementary to the pattern matching

mechanisms described here. The predicates in prior work on predicate dispatch are,

however, less expressive than those we have explored here. OOMatch [96] uses pattern

matching in predicate dispatch. Its deconstructors are similar to the backward mode

of JMatch constructors. OOMatch’s pattern matching differs in that it can appear only

in method headers as part of predicate dispatch, and no separation of specification and

implementation is provided. HydroJ [58] uses predicate dispatch to express extensible

communication patterns in distributed systems; however, pattern matching is done over

concrete data structures called tagged trees.

Matchete [45] extends Java with pattern matching operators similar to extractors, but

matches on regular expressions and other specialized expressions. It does not analyze

exhaustiveness.

The Thorn language integrates patterns to make code more concise and robust [16].

Its rich set of patterns includes boolean combinations of patterns, general list patterns,
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regular expressions, and first-class patterns. First-class patterns in Thorn provide pattern

abstraction that supports evolution of the data structure used in pattern matching, but

Thorn does not support multiple implementations. As a dynamic language, Thorn does

not check exhaustiveness.

Harmony and the Boomerang language [18, 39] support bidirectional computations

over trees and strings through domain-specific lens combinators. The types in these

languages support reasoning about the totality of transformations in these domains, but

data abstraction is not a feature of these languages.

JMatch uses a simple solver to convert logical formulas to algorithms that do pattern

matching and iteration. Integrating more sophisticated solvers would be an interesting

future direction. Examples of this approach include Squander [70], which uses an SMT

solver to synthesize code, and Juno 2 [77], which integrates a numerical solver.

One focus of research on pattern matching has been on how to generate efficient code

that shares computation across different patterns (e.g., [56]). Such optimizations are

orthogonal to this work.

4.9 Conclusion

A clean integration of pattern matching into the object-oriented setting could simplify

many programming tasks. Prior work has not managed to provide expressive pattern

matching with strong data abstraction and subtyping, along with statically checked

exhaustiveness. This is the first work that manages to combine these important features.

We improved the integration of pattern matching with object-oriented programming,

yet showed that even with this more powerful pattern matching, it is possible to reason

statically about exhaustiveness, redundancy, totality, and multiplicity.

The most important insight was that programmers need to be able to specify the

precondition for successful pattern matching in an abstract way. We showed that it is
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possible to do this while keeping the annotation burden low, by automatically extracting

matching preconditions. The specification techniques introduced may be helpful for other

models of multidirectional computation.

Another insight was that pattern matching can integrate with object-oriented pro-

gramming by treating constructors as methods that solve for the fields of the created

object, and by viewing equality itself as a constructor that shifts views between different

implementations of the same abstraction.
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CHAPTER 5

CONCLUSION

The ability to add new features to programming languages is much in demand,

for both design experimentation and domain-specific language extensions. However,

traditional monolithic compilers make small language extensions hard to implement and

to maintain. We argue that compilers should be implemented as a collection of modularly

extensible and composable transformations, so application developers can choose the

language features they need and language designers can experiment freely with different

feature combinations. This dissertation explores new design patterns for constructing a

compiler so that it can be extended in a modular way and its extensions can be merged

with little effort. These design patterns are implementable in a mainstream programming

language, Java. A new AST representation allows a single AST to represent programs

in multiple programming languages. A new dispatch mechanism supports changes to

the relationships between AST node types. Compiler passes are independent of their

source language, making translations reusable and composable. Our experience with

creating compilers for dozens of language variants, by applying both extension and

composition, shows that the design pattern offers effective machinery for language design

and implementation. The new design pattern may also guide development of future

mainstream language constructs.

Meanwhile, writing a parser for the compiler front end remains remarkably painful.

Automatic parser generators offer a powerful and systematic way to parse complex

grammars, but debugging conflicts in grammars can be time-consuming even for expe-

rienced language designers. Better tools for diagnosing parsing conflicts will alleviate

this difficulty. This dissertation proposes a practical algorithm that generates compact,

helpful counterexamples for LALR grammars. For each parsing conflict in a grammar, a

counterexample demonstrating the conflict is constructed. When the grammar in question
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is ambiguous, the algorithm usually generates a compact counterexample illustrating

the ambiguity. This algorithm has been implemented as an extension to the CUP parser

generator. The results from applying this implementation to a diverse collection of faulty

grammars show that the algorithm is practical, effective, and suitable for inclusion in

other LALR parser generators.

