ReCapture: AR-Guided Time-lapse Photography

Ruyu Yan
ry233@cornell.edu
Cornell University

Ithaca, New York, USA

Longxiulin Deng
1d469@cornell.edu
Cornell University

Ithaca, New York, USA

Subject 3D Tracking /
Distance World Map Construction
= )\
| £
9 Subject
9 e
@ @ is Close {, o’\'\
9 (
2 e
2 ¥
) <P
v 2 o : o .
: Subject oy Tracking
is Far &7 Succeeds
2 y
S -
= ' (K
- 2
ReCapture User & R 7/‘,’
¢} ——
Overlay Mode Light Field Mode

Jiatian Sun
jiatians@cs.cornell.edu
Cornell University
Ithaca, New York, USA

Abe Davis
abedavis@cornell.edu
Cornell University
Ithaca, New York, USA

Re-registration Against . . S
g & Time-lapse Visualization

Stored Map
=
Tracking T
Succeeds (/J 2\
) Mg ]
<
;Qo@
5 %&' Registration
5
e Succeeds

3D Mode

Multi-view Space-time Visualization

Figure 1: ReCapture provides three different capture modes to facilitate robust hand-held time-lapse capture across a wide
variety of scenarios. Each mode relies on different tracking assumptions. Overlay mode (bottom left) works well for distant
subjects and requires no tracking information. 3D Mode (bottom right) provides the most precise guidance, but requires
both tracking and re-registration to succeed at capture time. Light Field Mode (bottom middle) requires tracking but not
re-registration and is designed to help when the precision of recaptured views is important but unknown at capture time. We
also explore static and interactive visualizations of captured time-lapse data (right).

ABSTRACT

We present ReCapture, a system that leverages AR-based guidance
to help users capture time-lapse data with hand-held mobile devices.
ReCapture works by repeatedly guiding users back to the precise
location of previously captured images so they can record time-
lapse videos one frame at a time without leaving their camera in the
scene. Building on previous work in computational re-photography,
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we combine three different guidance modes to enable parallel hand-
held time-lapse capture in general settings. We demonstrate the
versatility of our system on a wide variety of subjects and scenes
captured over a year of development and regular use, and explore
different visualizations of unstructured hand-held time-lapse data.
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1 INTRODUCTION

Time-lapse offers a powerful way to visualize changes that happen
slowly over time, but recording time-lapse video is challenging; it
traditionally requires leaving a camera pointed at the subject for
an extended period, during which even slight camera movement
can have a significant impact on the resulting video. Most time-
lapse is recorded by fixing the camera to a tripod left in the scene
throughout the capture. This strategy can be effective, but with
several limitations. First, it requires a dedicated camera and tripod
for capture. Second, ensuring the setup will not be disturbed may be
impossible in uncontrolled or public settings. And third, the camera
and tripod remain occupied throughout the process, which renders
them unavailable for other uses. Furthermore, recording multiple
perspectives of a scene (e.g., for 3D scene reconstruction) requires
duplicating this setup, which compounds the cost and inconve-
nience of capture. These challenges contribute to a relative scarcity
of time-lapse data and make multi-view time-lapse exceedingly
rare.

Our work explores an alternative approach to time-lapse cap-
ture that leverages Augmented Reality (AR)-based guidance to help
users repeatedly photograph subjects from consistent viewpoints
over time. Instead of leaving their camera in a scene, users are
free to take it with them whenever frames are not actively being
recorded. When they return to the site of an ongoing time-lapse
later on, our system helps guide them back to the precise loca-
tions of any previously recorded images to recapture additional
time-lapse frames. In this way, users can build time-lapse video
frame-by-frame with common hand-held devices. Our approach
offers several advantages: it uses ubiquitous hardware; lets users
capture a near-arbitrary number of time-lapse videos in parallel
on a single device; and since nothing needs to be left in the scene,
users can more easily record time-lapse in public and other uncon-
trolled environments. Our work is, to our knowledge, the first to
explore parallel hand-held time-lapse capture, which we believe
will enable an exciting range of new applications spanning personal
photography, historical documentation, scientific fieldwork, and
much more.

1.1 Key Challenges & Contributions

While our target application is new, the approach we take to hand-
held time-lapse capture builds on previous exploration of closely
related problems. In particular, our core contributions are perhaps
best understood in the context of other work on computational
re-photography. Previous work in this space has focused on recap-
turing individual images for a limited range of subjects (see Section
2). Our work extends this problem to frequent, repeated recapture
under much more general settings, which presents significant new
challenges:

Robustness & Versatility: Subjects often undergo substantial
changes in both appearance and geometry over the course of a
time-lapse. Notably, many common phenomena—e.g., plant growth,
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snowfall, or the transition from day to night—can often cause image-
based registration to fail even for image pairs taken from the ex-
act same location. This leads to a range of different tracking and
re-registration scenarios that place different limits on the ability
to localize a user’s camera. At the same time, some subjects are
more sensitive to the consistency of recaptured views than oth-
ers. Together, these factors create a landscape of different accuracy
demands and tracking conditions that can arise during capture.

