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Despite widespread interest and technical progress, significant barriers

exist for video playback over the Internet. These obstacles include network

unreliability, client heterogeneity, and server bottlenecks. Although various play-

back systems have been proposed, none address all the issues satisfactorily.

This thesis proposes and investigates MiddleMan, an alternate approach.

MiddleMan is a collection of cooperating caching proxies running in a local 

area network (LAN). Such a configuration offers several advantages. By caching 

videos relatively close to the clients, MiddleMan reduces overall startup delays 

and the possibility of adverse Internet conditions disrupting video playback. 

Additionally, MiddleMan dramatically reduces server load by intercepting a large 

number of server accesses and can be easily extended to provide other ser-

vices.

Several issues must be addressed before MiddleMan can be built and 

deployed. The first problem involves determining the intrinsic properties of video 

files on the web and how they are accessed over the Internet. Such an under-

standing is useful in order to effectively detail the architecture of MiddleMan. 

Hence, I conducted two studies: one to characterize videos on the web and 

another that analyzes how users access videos. I then used these results to 

derive the architecture of MiddleMan.



 The second hindrance to building MiddleMan involves evaluating and refin-

ing the design. Hence, I developed a simulation environment for MiddleMan to 

test various configurations and caching algorithms. The final design achieves 

both high cache hit rates and excellent proxy load distribution.

Finally, MiddleMan supports client heterogeneity by converting video to an 

intermediate format that allows the system to better adjust to client loads. Thus, 

techniques for fast conversion of video must be developed and integrated into 

MiddleMan. Hence, I developed a compressed domain transcoder that converts 

MPEG to JPEG. The transcoder is about 1.5 to 3 times faster than its spatial 

domain counterpart.
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Chapter 1

Introduction

The first video transmission systems on the Internet were deployed in the

early 1990s. These systems were primarily intended for conferencing and live

broadcast applications and included the vic/vat system from UC Berkeley [34]

and CUSeeMe from Cornell University [78]. It was not until the emergence of the

World Wide Web (1993-1994) with its systematic approach to serving and view-

ing non-text documents that playback of stored video content over the Internet

(video on the web, or VOW) emerged as a nascent application to most users.

However, Internet video playback was marred by lengthy download times and

jerky playback on the client. To address these drawbacks, companies such as

VXTreme [76], Progressive Networks [79] and VDOLive [77] utilized experimen-

tal systems to develop products that "streamed" videos to users on demand. By

1998, video on the web had seen significant commercial interest. For example,

1. news web sites such as ESPN and CNN have dedicated sections devoted to 

audio and video content. Other sites supplement their HTML content with 

audio and/or video clips. The Internet broadcast of President Clinton’s grand 

jury testimony, for example, attracted hundreds of thousands of viewers on 

the day of its availability in 1998 [82].

2. a growing number of  “micro-broadcasting” stations distribute audio/video 

material exclusively via the Internet. These include Free Speech Internet 

Television [85], a website devoted to “alternative” media, Jagged Internet-
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works [80], a company founded to cybercast cricket matches, Streamland 

[83], a forum for viewing music videos, and broadcast.com, which offers a 

large selection of programming including sports, talk and music radio and 

movies to an average of 460,000 unique users daily [84].

3. educational institutions such as Stanford [88], Cornell [87] and Georgia Tech 

[86] are making video recordings of course lectures and slides available 

online. 

Despite the widespread interest and technical progress, significant barri-

ers still exist for video playback over the Internet. These obstacles include net-

work unreliability, client heterogeneity, and server bottlenecks. Some hindrances

will vanish with time, others will persist. I outline the current issues involved in

each problem in the next three sections. In the fourth section, I speculate which

of these drawbacks are likely to be removed by technological progress and

which are not.