Finally, pattern matching, an important feature of functional languages that proves

useful for implementing translation passes in compilers, is in conflict with data abstrac-

tion and extensibility, which are central to object-oriented languages. Modal abstraction

offers an integration of deep pattern matching and convenient iteration abstractions into

an object-oriented setting; however, because of data abstraction, it is challenging for a

compiler to statically verify properties such as exhaustiveness. We extends modal abstrac-

tion in the JMatch language to support static, modular reasoning about exhaustiveness

and redundancy. New matching specifications allow these properties to be checked using

an SMT solver. We also introduce expressive pattern-matching constructs. Our evaluation

shows that these new features enable more concise code and that the performance of

checking exhaustiveness and redundancy is acceptable.

We hope that better tools, more expressive language design, and new language mech-

anism introduced in this dissertation will bring composable compiler implementations

closer to a practical reality.

5.1 Future directions

Contributions in this dissertation lay a foundation for the following possible areas of

future research that could make writing compilers an even more enjoyable experience.
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5.1.1 Composable integrated development environments

Integrated development environments (IDEs) play an important role in making large

software projects manageable. IDEs such as Eclipse [30] and IntelliJ IDEA [87] offer

syntax highlighting, project navigation, autocompletion of code, code refactoring, and

debugging platform that speed up the implementation process and help with testing

software. Not only are IDEs helpful for large projects, but the availability of IDEs can

also make new programming languages easier to learn, as users can play with various

language features and potentially discover more features with the help of various tools

that IDEs provide.

Despite the importance of IDEs, they are usually not released with compilers. One

reason is the high cost of implementing IDEs, so investing human hours into coding an

environment that may or may not be used by the general programming community poses

a risk. Rather, there is often a gap between the initial release of a new programming

language, to gauge its popularity, before IDEs are designed, implemented, and released.

But this means designers of new programming languages need to work even harder to

make the new languages well known and widely used. A better way to simplify IDE

implementations can encourage more domain-specific developments along the line of the

language toolbox approach we have proposed.

Some effort has been made to improve this process. Eclipse provides the ability to

attach plugins as a way to extend the base IDE [13]. These extension points work in

the same way as extensible compilers, where plugins can extend on top of one another.

Like the compiler composability problem, however, composing independently developed

plugins can be painstaking. Our design patterns that address the composability problem

would be a good starting point in tackling composability of IDEs.

One significant challenge when work with IDEs, unlike with compilers, is that the

existing code for the base IDE poses additional constraints for applying our design-
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pattern approach. In implementing our composable compilers, we had the freedom of

structuring the compilers in any way we would like. That is, composable compilers can

be implemented from scratch. On the contrary, given an IDE implementation, we no

longer have full freedom to change the base IDE. A more restricted set of design patterns

appears necessary for composition to work with existing developments. Nevertheless,

our design-pattern proposal in a mainstream language suggests that existing languages

for implementing plugins might already be enough to make this work.

5.1.2 Modal abstraction and parsing

Parsing is the first important step of the compilation process, where source programs

are transformed into ASTs that can be processed by compilers. At the other end of the

process, pretty-printing is a critical step if the resulting programs are to be inspected by

humans, for example, in an IDE. Line breaks, indentations, and proper spacing play a

role in determining how understandable the code is. Poorly formatted code, however

simple, can be incomprehensible.

Parsing and pretty-printing are closely related. Ignoring whitespace, given an AST

constructed from parsing a program, pretty-printing this AST should result in the identical

program. In other words, parsing and pretty-printing should be an invertible process. Prior

work such as invertible syntax descriptions [95], FliPpr [66], and object grammars [116]

has proposed ways to make parsing and pretty-printing invertible. FliPpr even takes screen

widths into account to produce different printouts. In these approaches, indentations

and spacing are encoded so that pretty-printing outputs the “nicest” format whenever

possible.