Convenience: Unlike single-image re-photography, time-lapse re-
photography requires frequent action from the user over extended
periods of time. This makes the speed and convenience of capture
a critical consideration. For example, design decisions that reduce
time to capture (the time it takes a user to open the application
and recapture one image of a given target) can have a significant
impact on how often users choose to record new images, and in
many cases, capturing more images can outweigh the importance
of recapturing individual images more accurately. This forces us to
balance the goal of facilitating very precise re-photography against
the often competing goal of encouraging frequent capture.

To better understand these challenges, we spent over a year
iterating on the design of ReCapture, our iOS mobile app for
time-lapse re-photography. At the time of writing, we have used
ReCapture to re-photograph thousands of images spanning over
a hundred different subjects. Key to making this possible was the
observation that, for reasons related to the challenges mentioned
above, different guidance strategies work better in different capture
scenarios. In this paper, we outline the various factors that impact
capture, relate those factors the selection of user guidance strategies,
and describe how these observations motivate the design of our
mobile application. Our results and analysis provide compelling
evidence of the potential for systems like ReCapture across a wide
variety of applications.

1.2 Overview

Section 3 describes how different time-lapse subjects and capture
conditions give rise to scenarios that call for different user guidance
strategies. In Section 4 we describe how we designed ReCapture
to address a broad range of such scenarios, and in Sections 5-6
we present a user study to validate key aspects of that design.
Section 7 describes different ways to visualize captured data and
presents several results. Section 8 describes our own observations
using ReCapture and discusses other high-level takeaways from
our work. Our results are best appreciated by viewing the video
content on our project website, where readers can also find more
information about our work and the ReCapture app.

2 RELATED WORK

Guidance for 2D Photography: Several works have explored
AR-based guidance for applications in photography. Adams et al.
[1] provide live feedback for panoramic image acquisition. Rawat
and Kankanhalli [15] take a data-driven approach to assisting shot
composition, combining contextual information with composition
rules learned from social media to drive visual feedback provided to
the user. Tan et al. [23] focus on using AR to help capture consistent
product reference images, targeting applications in e-commerce. E
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et al. [5] and E et al. [6] focus on providing user feedback to help
amateur photographers follow established rules of photographic
composition. Slightly closer to our work is that of Kim and Lee
[7] on PicMe, which provides a tool to help users specify and cap-
ture desired image compositions. None of the above works use 3D
tracking for guidance, which can be a sensible design choice for
applications with looser requirements on viewpoint precision.

Guidance for 3D Photography: Some past work has focused on
capturing specific spatial distributions of images in a scene (e.g.,
viewpoints distributed along a sphere surrounding an object of
interest). The target use for such work is typically image-based
rendering or 3D reconstruction. Newcombe et al. [14] and Xiang
et al. [25] focus on real-time visual feedback for surface geometry
acquisition. Davis et al. [4] and Mildenhall et al. [12] each present
AR-based guidance systems for capturing light field data, which
they pair with rendering algorithms designed for unstructured
input. In particular, the light field capture mode in ReCapture builds
on the interface described in Davis et al. [4]. Our supplemental
results also use Mildenhall et al. [12] to visualize some of the data
captured with this mode.

Computational Re-photography: Our work is most closely
related to prior work on computational re-photography, which deals
with re-capturing previously recorded images of a scene. Shih et al.
[19] present a cart-mounted system that uses a motor-controlled
platform to re-photograph laser speckle images with millimeter-
scale precision. Even more related to our problem is the work of
Bae et al. [2], which introduced computational re-photography in
the context of recapturing historical photos. Like us, they focus on
using interactive visual feedback to guide users toward previously
captured images. However, their system, which uses a laptop and
tripod, is not hand-held, only addresses single-image capture, and
is demonstrated on a very limited range of subjects (primarily rigid
architecture).

Collaborative Photography: Our work also shares some similar-
ity with work on collaborative and Internet photography, where
photos are collected from publicly-available online sources, as in
Snavely et al. [21] and Snavely et al. [20], or through a collaborative
game, as in [24]. Inspired by these works, ReCapture uses GPS to
offer directions to nearby ongoing time-lapse capture targets to
facilitate collaborative capture.

Time-lapse Analysis and Visualization: The analysis and vi-
sualization of time-lapse data have also been explored in several
works. Sunkavalli et al. [22] and Bennett and McMillan [3] take a
computational approach to visualizing traditionally-captured time-
lapse data, while Rubinstein et al. [16] explore motion denoising
with a particular focus on time-lapse. Closer in spirit to our work
is that of Martin-Brualla et al. [9, 10, 11] and Li et al. [8], which
composes time-lapse video using crowd sampled images harvested
from the Internet.

3 CAPTURE CONDITIONS

To address a wide range of subjects and settings, we need to un-
derstand the factors that place different demands and limitations
on capture. We can reason about these factors in terms of what
information is required at capture time and what information is
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Figure 2: Subject Distance & Pose SNR: We see two scenes
that differ only in scale. The pair of images captured on the
left will be identical to the pair captured on the right, but the
corresponding viewpoints on the right are separated by 3x
the distance. This same scale factor applies to the noise of
pose estimates, reducing positional SNR to a third of what it
is on the left. Note also that simply moving the left subject
to the same depth as the right one without scaling would
result in an even smaller disparity range, causing an even
more negative impact on SNR.

available. We discuss requirements in terms of how much recap-
tured views are allowed to deviate from their target, and available
information in terms of tracking and re-registration accuracy. It
is impossible to anticipate every subject and use case, but we can
reason about the mechanisms behind common trends and failure
modes to better inform our system’s design.