Network Unreliability

From the user’s perspective, the biggest drawback with the traditional

download-and-play model is download time. The large size of video files, cou-

pled with the unreliability of the Internet, lead to seemingly interminable wait

times. Hence, a number of streaming protocols/systems [76,77,79] have been

proposed that attempt to ameliorate the situation by:

• reducing startup delays: clients can play as soon as a small amount has been

received from the server. Thus, the user does not have to wait to download

the entire file. Note that the streaming server is often different from the web

server which received the original video playback request.
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• selectively degrading the data: a streaming system copes with varying net-

work conditions by either dropping video frames, scaling video quality, or

both.

Some streaming systems use conventionally encoded video files (Quick-

Time [73], AVI [72], MPEG [25]) whereas others have developed custom encod-

ers to increase flexibility in transmitting and displaying video data. Streaming

systems that use their own custom encoders provide better performance, but

video quality is still poor at low bandwidths.

Streaming, however, cannot surmount the lack of Internet QOS guaran-

tees. High network latencies, for instance, can still disrupt video playback. Res-

rource reservation protocols such as RSVP [64], promise to provide QOS over

the Internet. Nevertheless, most client connections to the Internet have insuffi-

cient bandwidth for streaming of conventionally encoded video files. My survey

of video data on the web in chapter 3 shows that the Internet needs to provide

sustained bandwidths of approximately 1 Mbps in order to accomplish this goal,

an order of magnitude higher than what is commonly available today. 

 Client Heterogeneity

Differences in client hardware, software, or network connectivity can

cause a video to play well on one machine, but poorly on another. Factors such

as CPU speeds, bus rates, disk speeds, availability of hardware video decoders,

competing processes, and operating system ineffectiveness all affect software

playback performance. Another factor is how clients are connected to the Inter-

net. Some access it via 56K modem lines to ISPs whereas others are directly

connected via high speed local area networks. Hence, two otherwise identically
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configured machines with different network connectivities are likely to differ

vastly in playback performance of streaming video. It is difficult to design an

architecture that can cope with all the possible variations without compromising

video quality.

Additional client-side complexity arises in the form of multiple video for-

mats. Numerous video compression and transmission schemes have been pro-

posed over the years. For example, the latest AVI FAQ [72] lists eighteen video

codecs that are available for AVI/NetShow alone. Hence, viewing videos can

turn into an arduous exercise in installing and updating codecs.

Server Bottlenecks

The growth of VOW also places tremendous load on web and streaming

servers. Web servers must serve video documents in addition to images, text

documents, and other binaries. Videos tend to be large and hence consume

server-side machine and network resources that could service non-video

requests. Streaming protocols transfer load to a separate (streaming) server,

but that only has the effect of making the streaming server the bottleneck for

video access. Sites with large media collections can attempt to solve this issue

either by placing multiple load-balanced streaming servers within their own net-

work or by outsourcing video accesses to other sites. The former approach

shifts the pressure point to the network gateway of the media site, whereas the

latter approach transfers the bottleneck to the other outsourced sites. Both

approaches are still susceptible to unreliable network behavior which can

severely impair video data transmission. Additionally, both are expensive solu-

tions and thus, not possible for most sites.
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Effect of Technological Progress

The next generation Internet promises to provide more reliable service

guarantees, hence the problems due to network unreliability may not be a factor

in the future. Furthermore, consolidation in the multimedia industry will result in

a few widely used video transmission and playback standards. However, server

bottleneck related problems are likely to persist despite improvements in the

network fabric. Better connectivity further exacerbates server load as more cli-

ents are able to access the same server at higher bandwidths. Similarly, despite

hardware and software improvements, competing processes on a client can still

affect its video playback performance. In the next section, I propose a solution

that alleviates the server bottleneck problem and addresses the other issues. 

1.1  Solution To VOW Viewing Problem

 In this thesis, I detail an approach to solving the VOW viewing problem.

The key observation that drives this method is that requests to a video server

tend to exhibit locality of reference. Some videos are much more popular than

others. Hence, it is possible to exploit caching techniques that reduce redundant

video accesses to the server.