But the beauty of pretty-printing is subjective. Some programmers want an open

brace immediately after the conditional expression in an if statement; others want it on

the next line. Tabs or spaces? Tab size? How many spaces for a level of indentation?
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Not everybody can agree on these questions, so it is best to leave these choices to

individual programmers. What we need is an invertible parsing and pretty-printing

process that accepts configurable preferences for desired formatting. The Eclipse IDE

already provides such configurations to some extent, but parsing remains decoupled from

pretty-printing. As a generalization of invertible computation, modal abstraction is a

possible candidate for reconciling parsing with configurable pretty-printing.
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APPENDIX A

CODE LISTINGS FOR COMPOSABLE COMPILER IMPLEMENTATION

A.1 Core implementation of the Lang interface

1 /**

2 * A {@code Lang} represents a programming language. Any programming language

3 * has zero or more parents as immediate superlanguages. A language without a

4 * parent is a base language that does not extend any other language. A

5 * language with more than one parent is a composition of its immediate

6 * superlanguages.

7 */

8 public interface Lang {
9

10 /** The name of this programming language. */

11 String name();

12

13 /** The immediate superlanguages of this language. */

14 Set<Lang> superLangs();

15

16 /** The superlanguages of this language. */

17 Set<Lang> allSuperLangs();

18

19 /**

20 * Return true if {@code lang} is a superlanguage of this language;

21 * false otherwise

22 */

23 boolean isSublanguage(Lang lang);
24

25 /** Node class factory for this language. */

26 NodeClassFactory nodeClassFactory();

27

28 /** Operator factory factory for this language. */

29 default OperatorFactoryFactory opFactoryFactory() {
30 return null;
31 }

32

33 /**

34 * Available target languages that this languages can be

35 * directly translated to.

36 */

37 Collection<Lang> targetLangs();

38

39 /** partial order for comparing languages in the hierarchy */

40 PartialOrder<Lang> partialOrder = new PartialOrder<Lang>() {
41 @Override

42 public boolean comparable(Lang e, Object other) {
43 if (other instanceof Lang) {
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44 Lang l = (Lang) other;

45 return e.isSublanguage(l) || l.isSublanguage(e);
46 }

47 return false;
48 }

49

50 @Override

51 public boolean moreSpecificThan(Lang e, Object other) {
52 if (!comparable(e, other))
53 throw new UnsupportedOperationException();
54 Lang l = (Lang) other;

55 return e.isSublanguage(l);
56 }

57 };

58

59 abstract class Class implements Lang {
60 protected final Set<Lang> superLangs;
61 /* cache of superlanguages */

62 protected Set<Lang> allSuperLangs;
63

64 protected Class(Lang... superlangs) {
65 Set<Lang> superLangs = new HashSet<>();
66 for (Lang superLang : superlangs)
67 superLangs.add(superLang);

68 this.superLangs = Collections.unmodifiableSet(superLangs);
69 }

70

71 @Override

72 public String name() {
73 ...

74 }

75

76 @Override

77 public final Set<Lang> superLangs() {
78 return superLangs;
79 }

80

81 @Override

82 public final Set<Lang> allSuperLangs() {
83 if (allSuperLangs == null) {
84 // initialize cache

85 Set<Lang> superLangs = superLangs();

86 Set<Lang> result = new HashSet<>(superLangs);
87 for (Lang lang : superLangs)
88 result.addAll(lang.allSuperLangs());

89 allSuperLangs = Collections.unmodifiableSet(result);

90 }

91 return allSuperLangs;
92 }

93

94 @Override

95 public final boolean isSublanguage(Lang lang) {
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96 return allSuperLangs().contains(lang);
97 }

98

99 @Override

100 public final Collection<Lang> targetLangs() {
101 ...

102 }

103 }

104 }

A.2 Core implementation of the NodeClass interface

1 public interface NodeClass {
2 /** Immediate superclasses of this node class. */

3 Set<NodeClass> superclasses(NodeClassFactory af);

4

5 /** All superclasses of this node class. */

6 Set<NodeClass> allSuperclasses(NodeClassFactory af);

7

8 /**

9 * Return true if this node class is a subclass of the given node class

10 * in the given node type hierarchy.

