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Fig. 1. We learn a model of eventfulness in video, which represents the likelihood that different moments in video are the intended targets of synchronization
tasks. Along with a general notion of eventfulness, we also learn descriptors for motion around each moment in video that can be used to adapt eventfulness
based on a few representative, task-specific examples. Here we show that after providing example frames for the end poses of a single jumping jack, all of the
subsequent corresponding poses are immediately identified as eventfulness peaks. These peaks can be navigated and edited (instead of video frames) making
editing tasks much faster. We demonstrate our learned and adaptive eventfulness in novel tool for extracting and applying sound effects in video and for
time-warping video based on a musical target.

Humans are remarkably sensitive to the alignment of visual events with
other stimuli, which makes synchronization one of the hardest tasks in
video editing. A key observation of our work is that most of the alignment
we do involves salient localizable events that occur sparsely in time. By
learning how to recognize these events, we can greatly reduce the space
of possible synchronizations that an editor or algorithm has to consider.
Furthermore, by learning descriptors of these events that capture additional
properties of visible motion, we can build active tools that adapt their notion
of eventfulness to a given task as they are being used. Rather than learning
an automatic solution to one specific problem, our goal is to make a much
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broader class of interactive alignment tasks significantly easier and less time-
consuming. We show that a suitable visual event descriptor can be learned
entirely from stochastically-generated synthetic video. We then demonstrate
the usefulness of learned and adaptive eventfulness by integrating it in novel
interactive tools for applications including audio-driven time warping of
video and the extraction and application of sound effects across different
videos.

CCS Concepts: • Computing methodologies → Computational photogra-
phy; Image processing; Image-based rendering; • Human-centered comput-
ing → Graphics input devices; Sound-based input / output.

Additional Key Words and Phrases: video, audio, alignment, editing, interac-
tion, synth2real
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1 INTRODUCTION
One of the most frustratingly slow and tedious tasks in film making
is synchronizing video and audio. Consider the act of manually
synchronizing an audio clip with video through the lens of Fitts
law [Fitts 1954], which states that the amount of time required
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to move a cursor to a target is a function of the distance to the
target divided by its width. Humans can detect misalignment of
audio and video as small as one tenth of a second [Eg et al. 2015;
Levitin et al. 2000], so if a 1-minute video clip spans 500 pixels on
the timeline of an editing interface then the entire acceptable range
of alignments with an audio clip (our target, in Fitts’ terms) rests
within the span of a single pixel. This makes the task of manually
aligning audio with our video analogous to trying to click on a
button that is less than one pixel wide. Plenty of alignment tasks in
other applications call for this level of precision (e.g., centering 2D
graphics on a presentation slide), but the tools we use to accomplish
those tasks almost always employ some sort of snapping behavior to
make the effective alignment target much larger. Professional audio
editing tools similarly discretize possible points of synchronization
based on musical metre or an onset envelope derived from audio
(e.g., [Pro 2022]). But with no analogous mechanism to reduce the
search space in video, many multimedia alignment tasks remain
uniquely difficult for content creators. Our work addresses this
challenge by learning a measure of eventfulness—the likelihood that
each moment in a signal is the target of a synchronization task—for
video. Building on this basic goal, we also learn descriptors of the
motion around each moment in a video that let us adapt the notion
of eventfulness to specific users and applications.
A key observation of our work is that, rather than offering an

automatic solution to a specific alignment task, we can enable a
broad range of more efficient interactive tools by learning a general
and adaptive notion of eventfulness based heavily on low-level
motion cues. We demonstrate this in the design of novel interactive
interfaces for audio-driven time warping of video as well as the
extraction and application of sound effects across different videos.
Our contributions include:

• Introducing the idea of visual eventfulness for general inter-
active video alignment tasks.

• Showing that eventfulness can be learned entirely from stochas-
tically generated synthetic video.

• A strategy for adapting eventfulness to specific tasks as part
of interactive applications

• Demonstrating eventfulness in novel content creation tools
for multimedia alignment tasks.