Figure 1.1 outlines how caching can be exploited on a system comprised

of a remotely located web server and two machines with a high degree of con-

nectivity. Instead of contacting the server directly for a video, the client browser,

as shown in step 1, contacts a proxy server running locally on the same

machine. The proxy server P1 checks to see if it has stored this title locally. If it



6

does not, it contacts the server directly (step 2) and starts receiving the video.

P1 stores a copy of the video locally while simultaneously forwarding another

copy to the client browser (step 3). Suppose a user on machine 2 requests the

same video. P2 checks to see if a copy of the video is available locally (step 4).

Since P1 has a copy, P2 contacts P1 (step 5), accesses the video and forwards

it to the local browser (step 6), thus bypassing downloading the video from the

original web server. 

A coordinator process keeps track of the files hosted by each proxy and

redirect requests accordingly (figure 1.2). In the previous example, it is the coor-

dinator that directs P2 to P1. The coordinator also uses the proxies to manage

the copied video files stored at each machine. If there is no free space left in the

Figure 1.1: Basic Idea For Caching Architecture
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system, it is the coordinator that decides which files to eliminate in order to

make room. 

To summarize, the architecture I propose, called MiddleMan, consists of

a collection of caching video proxy servers that are organized by coordinators.

Three technological advances, high speed local networks, high processor

speeds, and cheap disk space make MiddleMan feasible. High speed of net-

works enable the MiddleMan system to quickly service user requests. High CPU

speeds allow fast intermediate processing of videos by proxies. Finally, cheap

disks provide the large storage space required to cache videos. For instance,

consider a campus network consisting of 100 machines, each with 4 GB of disk

storage. If each machine allocated 100 MB of space towards the cache (2.5% of

total disk space), an aggregate global cache size of 10 GB of space can be

achieved. 

MiddleMan offers a potentially rich set of benefits in dealing with VOW

problems. As can be seen in chapter 6, it achieves high cache hit rates with a

Figure 1.2: Role of the Coordinator
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relatively small cache size. Hence, by caching videos relatively close to the cli-

ents and ensuring a large number of video requests are satisfied locally, it

reduces overall startup delays and the possibility of adverse Internet conditions

disrupting video playback. From the point of view of the server, MiddleMan dra-

matically reduces load by intercepting a large number of server accesses.

Hence, the net effect of MiddleMan is to greatly increase the effective bandwidth

of the entire video delivery system allowing more clients to be serviced at any

given time.

By incorporating video processing into proxies, MiddleMan offers a

mechanism to cope with heterogeneous clients and their variable loads. In par-

ticular, proxies can convert incoming video to a format more flexible for display

by host machines. 

Because proxies are colocated with their clients, MiddleMan can adjust

more quickly to both fluctuations in the client load and the local network band-

width. 

1.2  Technical Contributions

Several issues must be addressed before MiddleMan can be built and

deployed. 

1. Determining the intrinsic properties of video files on the web and how they are 

accessed over the Internet. Not much is known about either, but such an 

understanding is useful in order to effectively detail the architecture and pro-

tocols of MiddleMan. 
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2. Evaluating and refining the design. This process includes determining the 

effectiveness of various cache replacement and load balancing policies 

across proxies. 

3. Supporting client heterogenieity. MiddleMan supports client heterogeneity by 

converting video to some intermediate format that allows the system to better 

adjust to client loads. Hence, techniques for fast conversion of video must be 

developed.

To study the properties of the videos on the web, I devised and executed

an experiment. In this experiment, I downloaded and analyzed over 57000 AVI,

QuickTime and MPEG files stored on the Web - approximately 100 Gigabytes of

data. Among the more interesting discoveries, I verified the conjecture that cur-

rent Internet bandwidth is at least an order of magnitude too slow to support

streaming playback of most of these videos. 

To investigate how users access video data, I inspected log file records

from the mStar [45] experiment at Lulea University in Sweden. mStar is a hard-

ware/software infrastructure developed by the Center for Distance-spanning

Technology at Lulea University for facilitating distance learning and creating a

virtual student community. This analysis yielded several insights into video

browsing behavior including:

• users do not necessarily view a video all the way through. Only about 55% of

all requests went to completion.