3.1 Tracking & Re-registration

The most effective guidance strategies for re-photography incorpo-
rate real-time 3D information about where the camera is and where
it needs to go. However, access to this information depends on solv-
ing two underlying vision problems: tracking, and re-registration.
Tracking provides information about the camera’s current location,
while re-registration tells us the relative pose of previous images.
Either one of these can fail, but tracking will usually succeed when-
ever re-registration does.! This leads to three common conditions:
tracking and re-registration can both succeed, tracking can succeed
when re-registration fails, or tracking and re-registration can both
fail. We encountered each of these conditions frequently in our
own use of ReCapture.

3.2 Subject Distance

Visual pose estimation relies on the disparity of image features
in a scene, which scales inversely with distance from the camera.
This means that as distance to a subject increases, images separated
by the same baseline begin to look more similar, which impacts
re-photography in multiple ways. On one hand, it reduces precision
requirements, since the same amount of positional error will have
a smaller effect on recaptured images. On the other hand, it also
decreases the signal-to-noise ratio (SNR) of pose estimation (see
Figure 2), which makes tracking less stable. To understand the role

!This is because tracking involves corresponding images taken under the same condi-
tions, while re-registration involves corresponding images taken at different times.
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Figure 3: Map View of Nearby Scenes Being Captured: Users
can see thumbnails marking the GPS locations of ReCap-
ture targets on a map. When they click on a target, they can
instantly get directions to the scene of the target. This is
designed to facilitate collaborative capture among multiple
users.

these factors play in choosing a guidance strategy, consider how
each affects the value of the information provided by 3D tracking;
relaxing the requirements of capture makes 3D tracking less neces-
sary, and decreasing pose SNR makes 3D tracking less reliable. In
practice, this means that for more distant subjects, it can often be
advantageous to rely only on 2D guidance.

4 APPLICATION DESIGN

ReCapture groups time-lapse data into scenes containing one or
more target views of a common subject. Users can browse current
scenes in a gallery mode or on a map showing GPS pins with the
location of each scene. In map view, tapping on a scene will display
map directions to that scene from the user’s current location to bet-
ter facilitate collaborative capture (see Figure 3). In our experience,
features designed to reduce time to capture resulted in more fre-
quent use, particularly if they made it easier to incorporate capture
into daily routines (e.g., a morning commute). With this in mind,
upon opening the app, we display nearby scenes in gallery view
sorted by their distance from the user’s current GPS location. From
here, tapping a scene will immediately open it for recapture.
ReCapture offers three different capture modes. Each mode was
initially designed to address one of the tracking and re-registration
conditions described in Section 3.1. However, as we discuss in
Section 8, modes that rely on less 3D information are sometimes
preferable even when more 3D information is available. As such,
we let the user select which mode to use in different scenarios.

4.1 3D Mode

Our 3D Mode capture interface uses both tracking and re-registration
to provide precise guidance for very accurate recapture. The user
begins capture by moving their camera around to initialize track-
ing and, if recapturing a previous scene, register the current view
against a previously recorded world map. In ReCapture, we use
Apple ARKit’s world tracking API for this process. Once tracking
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is initialized, we render 3D image planes for the target viewpoint
of each ongoing time-lapse in the scene (see Figure 4, bottom left).
New target views can be added by tapping the camera icon on
the screen. To recapture an existing target view, the user taps on
its corresponding image plane, at which point rotation and trans-
lation guides will appear on the screen (see Figure 5). Together,
these guides take the more complicated 6DOF navigation task of
matching a given target pose and factor it into lower-dimensional
sub-tasks that are easier to perform.

The rotation guide consists of a red target fixed in the camera’s
field of view and a gray-blue target rendered pointing in the direc-
tion of the target viewpoint’s local z-axis. Aligning the red target
with the gray one will cause it to turn green, indicating that the
current camera orientation matches that of the target pose.

The translation guide, used to convey the translation of the
target pose relative to the current camera, takes the form of a cir-
cle rendered near the top left of the screen. Translation along the
current view’s local x-axis is visualized as a horizontal arrow ema-
nating from the center of the guide. The arrow’s direction indicates
whether the target is to the right or left of the current pose, and
its length scales with distance along the current camera’s x-axis.
Translation along the current y-axis is visualized with a correspond-
ing vertical arrow that works analogously. Translation along the
current z-axis is visualized in the size of a second concentric filled
circle. If this second circle is smaller than the first, the target is in
front of the current camera. If it is larger, then the target is behind.
The size and fill color of this z-axis circle scale with the target’s
distance along the z-axis, shifting in hue from red to green as the
camera gets closer to the target.