2 RELATED WORK

2.1 Synchronization, Alignment, & Snapping Behavior
Our work is perhaps closest in its goal to general alignment metrics
used in other domains like 2D layout design and audio processing.
More specifically, our goal is analogous to that of snapping behavior
in 2D design tools (e.g., [Bier and Stone 1986; Ciolfi Felice et al.
2016]) and novelty curves (also sometimes called onset envelopes)
from music information retrieval [Dixon 2006; Ellis 2007; Goto 2002;
Grosche et al. 2010; Hu et al. 2017; Lerch 2012; McFee et al. 2015].
Also related are the concepts of synchresis from the arts [Chion
et al. 1994], perceived synchrony from psychology [Dixon and Spitz
1980; Roseboom et al. 2009], and synchro-saliency from computer
vision [Davis and Agrawala 2018], which all measure the strength
of perceived synchronization between two signals. These can be

modeled as conditional measures of eventfulness with respect to
specific alignments of audio and video.

2.2 Learning to Synchronize Audio-visual Signals
The closest related work from vision and graphics is likely Davis and
Agrawala [2018], which uses flow-based analysis to identify visual
beats for synchronizing video with music. While their approach can
work as a measure of eventfulness for videos with simple motion, it
fails on complex real-world scenes including those with even minor
camera motion. In contrast, we use a learned model of eventfulness
trained on simulated motion that is more robust, and which can be
easily adapt to specific tasks during use.
A variety of methods have evaluated the consistency of vision

and sound. One line of work trains models to distinguish true audio-
visual pairings from random pairings [Arandjelovic and Zisserman
2017] as a way of learning semantics. Other work learns to detect
whether vision and audio are temporally aligned [Chen et al. 2021b;
Chung and Zisserman 2016; Iashin et al. 2022; Korbar et al. 2018;
Owens and Efros 2018] by training a model to distinguish between
real and time-shifted examples. However, this work requires the
audio and video come from the same scene. A similar line of work
uses video textures to match an audio track [Narasimhan et al.
2022]. This however also requires that the audio in the input video
already has co-occuring visual and audio events. Other work has
synchronized music with body pose in dance video [Wang et al.
2020] or synchronizes speech with lips [Halperin et al. 2019]. While
the goals of these methods are related, these approaches require
detectors for specific body parts, while ours uses more generic
motion cues and hence is not limited to a particular type of object.
Other works use contrastive learning to retarget video at different
speeds [Benaim et al. 2020] or learn to decompose video scenes into
motion layers then and recompose them so that all motions appear
temporally aligned [Lu et al. 2020].

2.3 Learning Motion from Synthetic Video
Previous work has learned optical flow from synthetically-generated
video, where ground truth can be easily defined. Early work [Barron
et al. 1994] proposed a simulation of a landscape sequence. Later
work trained neural networks on simulations where 3D objects
fly over images [Mayer et al. 2016], and 2D texture-mapped poly-
gons [Dosovitskiy et al. 2015; Sun et al. 2021]. While we also learn
about motion through 3D simulation, we use it to learn eventful
motions, rather than optical flow.

2.4 Computational Video Editing & Dance
Our work is also related to other methods that incorporate automa-
tion into interactive tools for editing video, including [Berthouzoz
et al. 2012; Davis and Agrawala 2018; Kopf et al. 2014; Leake et al.
2017]. Even closer to ours is work specific to aligning videos. Wang
et al. [Wang et al. 2014] presented amethod for interactively aligning
multiple videos using a graph-based algorithm. Other work [Bazin
and Sorkine-Hornung 2016] uses motion information to synchronize
video of multiple people performing the same action using motion
features. In contrast, our interactive tool is based on automatically-
detected eventful keyframes that can easily be selected and aligned
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Fig. 2. Eventfulness for audio-visual alignment. Replacing the sound
of the gavel with a squeak sound results in a video clip that can easily
interpret, if the onsets are temporally aligned. This is in contrast with the
more stringent criteria of synchronization [Chung and Zisserman 2016],
which requires the signals come from the same underlying scene. Our
representation allows users to interactively select these onsets and adapt
them to a given task.

by a user. We also draw inspiration from related work dealing with
visual rhythm and dance synthesis [Brick and Boker 2011; Chen
et al. 2021a; chul Lee and kwon Lee 2005; Dyaberi et al. 2006; Kim
et al. 2003; Liao et al. 2015; P. Chen et al. 2011].