• video access patterns exhibit high temporal locality.

• the access pattern of a video is related to its content category. Movie popular-

ity tends to be evenly distributed with time, whereas the popularity of course

materials varies greatly with time.
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The insights from these two analyses influenced the design of Middle-

Man. Armed with the results from these analyses, I developed a simulation envi-

ronment in order to test the initial architecture. The main design flaw revealed by

the simulations was that of poor load balancing between the proxes. After fur-

ther revisions in the architecture, the final design achieved both high cache hit

rates and excellent proxy load distribution.

To address problem 3, I examined the issues involving the fast software

conversion of DCT based, inter-frame compressed video formats to motion

JPEG. I chose this class of formats because, in addition to the popularity of

MPEG-1, technologies such as H.261 [59] and MPEG-4 [95] utilize similar com-

pression concepts are gaining widespread acceptance on the web. Transcoding

these formats to motion JPEG offers several advantages:

• constraining the proxy-client exchanges to motion JPEG allows for more lee-

way in client load control. A proxy can drop arbitrary frames if necessary in

response to sudden client loads or local network bottlenecks. This response

is not usually possible in formats that do not allow random frame access.

• software JPEG decoders are easily available. Most, if not all, hardware plat-

forms have decoders available as part of a standard suite of decoders.

The remainder of this thesis is organized as follows. In chapters 2 and 3,

I describe the study to characterize videos on the web and the results of the

video trace analysis respectively. I present the initial design and protocols of

MiddleMan in chapter 4. In chapter 5, I detail the simulation techniques used to

evaluate MiddleMan and use the simulation results to investigate the caching

and load balancing properties of MiddleMan and to refine the design. In chapter



11

6, I investigate techniques for fast MPEG to JPEG conversion. I present my con-

clusions in chapter 7.
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Chapter 2

Characterizing Videos On The Web

2.1  Introduction

Understanding the characteristics of video currently transmitted on the

Internet is an essential first step prior to proposing improvements in communica-

tion schemes for continuous media data. To effectively structure such a study, I

turned to analogous efforts by system researchers designing file systems. It is

instructive to see how they approached the issue: for example, in 1985,

researchers at the University of California at Berkeley published a study of the

UNIX 4.2 BSD file system [43]. This analysis provided a number of insights

regarding file sizes, lifetimes, and access patterns and was highly influential in

the design of several file systems. In 1991, Berkeley researchers released a fol-

low-up study on Sprite [8], which verified the assertions made in [43] and made

further measurements. This study was also influential in the design of subse-

quent distributed file systems. Following the example set by the two file system

studies, this chapter presents the results of a study to categorize video data cur-

rently stored on the Internet. 

To answer these questions, I wrote a Web analysis system that down-

loaded and analyzed every video it was able to find on the Web. My goal was to

answer the following questions:
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• What are the basic properties (size, frame rate, picture dimensions, dura-

tion, and average bitrate) of video files?

• How are these characteristics changing?

• How do different compression technologies compare with each other in 

practice?

• How does network bandwidth affect the waiting times for movie file down-

load?

• Are video files transitory? How long do they last on the World Wide Web?

The answers to these questions are based on 57076 (subsequently whit-

tled down to 47457) video data files downloaded from about 9336 WWW serv-

ers in April and May 1997. My findings included:

1. Movie sizes range from hundreds of kilobytes to several megabytes:

1.1MByte is a good “rule of thumb.”

2. Most movies are brief: 90% last 45 seconds or less.

3. Users adhere to "standard" small or medium picture dimensions (such as

160x120 or 320x240) when creating videos with audio content, but not when

creating videos without audio.

4. The number of movies coming on-line is increasing exponentially.

5. MPEG [25] files compress better than QuickTime [73] or AVI [72] due to their

lower bits/pixel values (mean of 0.73 as opposed to 2.16 or 2.51). MPEG files

also have smaller durations and higher frame rates.

6. QuickTime and AVI files have analogous distributions for frame rates, dura-

tion, size and waiting time. Bits/pixel comparisons show QuickTime to com-

press slightly better.



