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In this supplemental material, we discuss the synthetic data generation and
network training details.
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1 LEARNING VISUAL EVENTFULNESS

1.1 Synthesizing Training Data for Eventfulness
1.1.1 Synthesizing Motions. Figure 3 of the main paper summarizes
the synthetic video generation process. As shown in the figure, after
sampling a finite set of event timing 𝐸 = {𝑒0, 𝑒1, 𝑒2, . . . , 𝑒𝑛} ∈ 𝑅, we
will generate motion discontinuities at those events. These disconti-
nuities are introduced by making large changes in the direction of
linear velocity.

To do so, first, we sample a 3D polyline trajectory for each moving
object. As an object tracks its trajectory, it always moves in a straight
line until an event occurs. Thus, events only occur at vertices of a
polyline. To ensure large changes in velocity at all events, all angles
of the polyline are above 30 degree.

Next, we replace the line segment trajectories in between events
with low-curvature splines, so that we could cover a larger family
of smooth motions without losing the directional changes at the
events.

1.1.2 Label Generation. In the synthetic data set, eventfulness is
proportional to the number of motion discontinuities at each frame.
We consider a moving object has motion discontinuity at one frame,
if an event 𝑒 occurs in between this frame and its previous frame.
Thereafter, we count all the objects with motion discontinuity at
each frame and raise it to the power of 0.7 to make it into the
eventfulness label. Eventually, to facilitate the regressive training
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process, we blur the eventfulness label with a Gaussian kernel at
run time.

The other dimensions of the motion descriptor, the camera-space
linear velocity and acceleration’s projection on positive and negative
direction of x and y axis of the screen, are evaluated with finite
difference methods. Specifically, the linear velocity is evaluated
with backward difference scheme and acceleration is evaluated with
central difference scheme.

Table 1. Architecture details for the eventfulness spatio-tempotal CNN
model. The model is based on the (2+1)D ResNet-18 video architecture [Tran
et al. 2018] by removing the temporal strides and adaptation for dense
regresssion. Batch Normalization and ReLU activation are added after every
convolutional layer. Shortcut connections are also added at each layer,
except for the first layer of every residual block (the ones with stride > 1).

Layer # Channels Kernel Stride Padding Output dimensions
video input 3 - - - 𝑇 × 100 × 100 × 3
conv1,1 64 (3,7,7) (1,2,2) (1,3,3) 𝑇 × 50 × 50 × 64
conv1,2 64 (3,3,3) (1,1,1) (1,1,1) 𝑇 × 50 × 50 × 64
conv1,3 64 (3,3,3) (1,1,1) (1,1,1) 𝑇 × 50 × 50 × 64
conv2,1 128 (3,3,3) (1,2,2) (1,1,1) 𝑇 × 25 × 25 × 128
conv2,2 128 (3,3,3) (1,1,1) (1,1,1) 𝑇 × 25 × 25 × 128
conv3,1 256 (3,3,3) (1,2,2) (1,1,1) 𝑇 × 12 × 12 × 256
conv3,1 256 (3,3,3) (1,1,1) (1,1,1) 𝑇 × 12 × 12 × 256
conv4,1 512 (3,3,3) (1,2,2) (1,1,1) 𝑇 × 6 × 6 × 512
conv4,1 512 (3,3,3) (1,1,1) (1,1,1) 𝑇 × 6 × 6 × 512
avgpool 512 (1,6,6) (1,1,1) (0,0,0) 𝑇 × 512
fc1 1 - - - 𝑇 × 𝑁

1.1.3 Randomization. We experimented with multiple domain ran-
domization strategies to improve our model’s robustness to videos
in the wild. To recapitulate, we randomize our synthetic data in
following ways:
(1) Geometry and Texture: We have 5 basic geometry primitives

in total, including a cube, a sphere, a cylinder, a thin rod and a
humanoid (obtained from Unity’s asset store). For each synthe-
sized video, we generate a displacement vector for each vertex
of the geometry to add randomness to object shapes. Then, we
sample a random texture from ImageNet for each object. Ran-
dom texture sample from the same dataset is also attached to
the background image plane of the scene.