3 EVENTFULNESS
Much of what sets our work apart from other work in audio-visual
learning has to dowith howwe define alignment. Much of the related
work in computer vision [Chung and Zisserman 2016] considers
an audio signal to be synchronized with video if the corresponding
samples from each occurred at the same time. This definition lends
itself well to self-supervised learning, as most video is captured with
a simultaneous audio stream [Korbar et al. 2018; Owens and Efros
2018]. However, this criteria can also be too stringent, for example
in creative applications where otherwise unlikely pairings of audio
and video are often the goal.

To better understand this, imagine that we are given two videos,
each with simultaneously-recorded audio (Figure 2). The first video
depicts the strike of a wooden gavel, while the second depicts a
similar action performed with a plastic squeaky toy. A content
creator maywish to swap the sound of the hammer with the squeaky
toy for comic effect—in this case, the result is comical precisely
because the synchronization is salient despite contradicting our
expectations of each object. That contradiction is illustrative of
what sets our work apart from others on video synchronization:
our goal is to predict what would be salient, not necessarily what is
likely.

3.1 Using Eventfulness
Our high-level goal is to narrow the search space for video syn-
chronization tasks. Even without directly solving such tasks, we
can greatly increase a user’s efficiency by reducing the number of
likely solutions they need to consider. However, there is a trade-
off between how much we narrow the search space and how well

we generalize to different tasks—after all, different tasks may in-
volve synchronizing with different events from the same video. To
navigate this trade-off we need some sort of prior on the type of
event that a user cares about. Our strategy here is to start with a
very general and application-agnostic prior, then adapt this prior in
real-time to the input of individual users.

3.2 Application-Agnostic Eventfulness
We can use the idea of salience to motivate our general notion of
eventfulness. Consider the scenario where we are given an audio
clip a and tasked with finding the temporal window v𝑎 of a video
that maximizes perceived synchrony with a. We can define the
event e𝑡 that a human observer perceives synchronization between
the two signals after pairing our audio with the window of video
beginning at time 𝑡 . Here it is best to imagine e𝑡 as a continuous
measure of the expected response over some sample population (e.g.,
a percentage of viewers in some perceptual study reporting that a
appears synchronized with v𝑎). We can maximize the perception of
alignment by optimizing:

argmax
𝑡

(
𝑃 (e𝑡 |v𝑡 , a𝑡 = a)

)
(1)

Applying Bayes rule gives us:

argmax
𝑡

(𝑃 (a𝑡 = a|e𝑡 , v𝑡 )

marginal eventfulness︷    ︸︸    ︷
𝑃 (e𝑡 |v𝑡 )

𝑃 (a𝑡 = a|v𝑡 )

)
(2)

The terms 𝑃 (a𝑡 |e𝑡 , v𝑡 ) and 𝑃 (a𝑡 |v𝑡 ) encode our expectations of what
the content of our video is supposed to sound like—for example,
whether a wooden gavel should squeek. Determining if specific
pairings of audio and video are plausible involves context-specific
reasoning about a joint probability distribution involving multiple
domains (audio and video). The other term, 𝑃 (e𝑡 |v𝑡 ), represents
the prior probability that a human would consider the video to be
temporally aligned with random audio at time 𝑡 . We can think of
this as a marginal probability over all signals we might want to
synchronize with. We consider this marginal eventfulness a default
that can be further refined given more information about a target
task.
Note that our definition here could be applied to any source

and target stimuli that one can localize in a common domain. This
highlights our connection to analogous alignment tasks in audio
and 2D design applications. It also suggests that our metric for
eventfulness could potentially be used for alignment with other
signals such as haptic feedback, though we leave this to future
work.