When the user’s camera is within specified distance and orien-
tation thresholds of the target pose, the application automatically
records an image. The user can then review the image, compare it
with the target, view an alignment of the two based on a best-fit
homography, and decide whether to save or retake the image.

When tracking and re-registration are reliable, 3D Mode is ex-
tremely effective at facilitating highly accurate re-photography. In
fact, our original design for ReCapture contained only one mode,
which was an earlier version of this interface. However, the advan-
tages of 3D Mode depends on reliable tracking and re-registration,
which are often unavailable in real-world settings. Over time, we
added our other two capture modes to address common failure
modes we observed through frequent use.

4.2 Overlay Mode

Where 3D Mode relies heavily on the success of tracking algorithms,
our second interface foregoes their use entirely. Overlay Mode pro-
vides feedback in the form of a static semi-transparent image of
the target view overlaid on top of the camera’s current viewfinder
feed. To match the target viewpoint, the user adjusts their camera
until features in the live image line up with those in the overlay.
Overlay mode works especially well with distant subjects for the
reasons discussed in Section 3.2. It is also extremely robust, as it
does not rely on any form of tracking or registration, which makes
it a reliable fallback for capturing any scene. The main weakness
of Overlay Mode is that precisely recapturing subjects close to the
camera can be incredibly difficult. In our own use of ReCapture we
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Overlay Mode

Light Field Mode

Figure 4: Three Recapture Modes in ReCapture: On the left is 3D Mode, designed for recapturing close-up scenes in situations
where tracking and re-registration both work. In the middle is Overlay Mode, which offers guidance in the form of a simple
target image overlay for capturing landscapes or scenes where tracking and re-registration fail. On the right is Light Field
Mode, which helps users capture a dense range of views and is effective in situations that call for high precision recapture but
re-registration fails, or for capturing dense image data to use in image-based reconstructions of the scene.
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Figure 5: 3D Mode Capture Interface During Recapture: The
screenshot on the left shows the interactive feedback pro-
vided by the 3D mode. At the upper left corner, the arrows
represent translational error in the x and y axes, and the ra-
dius of the red circle indicates the translational error in the
z axis. A gray-blue target is rendered in the scene, showing
the orientation of the reference camera pose. The screenshot
on the right demonstrates the status when all six degrees of
freedom are matched and automatic capturing is triggered.

found that, as a very approximate rule of thumb, objects larger than
a car viewed from several meters away were often easier to capture
in overlay mode than 3D mode. We explore this observation in
more detail in our user study, described in Section 5.

We also experimented with adding 2D homography-based guid-
ance to overlay mode, similar to interfaces presented in previous
work on related problems (e.g., [1, 2, 6, 7]). We believe this type
of guidance could be helpful in future systems, but found that 2D
tracking frequently failed in the same scenarios where 3D track-
ing was unsuccessful, and it added latency to overlay mode that
outweighed its benefits in our own use of the app.

4.3 Light Field Mode

Our third capture mode is Light Field Mode, which is inspired by
similar interfaces used in work on light field capture, and can also be
used to capture dense data for image-based rendering. We originally
added this mode upon finding that many scenes captured in 3D
Mode were difficult to re-register under very different lighting
conditions (e.g., recapturing a day-lit object at night). However,
tracking often still succeeds in these scenarios, which we can use to
facilitate more accurate recapture than Overlay Mode offers. We do
this by taking a different, more indirect approach to re-photography.
Instead of helping the user capture a specific viewpoint, we help
them quickly and densely sample a range of views that is likely
to cover the intended target. Then, later on, we can use off-line
processing to either find the closest captured view to our subject, or
directly render the target viewpoint using image-based rendering
techniques [4, 12, 13].

Light Field Mode uses a simplified version of the coverage map
visualization presented in Davis et al. [4]. After tracking is initial-
ized, the user taps on the subject they wish to capture. We project



UIST 22, October 29-November 2, 2022, Bend, OR, USA

the corresponding ray into the scene and intersect it with scene
surface estimates provided by ARKit to find a point of focus, which
we display as a small sphere in the scene. The user can then hold
the camera icon to trigger automatic capture whenever the camera
sees the point of focus from a sufficiently new angle. The set of cap-
tured images is visualized as a coverage map displayed on a sphere
of a larger radius centered at the point of focus. New photos are
recorded based on a threshold for the minimum angular difference
between the current camera location and a previously captured
view, measured relative to the point of focus. Previous work has
shown that users can efficiently capture data for image-based ren-
dering this way by "painting" the coverage map using their camera
[4]. An image visualizing the distribution of views captured for one
of our light field scenes (the bear) can be seen in Figure 15.

Light Field Mode provides a way to perform high-precision re-
photography without knowing the precise location of a target view
at capture time, which is particularly useful when re-registration
fails on nearby subjects. The main drawback of Light Field Mode is
that, at least compared to our other modes, the process of densely
sampling a range of images is often slow. However, in addition
to facilitating accurate re-photography when re-registration fails,
Light Field Mode also produces richer spatial data that can be used
for more immersive types of rendering. On our project website, you
will find examples of time-lapse light fields, which show movement
through a scene across both space and time.