14

7. 28.8K, 56K and 128K bandwidths are practically useless for real-time display

of video data. For example, 56Kbits/sec allows about 1% of all movie files to

be downloaded. About half the movies can be displayed with 700 Kbits/sec of

bandwidth, 80% with 1.5 Mbits/sec and 90% with 2 Mbits/sec.

8. Movies follow the write-once/read-many principle of availability. 80% of the

movies initially analyzed were still present on the web about 4-6 months later.

The rest of this chapter describes this experiment and its consequences

in detail. Section 2.2 presents my method for locating, collecting, and process-

ing the video data. Section 2.3 presents the results of thirteen analyses I per-

formed on the collected data set, elaborating the results outlined above. I outline

related work in section 2.4 and summarize my conclusions and give directions

for future work in section 2.5.

2.2  Video Data Collection Process

For the study to be representative of conditions on the Web, I had to

locate and analyze a large number of video files. I divided this task into three

steps. The first step, the hunting phase, was to obtain a list of links to video doc-

uments. A video document is an HTML document that contains at least one link

to a video clip. The second step, the gathering phase, consisted of extracting

the video links from each video document, fetching the specified clip, analyzing

it, and recording the results. I found a small amount of the data to be suspicious,

so the final step, the sifting phase, eliminated this suspicious data. The next

three subsections describe these phases in detail.
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2.2.1  Step 1: The Hunting Phase

To obtain a list of video documents, I wrote a Tcl script [71] to coerce the

Alta Vista search engine [70] to return a list of potential video documents. A

potential video document is one that contains a link to an MPEG, QuickTime, or

AVI file. File extensions of the URLs embedded in the video document were

used to distinguish between video and non-video links. Since file extensions are

unique in the WWW framework, this approach was sufficient to identify the

embedded video links. The search was limited to AVI, MPEG and QuickTime

files since these are the most established video technologies. Alta Vista is capa-

ble of ordering query results by the date of last modification and this facility was

useful in categorizing the retrieved video document links on a month by month

basis, from January 1995 to March 1997. The process yielded about 44000

links, of which 22600 were valid.

2.2.2  Step 2: The Gathering Phase

Armed with the list of potential video documents, I wrote a system to

download the video documents, and contained video files. The video link pro-

cessing system, shown in figure 1, consists of a link distributor and gatherer

(LDG) process and a set of link processor (LP) processes. The LDG is responsi-

ble for assigning video documents to LPs and collecting and storing the sum-

mary statistical data calculated by the LPs. Upon obtaining a video document

URL, the LP fetches the document, parses it to extract any links to movie clips,

downloads the clips, runs a video analysis program, and sends summary statis-

tics to the LDG. These statistics include the basic movie properties (frame rate,

clip size in bytes, etc.) as well as properties of the video document (modification

time, size in bytes).
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For example, suppose the video document http://www.eg.com/

movie.html contains a link to http://www.hoho.com/my.mov. Figure 2.1 illustrates

the steps the video link processing system would take in processing this video

document:

1. LP1 requests a new video document link from the LDG. It receives the URL

http://www.eg.com/movie.html

2. LP1 contacts www.eg.com and fetches movie.html

3. LP1 parses the contents of movie.html and extracts the link http://

www.hoho.com/my.mov.

4. LP1 contacts www.hoho.com and downloads my.mov.

5. LP1 spawns a program to analyze my.mov and collects the results. 

6. LP1 contacts the LDG and reports the statistics on my.mov and movie.html.

Each LP and LDG process runs on a separate UNIX workstation. In the

experiment, eight machines ran the LP processes and one machine ran the

LDG. It took about six weeks to download and analyze all 44,000 potential video

LDG

LP0

www.eg.com

www.hoho.com

LP1

LP2

1. “http://www.eg.com/movie.html”

2. movie.html

4. my.mov

6. summary statistics

Figure 2.1: Video Link Processing Architecture (steps 3 and 5 occur within 
LP1 and hence, are not shown)
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documents. Of these, about 22,600 were valid links. The rest either did not exist

or did not contain links to video data. Not surprisingly, link processing was faster

at night due to lower Internet traffic. I wrote the core portions of the LP and LDG

in Tcl, employing Tcl-DP [74] for communication between the LPs and LDG. I

used mpegstat [66] to analyze the MPEG files, and an instrumented version of

xanim [10] to analyze the QuickTime and AVI files.