3.3 Adaptive Eventfulness
Part of what makes creative video alignment tasks so difficult is the
lack of a unique or universal solution. Video is often full of distinct
overlapping events that could each individually be the correct an-
swer to a different alignment problem. As such, any single measure
of eventfulness must balance generality against efficiency at any one
task. To navigate this balance, we treat fine-tuning eventfullness to
downstream tasks as a few-shot learning problem. Rather than learn-
ing a single measure of eventfulness, we predict it alongside several
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other properties of motion that form an event descriptor at each
moment in a video. Given a downstream application, we can then
fine-tune our definition of eventfulness within this feature space
based on, e.g., descriptors for a small set of labeled representative
events.

4 LEARNING VISUAL EVENTFULNESS
Our strategy involves learning a “default” notion of eventfulness
along with additional motion features that can be used to adapt to
different tasks. We learn these feature signals by predicting param-
eters used to animate a large number of stochastically-generated
synthetic videos. For this work, we intentionally designed our train-
ing videos to be very abstract as a way to keep our learned features
application-agnostic, but we note that one could easily fine-tune
on representative videos from a particular application to improve
results on specific tasks. More details and data about our training
process can be found on our project website
We render our training videos in Unity [uni 2021]. Each video

contains randomized 3D shapes textured with randomly selected
images. Each shape moves according to keyframes generated by a
stochastic process. Here we derive labels for the event descriptors we
want to predict directly from the scene graph used during rendering.
Our network is then trained to predict these descriptors directly
from the frames of each video.

4.1 Event Descriptors
4.1.1 Marginal Eventfulness. Our estimate of marginal eventful-
ness is itself one dimension of the descriptor we predict at each
moment in video. We derive this label from the timing of anima-
tion keyframes that coincide with discontinuous object motion. The
logic here is that our most generalizable condition for perceived
synchrony is that events should be localizable in time. We calculate
the marginal eventfulness labels for a video as a time signal with
impulses added at each keyframe. We then blur the resulting sparse
time signal with a Gaussian kernel using a standard deviation equal
to one video frame.

4.1.2 Additional Event Descriptor Labels. Our event descriptor needs
to balance an ability to distinguish events with our desire to recog-
nize when an unlabeled event is similar to a provided example. We
also want the overall dimensionality of our feature space to be low
enough for us to adapt the notion of eventfulness in real-time. Here
we found some flexibility in precisely what features to use. Our
main implementation uses 4 octaves of progressively more blurred
versions of our marginal eventfulness curve, as well as aggregate
measures of several other properties derived from our generated
motion. This includes sums over the velocity and acceleration of
objects in camera space, with positive and negative motion in 𝑥 and
𝑦 each measured as separate dimensions. This adds 12 dimensions
to our marginal eventfulness for a full 13-dimensional descriptor.

4.2 Synthesizing Training Data for Eventfulness
4.2.1 Synthesizing Motions. The synthetic video generation pro-
cess is summarized in Figure 3. In order to create a video, we first
randomly sample a static background image from ImageNet [Deng

et al. 2009]. We then render a number of moving objects with ran-
domized geometry and textures in front of this background. The
resulting videos are somewhat similar to those used in synthetic
optical flow datasets [Dosovitskiy et al. 2015], but designed for learn-
ing eventfulness over multi-frame time horizons rather than the
two-frame setting of flow fields.
The geometry of each object is created by applying noise to

scaled versions of various basic primitive shapes (e.g., ball, cube,
rod, cylinder, and humanoid) using a displacement map. The texture
of each object is selected randomly from ImageNet. We sample
𝑛 ∈ {1, 2, 3, 4, 5} objects in every scene.

To generate motion trajectories for each object, we first sample
a finite set of event times 𝐸 = {𝑒0, 𝑒1, 𝑒2, . . . , 𝑒𝑛} ∈ R. These event
times will serve as the labels for our marginal eventfulness. To create
motion with discontinuities at each event, we assign positions to
each event in sequence, ensuring at each event that the direction to
the subsequent event differs by some threshold from the direction
to the previous event. Once the position of each event keyframe
is chosen, we interpolate between event positions using a multi-
segment cubic Bezier spline. To avoid large motion discontinuities
far away from keyframes, we limit the control points for each Bezier
segment to the axis-aligned bounding box defined by the endpoints
of that segment. Moving objects are allowed to intersect and pass
through each other.