5 USER STUDY

Most of ReCapture’s design was driven by our own experience
using the app during development. However, we also felt it was
important to validate some of our own observations with external
users. Designing a user study to focus directly on time-lapse capture
is difficult due to the long-term nature of the task. However, it is
much easier to conduct a controlled study on the sub-problem of
re-photography, which was not explored with hand-held solutions
in previous work. With this in mind, we conducted a user study to
examine capture in a number of different scenarios. We recruited
20 participants (9 males and 11 females, ages 20-50) via personal
contacts and message boards, and conducted the experiments over
the course of a week. Some participants worked in fields that require
strong spatial skills, but none had extensive experience with AR. We
designed the study to examine a key aspect of ReCapture’s multi-
interface design: the use of different guidance strategies for different
capture scenarios. In particular, we focused on exploring the relative
benefits of 3D Mode and Overlay Mode in different settings. We did
not compare with Light Field Mode in these experiments because
it addresses recapture in a fundamentally different way. We also
surveyed participants after the study to get qualitative feedback
about their experience.

5.1 Study Design

Users were asked to complete two recapture tasks with an iPad mini
provided by us. Each task consisted of re-photographing a different
scene from several target viewpoints selected ahead of time by us.
We trained each user on both interfaces prior to their first task by
having them capture a separate but similar scene. For each user, we
randomly assigned half of the views in each scene to 3D Mode and
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the other half to Overlay Mode. We also randomized the order in
which each mode was used to help counterbalance any proficiency
gained over time. We set a time limit of one-minute per image
for capturing the target images assigned to a given capture mode,
measured cumulatively for all of the images assigned to that mode,
to ensure that the process was completed. The two capture modes
were tested back-to-back in randomized order. Our experiments
included three different scenes, shown in Figure 6, which ranged in
scale and subject distance from a close-up tabletop scene to a more
distant outdoor landscape.

Users were instructed to match target viewpoints as closely as
possible, and allowed to preview the target images for reference
immediately before the experiment began. Users could also review
images immediately upon capture by flipping between the captured
image and an aligned blend with the target view. Users could then
choose to retake an image, but were informed that this would not
reset their task time. Any target not recaptured by the time limit
was considered incomplete.

5.2 Evaluation

Each user filled out a questionnaire after completing the study
where they were asked to evaluate various aspects of each capture
mode for each task using a 5-point Likert scale. They were also
asked to rate any preference for one mode or the other on different
scenes and optionally respond to prompts for open-ended explana-
tions or additional comments. The full questionnaire and responses
can be found in our supplemental material.

In addition to the questionnaire, we used high-resolution images
to scan and reconstruct a model of the close-up tabletop scene
and calibrated this model against direct distance measurements
to build a metrically accurate digital double. We then registered
the target views and images recaptured by each user against this
model using COLMAP [17, 18] to obtain accurate pose estimates
for each image. This lets us evaluate the metric accuracy of each
user’s captured pose compared to the target. Reconstructions of
the other two scenes were not suitable for the same high-precision
analysis, as both were larger, semi-public spaces where we could
not guarantee controlled ground truth.

6 USER STUDY RESULTS
6.1 Quantitative Analysis

We evaluated survey responses and accuracy measures according
to a Student’s t-distribution model.

6.1.1  Survey Results. The surveys results largely confirm the obser-
vations and analysis from our own use of the app. Users generally
preferred 3D mode for the close-up scene and overlay mode for
the scenes with content at greater distances (see Figure 7). Inter-
estingly, 3 users (15%) did report a preference for overlay mode
when capturing the close-up scene, but all 3 of these users were
substantially more accurate using 3D mode; in fact, each of these
users was more accurate on every image they took in 3D mode
than they were for any image they took using overlay mode, both
in terms of camera position and orientation. This may suggest that
some users actively prefer interfaces that let them be less accurate,
perhaps finding more opinionated feedback frustrating.
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Figure 6: User Study Target Scenes: Close-up Scene (top) two garden figurines placed onto a white meeting table near the
window. We created two tasks, each with 8 recapture targets by rotating the camera around one figurine. We kept the relative
position between the figurines and the table stable, while we did not control the lighting condition in the room. Mid-range
Scene (bottom right) an indoor public area with floor-to-ceiling windows. We created one task with 4 recapture targets by
including part of outdoor scene and part of indoor scene in the camera view. Landscape Scene (bottom left) an outdoor location
surrounded by buildings and urban vegetation. We created two tasks, each with 2 recapture targets viewing at objects 10-50
meters away from the camera. The 3D Tracking relocalization highly depends on the features on a stone bench that is within 5

meters away from the camera pose.

6.1.2  Re-capture Pose Accuracy. Our analysis of pose accuracy for
the close-up scenes is quite conclusive, with every single user per-
forming more accurately overall in 3D Mode (p < 0.0005). This
trend also holds for every viewpoint individually if we average accu-
racy across all users. Figure 8 shows results for camera translation,
which is generally the most critical type of error for re-photography
as it introduces spatially-varying shifts in image content that are
difficult to correct for using a homography.