11 */

12 boolean isSubclass(NodeClassFactory af, NodeClass astClass);
13

14 /**

15 * Return an operator associated with this node class in the given

16 * operator factory, or null if undefined.

17 */

18 <O extends Operator> O operator(OperatorFactory<O> f);
19

20 /** partial order cache */

21 Map<NodeClassFactory, PartialOrder<NodeClass>> partialOrderMap =

22 new HashMap<>();
23

24 /** partial order for comparing node types in the given hierarchy */

25 static PartialOrder<NodeClass> partialOrder(NodeClassFactory af) {
26 if (!partialOrderMap.containsKey(af)) {
27 partialOrderMap.put(af, new PartialOrder<NodeClass>() {
28 @Override

29 public boolean comparable(NodeClass e, Object other) {
30 if (other instanceof NodeClass) {
31 NodeClass astClass = (NodeClass) other;

32 return e.isSubclass(af, astClass)
33 || astClass.isSubclass(af, e);

34 }

35 return false;
36 }

37

38 @Override
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39 public boolean moreSpecificThan(NodeClass e, Object other) {
40 if (!comparable(e, other))
41 throw new UnsupportedOperationException();
42 NodeClass astClass = (NodeClass) other;

43 return e.isSubclass(af, astClass);
44 }

45 });

46 }

47 return partialOrderMap.get(af);
48 }

49

50 abstract class Class implements NodeClass {
51 protected String name;
52 /** cache of immediate superclasses */

53 protected final Map<NodeClassFactory, Set<NodeClass>> superclasses =
54 new HashMap<>();
55 /** cache of all superclasses */

56 protected final Map<NodeClassFactory, Set<NodeClass>>
57 allSuperclasses = new HashMap<>();
58

59 public Class(String name) {
60 this.name = name;
61 }

62

63 @Override

64 public final Set<NodeClass> superclasses(NodeClassFactory af) {
65 if (!superclasses.containsKey(af))
66 superclasses.put(af,

67 Collections.unmodifiableSet(

68 superclassesImpl(af)));

69 return superclasses.get(af);
70 }

71

72 protected abstract Set<NodeClass>
73 superclassesImpl(NodeClassFactory af);

74

75 @Override

76 public final Set<NodeClass> allSuperclasses(NodeClassFactory af) {
77 if (!allSuperclasses.containsKey(af)) {
78 Set<NodeClass> superclasses = superclasses(af);

79 Set<NodeClass> result = new HashSet<>(superclasses);
80 for (NodeClass superclass : superclasses)
81 result.addAll(superclass.allSuperclasses(af));

82 allSuperclasses.put(af, Collections.unmodifiableSet(result));

83 }

84 return allSuperclasses.get(af);
85 }

86

87 @Override

88 public final boolean isSubclass(
89 NodeClassFactory af, NodeClass astClass) {

90 return allSuperclasses(af).contains(astClass);
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91 }

92

93 @Override

94 public final String toString() {
95 ...

96 }

97 }

98 }

A.3 Implementation of operator factory explorer

First, we declare a utility class that directs the explorer to the correct operator factory for

a given language:
1 class NodeOpUtil<Op extends Operator> {
2 /** resolver for operator factory factory for the given language */

3 private static final OpFactoryFactoryResolver offResolver =
4 (lang) -> lang.opFactoryFactory();

5 /** cache for previously requested implementations */

6 Map<NodeClass, Map<Lang, Map<Lang, Map<NodeClass, Op>>>> superOpCache =

7 new HashMap<>();
8 /** resolver for operator factory for the given operator */

9 protected OpFactoryResolver<Op> ofResolver;
10

11 public NodeOpUtil(OpFactoryResolver<Op> finder) {
12 ofResolver = finder;

13 }

14

15 /**

16 * Return the implementation defined in (lang, rep),

17 * or null if not exists.

18 */

19 public final Op op(Lang lang, NodeClass rep) {
20 // Obtain the desired operator factory.

21 OperatorFactory<Op> of =

22 ofResolver.resolve(offResolver.resolve(lang));

23 // If operator factory is null, there is no implementation of

24 // this operator at all within the language, so return null.