4.2.2 Randomization. We randomizemany aspects of our simulated
videos to generate diverse training data (Figure 3). This includes
the 3D geometry, pose, and texture of each object. We also random-
ize lighting with different combinations of spot lights, directional
lights, point lights, rectangle lights, and disc lights of random colors.
Camera motion is also randomized and synthetic camera shake is
added to model video captured with hand shake. We model this
camera shake by applying a randomized shake force to the camera
counterbalanced by a restoration force. Each video is rendered with
motion blur and anti-aliasing enabled. For the results in this paper,
we trained on 2000 distinct 30-second clips totaling over 16 hours
of video. Then, during training, we further augmented these clips
with random spatial cropping and color jittering over brightness,
contrast, hue, and saturation, as well as additional simulated camera
shake applied to the field of view of each video.

4.3 Eventfulness Prediction Model
Let the input to themodel be a video clip of𝑇 frames, 𝑣 ∈ R𝑇×𝐻×𝑊 ×3.
To extract spatiotemporal visual features and per-frame event pre-
dictions, we use a variation of the popular (2+1)D ResNet-18 archi-
tecture [Tran et al. 2018], where we have removed several of the
temporal strides in order to maintain dense outputs on the tempo-
ral dimension. The network consists of a deep stack of alternating
spatial and temporal convolutions with residual connections [He
et al. 2016]. The output of the network is a matrix y(v) ∈ R𝑇×𝑁

of our 𝑁 features estimated at each frame 𝑡 ∈ {1...𝑇 }, which can
equivalently be viewed as a time signal of per-frame descriptors
y(v) = [𝑦0, 𝑦1, ..., 𝑦𝑇 ].
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Fig. 3. Synthesizing Training Data. We learn a model of visual eventfulness from stochastically generated synthetic video. Our process for generating
videos has three phases. First we generate geometry by selecting from a set of primitives, then adding random geometric noise through displacement maps
and texturing geometry with random images from ImageNet [Deng et al. 2009]. In the second phase, we sample motion trajectories for scene objects and the
camera. Each scene object follows a path determined by randomly generated keyframes, while camera motion follows a simple randomized model of camera
shake. In the third phase we render the generated objects according to the generated motion curves under randomized lighting and over a randomly selected
background image.

4.4 Training
We train our model to regress the feature signals for each training
video. Given training dataD consisting of pairs (v, y∗) of video clips
v and ground truth event feature targets y∗ ∈ R𝑇×𝑁 , the model is
trained to minimise the Mean Squared Error (MSE):

L = E(v,y∗ ) ∈D

𝑇∑︁
𝑡=1

𝑦𝑡 − 𝑦∗𝑡
2 . (3)

5 INTERACTIVE TOOLS
We observe that, while different applications may care about dif-
ferent events in video, the distribution of such events tends to be
sparse. Our approach to incorporating eventfulness in interactive
tools reflects this observation. We start with marginal eventfulness
as a default prior on the distribution of events a user wants to select,
then we refine this prior in real-time as the user interacts with the
application. The refining process can be seen as a kind of few-shot
learning. For this, we view the predicted values y(v) as feature
descriptors for each moment in video.

We demonstrate eventfulness in three novel interactive tools: the
first two are designed to help with the extraction and application of
sound effects to and from video. The third is designed to help time-
warp one video based on events in another video or audio signal,
which we use to perform dancification [Davis and Agrawala 2018].
The role of eventfulness in all of these applications is to reduce the
space of synchronization events that a user must search through for
each associated task.