6.1.3  Completion Rate. We also evaluated completion rate for each
task, representing the fraction of views captured within the given
time limit. Among all participants, there were 160 recapture targets
for the close-up scene, 36 for the mid-range scene, and 44 for the
outdoor scene, with targets in each scene distributed evenly across
the two capture modes. As shown in Figure 9, only a single target
was not completed on time for the close-up scene (in overlay mode).
33% of the targets were not completed for the mid range scene in
3D mode, compared with just 11% in overlay mode. In the outdoor

landscape scene this discrepancy increased, with over 80% of targets
left uncompleted in 3D mode compared with just 9% in overlay
mode.

In addition to these numbers we observed that, as predicted,
tracking noise for 3D Mode was generally higher in our more
distant scenes. It is also notable that, within low completion rate
for 3D Mode on our landscape scene, all users were able to initialize
tracking, but the success of re-registration varied with lighting and
weather conditions. This matches the observations from our own
that motivated adding Light Field Mode to ReCapture.

6.2 Qualitative Analysis

We also draw insights from the written responses users provided
to survey questions.

6.2.1 Learning Curves. Some participants noted that 3D Mode had
a slightly higher learning curve than Overlay Mode. In the words
of one user: “The image overlay interface was easy to use, while it’s
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Figure 7: User Interface Preference on Different Recapture
Targets: Users reported preferences for different interfaces
on different subjects using a 5-point Likert scale. Overall,
users preferred 3D Mode for our smaller, more nearby scenes,
and Overlay Mode for our most distant scene. Note that the
users who preferred Overlay Mode for capturing the close-up
scene were more accurate with 3D Mode, despite their re-
ported preference. These results support our multi-interface
design, as well as our observations about when each of the
tested interfaces works best.

hard to get a super precise image exactly like the provided one. The
3d tracking interface has a learning curve, but once I managed to
use it, I was able to get some precisely captured images." There was
one exception to this, participant L, who struggled with Overlay
Mode more than other users but performed about average using 3D
Mode. That participant’s feedback offers the possible explanation
that they are "not very good with spatial tasks" and found "it was
nice that the 3D tracking interface gave clear direction.".

6.2.2  Overlay Mode Observations. The hardest part of using Over-
lay Mode is often distinguishing between translation error and
rotation error. The challenge is that, while a single scene point
can always be brought into alignment through pure translation or
rotation, only the correct combination of these will correctly align
points at different depths. As one participant put it: "The overlay
interface was simple to understand but it was sometimes tricky to
figure out which way to move the camera to improve the align-
ment." Another joked that Overlay Mode “could be a cure for OCD
because something is always off.”

Some participants attributed the challenges of Overlay Mode to
a perceived flaw in how the system displayed images for review. As
one user speculated, “alignment might have taken too much consider-
ation of the backgrounds[sic] and did not prioritize the center object”,
referring to situations where a central object initially appeared
well-aligned, but the best-fit homography displayed during review
“messed it up” by transforming background features into alignment,
which caused the previously aligned foreground to ghost. Frustrat-
ing as this may be for some users, it highlights errors that can have
substantial impact on time-lapse. Conveying this more clearly to
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Camera Position Error: 3D Tracking Mode vs Overlay Mode
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Figure 8: Average Re-photography Position Error in the
Close-Up Scene Measured for Each Target Image (top) and
User (bottom): Across all users and target images in the close-
up scene, we see higher accuracy using 3D Mode.

the user before they take an image could improve the Overlay Mode
experience.

6.2.3 3D Mode Observations. Tracking noise and difficulty with
re-registration were the most significant issues with 3D Mode in
our larger more distant scenes, so most feedback on the 3D Mode
interface was focused on the close-up scene. Many users struggled
at first with how to move the camera one degree of freedom at a
time (e.g., translating while keeping orientation fixed), but quickly
improved at this with practice and saw it as an asset upon final
review. As one user put it: “following the interface that gave directions
on the screen (even though at first was less intuitive) seemed to give a
better outcome so ultimately felt like the more rewarding interface.”
One user noted that graphical feedback did not feel intuitive to
them, speculating that “processing audio/text information is faster
than reading the different kinds of cues on the screen” and suggesting
the use of natural language instructions like “move closer to the
object] or “move your phone to the right on the current surface” This
could be an interesting direction to explore for less visual users and
could lead to more accessible designs for the visually impaired.
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Figure 9: Number of Completed Recaptures (dark) v.s. Re-
capture Targets (light) for Different Tasks: The participants
could almost always complete the close-up task in time, while
the mid-range and landscape tasks were less controllable
especially with the 3D mode. Most participants failed to re-
localize their camera in the outdoor environment.

7 TIME-LAPSE VISUALIZATION

The data produced by ReCapture is not typical time-lapse video.
It is irregularly sampled in time, and while significantly reduced
by our application’s guidance, data still tends to contain small
inconsistencies in captured viewpoints. In most cases, these issues
are minor enough for us to address by aligning images with a
simple homography and linearly blending between adjacent images
in time will produce compelling video. We offer this visualization
as a default for viewing captured data in-app with ReCapture. Users
can sort this visualization by the date of capture, or by the time
of day when images were captured. Sorting by date works well
for visualizing things like plant growth of changing seasons, while
sorting by time of day is a good way to visualize the movement of
shadows with the sun. In addition to this default visualization, we
explore various other visualizations and ways to deal with small
inaccuracies in capture as well. More of the results described here
can be found on our project webpage.