25 // Otherwise, let the node type invoke the appropriate factory method

26 // in the operator factory for the desired implementation.

27 return of == null ? null : rep.operator(of);
28 }

29 }

30

31 interface OpFactoryFactoryResolver {
32 OperatorFactoryFactory resolve(Lang lang);

33 }

34

35 interface OpFactoryResolver<O extends Operator> {
36 OperatorFactory<O> resolve(OperatorFactoryFactory off);
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37 }

Each language defines an operator factory factory containing methods that return operator

factories for all implemented operators in the language. Given a language, its operator

factory factory is determined. Then, given an operator, the appropriate operator factory

can be determined from a method in the operator factory factory. Finally, given a node

type, the appropriate implementation can be determined from a method in the operator

factory.

To compute the most specific implementation efficiently, the explorer code uses a

special implementation of Map in the Java Collections Framework that retains only the

most specific keys added to the map so far. Keys for this specialized map are the most

specific node types or languages that define an implementation of interest; the values are

the implementations returned by operator factories.

The following explorer methods need to be implemented only once per dispatch

ordering, to be shared by all operators. To implement a different dispatch ordering, only

method findSuperOperator needs to be modified to correct the ordering.
1 /** Find the most specific implementation for (lang, rep). */

2 static <Op extends Operator> Op getOperator(Ast rep, Lang lang,
3 NodeOpUtil<Op> ou) {

4 return getOperator(rep, lang, ou, lang, rep);
5 }

6

7 /**

8 * Find the most specific implementation for (lang, rep),

9 * taking the original node type and language into account in case we need to

10 * explore the node type hierarchy in superlanguages.

11 * In that case, we need to start from the original node type all over again.

12 */

13 static <Op extends Operator> Op getOperator(NodeClass origRep, Lang origLang,
14 NodeOpUtil<Op> ou, Lang lang, NodeClass rep) {

15 // Try getting the implementation defined in (lang, rep) itself.

16 Op op = ou.op(lang, rep);

17 // If that implementation does not exist,

18 // try finding the superclass implementation.

19 if (op == null) op = getSuperOperator(origRep, origLang, ou, lang, rep);
20 return op;
21 }

22

23 /**
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24 * cached version of findSuperOperator below to improve performance by

25 * avoiding querying factories repetitively

26 */

27 static <Op extends Operator> Op getSuperOperator(NodeClass origRep,
28 Lang origLang, NodeOpUtil<Op> ou, Lang lang, NodeClass rep) {

29 // Try cache first.

30 if (!ou.superOpCache.containsKey(origRep))
31 ou.superOpCache.put(origRep, new HashMap<>());
32 Map<Lang, Map<Lang, Map<NodeClass, Op>>> origRepMap =

33 ou.superOpCache.get(origRep);

34 if (!origRepMap.containsKey(origLang))
35 origRepMap.put(origLang, new HashMap<>());
36 Map<Lang, Map<NodeClass, Op>> origLangMap = origRepMap.get(origLang);

37 if (!origLangMap.containsKey(lang))
38 origLangMap.put(lang, new HashMap<>());
39 Map<NodeClass, Op> langMap = origLangMap.get(lang);

40 if (!langMap.containsKey(rep)) {
41 // If cache has no result, do the actual work of exploring

42 // operator factories in relevant languages.

43 Pair<Lang, NodeClass> spec =

44 findSuperOperator(origRep, origLang, ou, lang, rep);

45 if (spec == null) // No applicable implementation.
46 throw new InternalCompilerError("Message not understood");
47 // Cache the result.

48 langMap.put(rep, ou.op(spec.part1(), spec.part2()));

49 }

50 return langMap.get(rep);
51 }

52

53 /**

54 * Find the super implementation of the given current node type and language,

55 * taking the original node type and language into account in case we need to

56 * explore the node type hierarchy in superlanguages.

57 * In that case, we need to start from the original node type all over again.

58 */

59 static <Op extends Operator> Pair<Lang, NodeClass> findSuperOperator(
60 NodeClass origRep, Lang origLang, NodeOpUtil<Op> ou, Lang lang,

61 NodeClass rep) {

62 // Dispatch mechanism:

63 // - Go up the node type hierarchy within the same language first.