5.1 Adaptive Event Navigation and Selection
Each of our three tools involves selecting events in a video timeline,
and each of our interfaces shares some common layout and func-
tionality for this part of the task (see Figure 4). We use eventfulness

to reduce the search space of events, which we do first by visual-
izing eventfulness on the video timeline and second by allowing
direct navigation to and between peaks of the eventfulness signal
using the keyboard. Users can also adjust the eventfulness signal
by selecting an example event and either increasing or decreasing
its weight, which will adjust the curve response at similar events
accordingly.

5.1.1 Timeline GUI. Users see a two-row timeline panel displayed
below their video. The top row shows a zoomed-out view of the
current adaptive eventfulness curve for the entire video. This first
row acts as a mini-map, with an adjustable highlighted region that
is scaled up and displayed at higher resolution in the second row.
Users can navigate the timeline with their keyboard, mouse, or some
combination of the two. Keyboard navigation provides the option of
navigating by consecutive frames or by peaks of the current event-
fulness signal. The eventfulness signal is normalized to a fixed range
with negative values displayed in a slightly darker color. By default,
we initialize the eventfulness signal to our estimate of marginal
eventfulness. Users can perform three different selection actions at
the current event: one performs a task associated with the current
application (e.g., adding a sound to the current event), a second
marks the current event as a positive example, and a third marks the
current event as a negative example. Users can also increase or de-
crease the extent to which the eventfulness curve adapts according
to these positive examples.

5.1.2 Adapting Eventfulness. Given a set of positive and negative
example events, the goal of adapting our eventfulness signal should
be to increase the response of events that are similar to our positive
examples and decrease the response of events that are similar to
our negative examples. For interactive use, we would also like for
adaptation to happen smoothly and at interactive rates. Here, there
are many approaches one could take, but we opt for a very simple
strategy where the current eventfulness signal is calculated by first
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eventfulness curve displayed over a video timeline. Users can navigate using standard timeline controls, or by jumping between consecutive eventfulness
peaks. They can also indicate example events and adjust the weight of those events. Our Foley application (right) further lets users extract sound effects from
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Fig. 5. Time Warping Tool Our tool lets users time warp a selected source video based on a mapping of events to those of a target signal. In the example
shown here, the target signal is a piece of music, and target events are the beats of that music. The synchronization grid visualizes all possible synchronizations
of a source video event with a target beat. The synchronization curve shown in the right screenshot is defined by a sequence of these synchronization points,
which are then interpreted as keyframes. Our interface further lets users define the interpolation between keyframes using standard animation tweening
curves.

projecting the features y(v) onto some unit weight vector ®w, and
then re-scaling the resulting time signal to a fixed value range. We
can think of this as representing the eventfulness of each frame
by the projection of its features onto the descriptor of some repre-
sentative event. Our default starting weights are given by the unit
vector with a 1 in the feature dimension corresponding to marginal
eventfulness and 0’s in all other dimensions. As a user adjusts event-
fulness, we interpolate this weight vector toward the normalizes

sum of positive example descriptors minus negative example de-
scriptors. Figure 6 shows an example video featuring a swinging
mouse. Here, three different users could be interested in three differ-
ent events: for example, one may be interested in events where the
mouse reaches the left peak of its swing, another in events where it
reaches the bottom of the swing, and a third may be interested in
events at the right peak of its swing. In each case, with just a few
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Fig. 6. Adaptive Eventfulness. Here we show three different eventfulness
curves adapted to three different types of events within a scene. The ex-
ample scene here is quite simple: a computer mouse swings in a repetitive
pendulum motion. Each curve is adapted to three provided examples events.
The first and third curves select for the leftmost and rightmost parts of
the swing, respectively, while the second curve selects for events that are
mid-swing from right to left. In each case, the provided examples are enough
to highlight corresponding events throughout the rest of the video. We also
see that the eventfulness peaks are sharper in the first and last curves, which
reflects the fact that the extrema of the swing are more localizable.

(2-3) example events you can adjust the eventfulness to isolate the
desired events in the video.

In addition to visual eventfulness, our interface provides users the
option of selecting events based onwhat we call estimated synchrony,
which is the element-wise product of the visual eventfulness curve
with the audio onset envelope. Estimated synchrony is a good way
to search for events that are simultaneously salient in both audio
and video.

