Math Olympiad 4 roundup

1. Each letter in the ordered list A, B, C, D, E, ..., Y, Z represents a number, not necessarily different from each other, so two letters may represent the same number. The sum of any 4 consecutive numbers is 30. If $A=3, C=9$, and $D=10$, what is the value of J ?

Answer:

8
2. In the previous problem, what is the value of Z ?

Answer:

Also 8!
3. Each letter in the ordered list A, B, C, D, E again represents a number. The sum of any three consecutive numbers is 16 . If $\mathrm{A}=1$, what is D ?

Answer:

Must be the same as A: 1
4. The clock at Jacobi Towers is also slow. Every day at noon, Theo corrects it from 11:37 to 12:00pm. He misses correcting it for 5 days. What time does it read when he shows up at noon to correct it on the 6th day?
Answer:
$6 \times 23=148$. So it reads 9:42am.
5. Two watches are set correctly at 7:00 AM. One watch gains 3 minutes every two hours. The other watch loses 1 minute every two hours. At what time the next day will the faster watch be exactly one hour ahead of the slower watch? (indicate AM or PM)

Answer:

The faster watch gains by 2 minutes per hour, so it will take 15 hours: 1PM
6. Theo lost his adjustment wrench. How many days will it take before the Jacobi clock towers read the correct time again at noon?

Answer:

After n days the time reads $23 \times n$ minutes slow. For this to be 12:00am or $12: 00 \mathrm{pm}$, the number of minutes slow must be a multiple of the number of minutes in a half a day, which is $12 \times 60=720$. The least common multiple of 720 and 23 is 23×720, since they have no common prime factors. Therefore it will take 720 days, or almost two years!
7. How many numbers between 1 and 1000 are divisible by 5 and by 7 ?

Answer:

If a number is a multiple of both 5 and 7 , it must be a multiple of the least common multiple of 5 and 7 , which is 35 . The first multiple of 35 is 35 . Dividing 1000 by 35, we get 28 with a remainder, so the multiples of 35 go from 1×35 to 28×35. So there are 28 .
8. How many numbers between 1 and 1000 are divisible by 10 but not by 15 ?

Answer:
The least common multiple of 10 and 15 is $2 \times 3 \times 5=30$. There are $1000 / 10=100$ numbers divisible by 10 . Since $1000 / 30=33$ (with a remainder), there are 33 numbers divisible by 30. Therefore there are $100-33=67$ numbers divisible by 10 but not 15 .
9. How many numbers between 1 and 1000 are divisible by 6 or by 8 , but not by 9 ?

Answer:
This is trickier! The following Venn diagram may help us think about it. There are $\lfloor 1000 / 6\rfloor=166$ numbers divisible by 6 and 1000/8 = 125 divisible by 8. But we don't want to double-count the numbers divisible by both. Since $L C M(6,8)$ is 24 , we need to subtract the $\lfloor 1000 / 24\rfloor=41$ numbers divisible by both. So that gives us $166+125-41=250$ numbers divisible by either 6 or 8 . Now we need to remove the ones divisible by 9 . Since $\operatorname{LCM}(9,24)=3 \times 3 \times 2 \times 2 \times 2=72=\operatorname{LCM}(8,9)$, all the numbers in the intersection of the blue and green circles are actually in the center. So we just need to remove the numbers divisible by both 6 and 9 . These are divisible by 18 , so there are 55 of them. $250-55=195$.