64 // - If no implementation found within the same language, explore

65 // the superlanguages.

66

67 NodeClassFactory af = origLang.nodeClassFactory();

68 // Find candidates within the current language.

69 Map<NodeClass, Pair<Lang, NodeClass>> repCandidates =

70 new MostSpecificKeyMap<>(NodeClass.partialOrder(af));
71 for (NodeClass repCandidate : rep.allSuperclasses(af))
72 if (ou.op(lang, repCandidate) != null) {
73 repCandidates.put(repCandidate,

74 new Pair<>(lang, repCandidate));
75 }
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76 int numReps = repCandidates.size();

77 if (numReps == 1) // Unique, most specific implementation found.
78 return repCandidates.get(repCandidates.keySet().iterator().next());
79 else if (numReps > 1) {
80 throw new InternalCompilerError("Message ambiguous");
81 }

82 // No implementation within the current language.

83 // Find candidates in superlanguages.

84 Map<Lang, Pair<Lang, NodeClass>> langCandidates = new HashMap<>();
85 new MostSpecificKeyMap<>(Lang.partialOrder);
86 for (Lang superLang : lang.superLangs())
87 if (ou.op(superLang, origRep) != null) {
88 // Implementation for (superLang, T_0) found.

89 // No need to explore the node type hierarchy

90 // for this superlanguage.

91 langCandidates.put(superLang, new Pair<>(superLang, origRep));
92 }

93 else {
94 // Otherwise, find the implementation recursively.

95 Pair<Lang, NodeClass> superSpec =

96 findSuperOperator(origRep,

97 origLang,

98 ou,

99 superLang,

100 origRep);

101 if (superSpec != null) {
102 // A super implementation is found; record result.

103 Lang langCandidate = superSpec.part1();

104 langCandidates.put(langCandidate, superSpec);

105 }

106 }

107 // Most specific superlanguage needs to be unique,

108 // or ambiguity occurs.

109 int numLangs = langCandidates.size();

110 if (numLangs == 1) // Unique most specific superlanguage, OK.
111 return langCandidates.get(langCandidates.keySet().iterator().next());
112 else if (numLangs > 1) {
113 throw new InternalCompilerError("Message ambiguous");
114 }

115 return null;
116 }

Here is an example of implementing the dispatcher for type checking:

1 /** resolver for type checking */

2 NodeOpUtil<TypeCheckOperator> typeCheckOp =

3 new NodeOpUtil<>(off -> off instanceof JLOperatorFactoryFactory
4 ? ((JLOperatorFactoryFactory) off).typeCheck() : null);
5

6 /** dispatcher to be invoked by client code */

7 static Node typeCheck(Node n, TypeChecker tc) throws SemanticException {
8 // Get the most specific operator for this node type in
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9 // the language the type checker is working on, i.e.,

10 // L_0 = tc.lang() and T_0 = rep().

11 TypeCheckOperator op = Node.getOperator(n.rep(), tc.lang(), typeCheckOp);

12 return op.typeCheck(n, tc);
13 }

14

15 /** superclass dispatcher to be invoked by type-checking implementation */

16 static Node typeCheckSuper(Node n, TypeChecker tc, Lang lang, NodeClass rep)
17 throws SemanticException {
18 // Get the most specific superclass operator for node type "rep"

19 // in language "lang".

20 // The original node type and language are used when we need to

21 // move to another node type hierarchy in a different language,

22 // so we know where to start over.

23 TypeCheckOperator op =

24 Node.getSuperOperator(n.rep(), tc.lang(), typeCheckOp, lang, rep);

25 return op.typeCheck(n, tc);
26 }

27

28 /**

29 * direct superclass dispatcher to resolve conflicts;

30 * to be used sparingly by type-checking implementations

31 */

32 static Node typeCheck(Node n, TypeChecker tc, Lang lang, NodeClass rep)
33 throws SemanticException {
34 TypeCheckOperator op =

35 Node.getOperator(n.rep(), tc.lang(), typeCheckOp, lang, rep);

36 return op.typeCheck(n, tc);
37 }
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