(2) Lighting and Shading: For each scene we would randomly
sample 5 types of lights (spot lights, directional lights, point
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Table 2. Ablation Study on Randomization Strategies and Data Augmenetation.We use average precision to compare the performance different
randomization and data augmentation methods.

Random
Texture

Random
Geometry

Color
Jitter

Spatial
Cropping

Screenspace
Camera Shake

Greatest Hit Bouncing Ball Videos in the Wild

✓ ✓ ✓ ✓ ✓ 0.14 0.56 0.31
✓ X ✓ ✓ ✓ 0.14 0.52 0.31
X ✓ ✓ ✓ ✓ 0.13 0.59 0.23
✓ ✓ ✓ X ✓ 0.14 0.58 0.31
✓ ✓ X ✓ ✓ 0.14 0.54 0.24
✓ ✓ ✓ ✓ X 0.14 0.36 0.24
✓ ✓ X ✓ X 0.14 0.35 0.30
✓ ✓ ✓ X X 0.13 0.34 0.30
✓ ✓ X X ✓ 0.14 0.42 0.29
✓ ✓ X X X 0.13 0.47 0.32

lights, rectangular lights, and disc lights), and randomize their
color and position. Lights with orientation are pointed toward
the center of the scene to increase the probability that objects
are exposed to their illumination.

(3) Objects:We randomly initialize the position, orientation and
scale of each object. The number of objects in the scene is also
randomized.

(4) Camera Motion and Shake: To help the network become
robust to camera motion, we simulate a synthetic camera shake
being applied to the camera. This shake is generated by sampling
a random force to be applied to the camera in every frame while
applying a elastic force that pulls the camera back to the target
position.

1.2 Eventfulness Prediction Model
The complete network architecture is summarized in Table 1. We
trained eventfulness with adam optimization and learning rate 𝑙
listed in Table 3.

1.3 Training
1.3.1 Data augmentations. To reduce overfitting and improve gen-
eralization to real data, we also experimented with different data
augmentations during training. In particular, we perform random
spatial cropping, and random color jittering (brightness, contrast,
hue, and saturation). We also add an artificial camera shake effect,
by applying a random displacement to the crop location at every
single frame while also applying a displacement to drag the crop
center back to the original position.

1.4 Ablation Study
We have proposed multiple randomization strategies and data aug-
mentation methods to make the network more robust. To validate
the effectiveness of those strategies, we conduct an ablation study
on synthetic data generation and data augmentation.
In Table 2, we demonstrate the ablation study results by com-

paring the average precision of adaptive eventfulness trained with

different combinations of domain randomization and data augmen-
tation methods.
From the ablation study, we observe that the network trained

with all randomization and data augmentation method except for
spatial cropping performs generally well for all three evaluation
datasets. Spatial cropping in training isn’t helpful for improving
the network’s performance on these three datasets since all the
videos in these three sets always keep the object of interest in view
and unoccluded. This makes it difficult to test if spatial cropping
increases the network’s performance with a plethora of occluded
motion.
Since spatial cropping doesn’t influence the network’s perfor-

mance on real-world videos in the Greatest Hit and Videos in the
Wild datasets, we use the more general network with spatial crop-
ping to generate all of the results included in the main paper and
the supplemental material.

Table 3. Network Training Parameters

Parameters # Explanation
𝑇 72 The input video frame number
Target FPS 24 Each input video is resampled to this frame rate.
𝑀 128 Each input video frame is resized to𝑀 ×𝑀 .
𝑁acc 4 # of linear acceleration related labels.
𝑁vel 4 # of linear velocity related labels.
𝑁blur 4 # of labels is a Gaussian blur of the eventfulness

label.
𝜎min 0.1 The minimum standard deviation of the Gauss-

ian kernel used for blurring eventfulness.
𝜎max 1 The maximum standard deviation of the Gauss-

ian kernel used for blurring eventfulness.
𝑑 7 The diameter of the Gaussian kernel in # of

frames.

𝑙 10−6 learning rate
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1.5 Evaluating Eventfulness
Eventfulness is evaluated by running a sliding window of size 𝑇
through the frames of the video. The stride between 2 consecutive
windows is 𝑇 /3 and we concatenate the eventfulness value of the
middle𝑇 /3 frames of each window to formulate the eventfulness of
an entire video.
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