7.1 Interactive Space-time Viewer

One exciting aspect of our approach to time-lapse capture is the
ability to more easily capture multi-view time-lapse data, which
currently quite rare. To facilitate exploring this data in both space
and time, we implemented a simple interactive 3D space-time view-
ing application in WebGL. For data captured entirely in 3D Mode or
in a single session of Light Field Mode we obtain pose estimates for
each image during capture. We can also use offline structure from
motion (in our experiments performed with COLMAP [17, 18]) to
combine data from different modes or refine capture-time pose es-
timates. Once we have pose estimates, we load these into a virtual
scene with a user-controllable camera. To render the scene, we first
calculate the nearest 16 views in space, time, or some user-specified
combination of the two. We then project a weighted combination of
these views onto a plane of focus at some user-controllable depth
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Figure 10: Focus Plane-Based Alignment: On the right we
see a blend of 16 images featuring the same tree taken at
different times of year. The tree itself looks quite different
across these images, so most automatic alignment methods
would focus on background features. To fix this, we estimate
the relative poses of each image, and project all 16 onto a
common 3D plane of focus placed at the virtual depth of our
tree. We then blend projected images to get the result on the
right.

in front of the scene’s virtual camera. This effectively performs a
weighted k-nearest neighbor reconstruction over space and time
given the unstructured sampling of a scene.

Our interactive space-time viewer is particularly useful when
a scene’s geometry changes frequently over time, even when ren-
dering time-lapse video from a single viewpoint. To understand
why, note that projecting multiple images onto a common plane
of focus has the same effect as warping those images by homo-
graphies based on content near the plane of focus in the scene. In
scenes where the subject changes geometry frequently, a best-fit
homography calculated in 2D will generally align on background
features. Projecting onto a user-controllable plane of focus in 3D
lets us instead align on the intended subject, even if we cannot
reconstruct its changing geometry (see Figure 10).

7.2 Image Composites

As video is a central focus of our work, our results are best appreci-
ated in video form. However, we can also create static visualizations
of our data by compositing different frames of a collected time lapse
into single images.

7.2.1 Time-Lapse Images. In one type of composite, we map differ-
ent regions of an output image to different frames from the captured
time-lapse (see Figure 11). We can assign these mappings manually,
but for large data sets we quickly explore alternatives by sorting
input data according to different criteria (e.g., time of year, time
of day, or the average correlated color temperature of pixels) and
assigning output regions to an ordered sub-sampling of the sorted
data.
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Figure 11: ReCapture Composite Images Gallery: We can visualize time-lapse data in a static image by mapping different
regions of an output image to different input frames from a captured time-lapse. Images labeled with season in the first row
are generated by images captured in the fall, sorted by calendar time and filtered by average pixel value. The second row is
generated by a smoother linear blending operation, where both season and environment light vary across the images. The

third row shows various examples of lighting changes in the same scenes.

7.2.2  Mean Images. Another interesting way to visualize captured
data is to simply align and average all images. For subjects captured
under a wide range of lighting conditions, this produces images
with very uniform lighting. It also provides a useful static way to
visualize how much different parts of the scene move over time (see
Figure 12), or how consistent re-photography was over the course
of capture (see Figure 13). Mean images are also high-precision,
which facilitates detail enhancement and tone-mapping algorithms
associated with HDR imaging (e.g., Figure 1 right middle).

7.3 Time-Lapse Light Fields & IBR

In addition to facilitating precise re-photography in situations
where re-registration is difficult, Light Field Mode offers a con-
venient way to capture data for image-based rendering (IBR) of

static scenes under varying lighting conditions. On our website
you will also find examples of videos interpolating between image-
based reconstructions of scenes captured in Light Field Mode over
both space and time.

8 DISCUSSION

8.1 Observations from Internal Use

Figure 14 offers a conservative summary of data captured by 3
members of our team over the span of one year at the time of writing.
Excluding data captured in light field mode and data captured purely
for testing or debugging purposes, we captured over 100 targets for
a total of roughly 4000 images. Here we describe some of our own
observations using the application.
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Figure 12: Mean Images Comparison: By averaging aligned images from a time-lapse we can visualize what parts of the scene
change over time, and what parts remain static. In the top example we see that plants and cars either are either removed or
blurred, as they move and deform over time. In the middle row we can see roughly how much the recycling bins move around
each time they are returned after being emptied. On the bottom row, we see that a pole is blurred compared to static content
like buildings. The shape of the blur shows a slight bend in the pole, and suggests that it occasionally rotates over time.

8.1.1 Routine Use. One of our most salient observations was that
ReCapture works best when capture is incorporated into a regular
part of daily routine. In general, we tried to recapture a target
whenever we happened to be nearby and had the time to do so. As
a result, targets that we encountered regularly (e.g., on the walk
to work, or a regular lunch spot) yielded the most images. This
accounts for the heavy tail in Figure 14.