5.2 Foley Extraction
Our first application is designed to help with the extraction of sound
effects from video for later use. While some recent commercial tools
offer features that use detected audio onsets to navigate and align
audio, our tool has the added benefit of analyzing visual eventfulness.
We can use visual eventfulness directly to find certain events, or we
can use estimated synchrony as a way to filter for moments that are
salient in both audio and video. For example, one of the results in
our supplementary material comes from a video interview with a
Foley artist [Ament 2014]. In the video, the artist discusses his work
while demonstrating how various sounds are made, resulting in a
mix of audio onsets caused by speech and by the sound effects he

is demonstrating. Here, we can use estimated synchrony to filter
for events that are both audio onsets and visual eventfulness peaks,
which helps to filter out dialogue and isolate events like swords
clashing.

5.3 Foley Application
Our second tool is for inserting sound effects at selected events in
videos. Here, users can make direct use of output from our first
tool, or select from a bank of existing sound effects. Users navi-
gate the timeline and select events where sound effects should be
added. For each selected event, they can also change what sound
should be added. For example, one example in our supplemental
material shows a user adding metal sword clashes to a video of
a child practicing kendo. In general, we found that when we are
replacing an existing sound, estimated synchrony (the product of
visual eventfulness and an audio onset curve) is often best for event
selection. When we are adding sound to silent parts of a video, we
found that visual eventfulness obtains better performance, since the
existing audio may not always be reliable.

5.4 Dynamic Video Synchronization
Our third application deals with the challenging task of dynamically
warping a video into alignment with some target signal. In prior
work, this has been accomplished through optimization of a contin-
uous objective [Wang et al. 2014]. Here we address scenarios closer
to the dancification explored in Davis and Agrawala [2018], where
discrete visual events are to be synchronized with discrete events
in a target signal (e.g., aligning visual events with beats in a piece
of music). Our interface plots the events of a source video against
those of a target signal (Figure 5). The target signal can be another
video or a piece of audio—for dancification we use musical beats for
target events. The source video’s timeline is mapped to the 𝑦 axis
of the interface, and the target signal is mapped to the 𝑥 axis. We
extend horizontal lines from each source event and vertical lines
from each target event to create a grid. Each intersection of lines
in this grid represents a possible synchronization between a source
event and a target event. Users can double-click a grid intersection
to add the corresponding synchronization constraint. Each target
event can have at most one synchronization point, but source events
can be synchronized with multiple target events. We connect the
selected synchronization points to form an animation curve, with
each point acting as a keyframe. Users can also control the interpola-
tion between keyframes by adjusting standard Bezier curve controls
just as they would in traditional animation software. We also give
users the option of automatically generating a random walk over
a selected range of source and target events. See our supplemental
material for a demonstration.

6 EVALUATION
We found adaptive eventfulness to be useful in each of our three
applications. The best way to experience these results is by exploring
the supplemental demos and applications on our project website. We
also show examples of visual eventfulness being used to synchronize
different videos of dancers performing similar choreography. In
addition to those qualitative results, we use three labeled datasets
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Table 1. Performance of our proposed method on event detection.
We use average precision to compare different methods in detecting labeled
events. We use two variations of our outputs: marginal eventfulness only
(ME) and adaptive eventfulness (AE), which uses 3 ground truth events to
reweigh the eventfulness curve. VisBeat is from Davis and Agrawala [2018]
while the SparseSync is an audio-video alignment network from Iashin et al.
[2022]. SparseSync-O is generated by evaluating the audio-video alignment
score of the original audio clip and video clip contained in a sliding window
over the timeline. Similarly, SparseSync-S is generated by evaluating the
audio-video alignment score of a synthetic impulse sound and the original
video clip contained in a sliding window over the timeline.

Method Greatest
Hits

Bouncing
Ball

Videos in
the Wild

VisBeat 0.10 0.57 0.22
SparseSync-O 0.10 0.02 0.10
SparseSync-S 0.11 0.11 0.09

Ours (ME) 0.14 0.27 0.10
Ours (AE) 0.14 0.56 0.31

to examine our learned eventfulness metric and compare it with
metrics from previous work here.

6.1 Quantitative Evaluation
The application-dependent nature of eventfulness makes quantita-
tive evaluation difficult, but we can examine how correlated mar-
ginal eventfulness is with some known events in labeled video,
and we can examine how much this correlation increases when we
adapt to example events. We can also compare these with alternative
metrics from previous work, including visible impact [Davis and
Agrawala 2018] and SparseSync Iashin et al. [2022]. We do this on
three datasets. Example frames from each dataset are shown on
Figure 7.
Bouncing Ball. This is an extremely simple toy dataset created by
simulating a 2D ball as it bounces around a rectangular window.
The ball moves at a constant speed and changes direction at each
bounce. Ground truth events are marked whenever the direction of
the ball changes. We synthesize 200 videos, each 30 seconds long
with variations in ball speed and size.
TheGreatest Hits Dataset [Owens et al. 2016]. contains recordings
of a person interacting with various objects in indoor and outdoor
scenes by hitting or scratching them with a drumstick. The dataset
comprises 977 videos which contain 46,577 actions in total. Each hit
or scratch generates a clear sound and can be identified by an audio
onset. We obtain pseudo-ground truth event times by detecting
these onsets [McFee et al. 2015].
Videos in the Wild. We also collected several “in the wild” videos
fromYouTube, focusing on those containing complex, semi-repetitive
motions. These videos are particularly challenging since salient vi-
sual events are often uncorrelated with audio onsets, and different
applications could potentially call for synchronizing with different
events from the same video. We invited 10 users to label 3 videos in
this dataset, instructing each user to select events that were similar
to two provided example events from each video.

Bouncing
Ball

Greatest
Hit

Videos in 
the Wild

Fig. 7. Example frames from the three datasets used for evaluation.

6.2 Quantitative Results
In Table 1, we show the results of using marginal and adaptive event-
fulness to predict labeled events. Adaptive eventfulness is evaluated
by randomly selecting 3 ground truth events from each video and
using them as positive examples to reweigh eventfulness. Addition-
ally, we compared with [Davis and Agrawala 2018], which uses
hand-crafted flow-based heuristics to detect motion discontinuities,
and with SparseSync Iashin et al. [2022], a state-of-the-art synchro-
nization network. We evaluate each metric using average precision,
using an approximately 150ms threshold, similar to Owens et al.
[2016]. We found that adapting to positive examples significantly
improves results. Our adapted model outperforms all other baselines
on both real video datasets. Davis and Agrawala [2018] performs
best on the Bouncing Ball videos, as they are synthetic videos that
are designed to meet the assumptions made by the visible impact
heuristic. The performance of SparseSync reflects the difference
between the synchronization task and detecting eventfulness.

7 DISCUSSION

7.1 Limitations & Future Work
Our learned eventfulness metric is intentionally permissive to ac-
commodate a broad range of potential use cases. Training on abstract
synthetic videos was one way to favor this kind of generality. How-
ever, given the data and resources, one could train on a rich and
varied set of real videos to learn a descriptor space capable of more
precise fine-tuning. Along similar lines, our current eventfulness
metric is designed to be largely invariant to specific image content,
instead relying on the characteristics of motion around each mo-
ment in video. In many real applications, it may be useful to isolate
events based on the appearance of their accompanying frames.
In this work we focused mostly on applications involving align-

ment of audio and video. However, the notion of adaptive visual
eventfulness could be extended to the exploration and analysis of
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more arbitrary events in video, which could have applications in
interactive search and labeling of events, for example, in scientific
applications.

7.2 Conclusions
We have proposed adaptive visual eventfulness as a useful tool for
interactive multimedia alignment. We showed that a useful adaptive
eventfulness metric can be learned from synthetic data and applied
to real videos. We also presented novel interactive tools that use
adaptive eventfulness to align media in a variety of ways.
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