8.1.2  Mode Selection. We eventually converged on a fairly con-
sistent decision tree for deciding what mode to use in different
scenarios. We summarize this tree, which closely adheres to the
motivations for including each capture mode, in Figure 1. How-
ever, there were situations where mode selection tended to deviate
from this tree. Overlay mode launches very quickly, making it very
easy to incorporate into regular routines, so we generally preferred
it for very frequent captures, even if tracking was possible. Also,
re-registration (at least, in ARKit at the time of writing) is fairly
sensitive to changes in the appearance of subjects, so failures were
common at different times of day, and in many cases a subject

would change over time (e.g., leaves growing or shedding on a tree)
in a way that would cause re-registration to fail even under similar
lighting conditions. In some of these cases, we switched capture
mode mid-time-lapse. We added Light Field Mode specifically to
address casses where this was necessary and Overlay Mode proved
difficult due to a small subject distance. It is notable that we al-
most never switched a target from a mode with fewer tracking and
registration requirements to one with more. In aggregate, these
factors contributed to us using Overlay Mode more and with more
regularity over time.

8.1.3  Other Observations. Certain behaviors make ReCapture much
easier to use in practice. In 3D Mode, choosing a consistent textured
patch of the scene to use when re-initializing the scene map makes
capture substantially easier. Similarly, in Overlay Mode, remem-
bering where the camera is positioned relative to fixed points of
reference in the scene makes recapture much easier over time. We
also found that resting the device against a surface when setting a
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Recapture On a Surface

Recapture In Free Space

Figure 13: Target View Selection in Overlay Mode: The left
column shows a user recapturing two different target views
in a similar outdoor setting. For the top target, the user rested
their phone on a surface for added stability (top left). For the
bottom target, they held the phone in the air. By averaging
the views captured of each target, we can visualize viewpoint
inconsistencies as blur in a mean image. In the bottom view-
point, we see slight blurring of fixed objects at some depths.
For the top viewpoint, we see sharp detail across different
depths, which reflects the added stability during capture.

target view tends to lead to more precise recapture. Figure 13 illus-
trates this by comparing the alignment of images for two nearby
outdoor targets, one captured by resting the device on a surface
and the other captured by holding the device in free space.

Our first implementation of Overlay Mode used the most recent
recapture of a target view as reference. We initially implemented it
this way anticipating that it would better accommodate recapture
of scenes that changed regularly. However, we observed that this
resulted in some drift of the captured viewing angles over time.
After switching the overlay to show the same, original target view
for every recapture, there was a noticeable improvement in the
consistency of captured views.

8.2 Limitations on Current Design

Some of the challenges we describe in this paper are fundamental
and likely to persist in future systems designed for hand-held time-
lapse capture. For example, the fact that nearby scenes are difficult
to capture accurately is a direct consequence of epipolar geometry.
However, some of the limitations we encountered can be at least
partially addressed by improvements to real-time tracking and re-
registration on mobile devices. We expect that as this technology
improves, the tipping point for when a scene is easier to recapture
with 3D guidance will shift, making an interface like our 3D Mode
more appealing in more scenarios.

Yan et al.
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Figure 14: ReCapture Internal Usage Statistics: Our team has
actively used ReCapture for over a year at the time of writ-
ing. These histograms give conservative estimates for the
distributions of recaptures per target (top) and the span of
time over which each target was captured (bottom).

It is also worth noting that the versatility of our current applica-
tion design could, in theory, be achieved with a single capture mode
that adapts guidance in real-time as tracking and re-registration
succeed or fail. However, such a design poses significant challenges.
Initializing tracking currently requires moving the camera in a par-
ticular way, which is different behavior from what users normally
do in Overlay Mode. It may be possible to address this by quickly
diagnosing a scene at the beginning of capture in a kind of meter-
ing process, but we leave exploring this kind of metering to future
work.

9 CONCLUSION

Our work shows a great deal of potential in using interactive visual
feedback to guide hand-held time-lapse capture on mobile devices.
We have presented an extensive exploration of this task and out-
lined many of the important design considerations for future work
in this area. We believe that systems like ReCapture could have
substantial impact across a wide range of applications ranging from
scientific field work, to historical and environmental preservation,
community development, and the arts. We have also demonstrated
that making this application practical requires careful consideration
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of factors related to human interaction design, computer vision,
visualization, and graphics. We believe this opens many opportu-
nities for important future work on each of these aspects of the
problem and are excited to see what other researchers and users
will do with ReCapture.
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Linearly Blended Close-up Images Horizontally Blended Landscape Images 3D Point Clouds Reconstructed fron
Rephotographed in 3D Mode Rephotographed in Overlay Mode Images Captured in Light Field Mode

Figure 15: Sample Visualizations of Data Acquired With Each of ReCapture’s Three Capture Modes: (left) Wilting roses captured
in 3D Mode, which supports accurate multi-view recapture for close-up objects. (middle) A time-lapse image composite of data
taken in Overlay Mode, which facilitates robust recapture of more distant scenes (e.g., landscapes). (right) Images showing the
estimated moses of a subject captured with Light Field Mode, which helps users capture data for synthesizing new views and
3D reconstruction. See additional results on our project website.
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