About 10% of all the QuickTime, 8% of the AVI and 5% of the MPEG titles

were not analyzed for one or more of the following reasons:

• There were QuickTime files that had not been "flattened"1 

• xanim did not have the right QuickTime or AVI codec for the file

• The file was audio only

• The file had been truncated. A file was truncated if its downloaded size was 

not within 95% of the value claimed by the accompanying HTTP header.

2.2.3   Step 3: The Sifting Phase

In all, about 100 GB worth of HTML and video files were downloaded and

processed, accumulating 25MB of raw statistics. From this initial list of about

57,000 titles, about 9,500 suspect videos were excluded using the following

guidelines:

• 4 <= fps <= 40.

Files with frame rates less the four frames per second (fps) or greater than

forty fps were excluded. I found many files to have a frame rate of 0.1 fps

(some were zero), and others with a frame rate as high as 1000 fps. To

1 “Flattening” is a process that combines the resource and data forks of a QuickTime file thus making it por-
table.
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avoid skewing the derived characteristics, such as movie duration (frame

count divided by fps), I eliminated these titles. This criterion eliminated

about 5000 entries.

• duration >= 0.5 seconds

Clips less than one-half second in duration were eliminated since they

were too brief to qualify as “video.” About 1000 links were eliminated this

way.

• 0.6 <= AR <= 1.6667

The aspect ratio (AR = width/height) was constrained to be in this range to

conform to acceptable norms for video. Spot-checking revealed that videos

with aspect ratios outside this range were largely collections of images,

rather than true motion video. Nearly 1000 links deviated from this guide-

line.

• Bitrate < 10 Mbits/sec

I define the bitrate of a movie clip as: 

Bitrate = movie size (bits)/movie duration (seconds). 

I constrained the bitrate to be less than or equal to 10Mbits/sec. Files

exceeding this limit were frequently images or simulations with very large

sizes and very small durations, resulting in abnormally high bitrates.

Almost 1000 files exceeded this threshold2.

• Duplicate investigation of the same URL.

2 The largest bitrate was 12.5 Gbits/sec.
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To avoid downloading and analyzing the same URL more than once, the

LP/LDG system checked a movie link against other already processed

URLs before processing it. However, it did not account for common prac-

tices such as DNS aliasing where one machine can be referred to via mul-

tiple names. For example http://cnn.com points to the same location as

http://www.cnn.com. Minimizing errors from this scenario involved compar-

ing IP addresses, file names and sizes of all the processed URLs to detect

duplications. 1500 titles were eliminated this way. 

After completing this process, 47,500 titles remained. This working data

set consisted of 53% QuickTime files, 30% MPEG files, and 17% AVI files.

2.3  Results and Analysis

I analyzed the collected data using Microsoft Excel and Tcl scripts. The

raw data calculation fell into six types of categories, which are detailed in the fol-

lowing subsections:

• Directly measurable quantities, such as date of creation (section 2.3.1), 

frame rate (2.3.2), and movie size (2.3.3),

• Derived quantities, such as how average movie size is changing (section 

2.4), movie duration (2.3.5), aspect ratio (2.3.6), 

• Codec properties, which shows how the AVI (section 2.3.7), QuickTime 

(2.3.8), and MPEG (2.3.9) codecs are used to encode video for the Web,

• Network properties, which calculated the bandwidth required for stream-

ing (2.3.10) and the pre-fetch buffer required to stream a movie without

interruption (2.3.14),
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• Replication, where I measured how many movies are replicated on the 

Web (2.3.11),

• Age, which analyzed the lifetime of the movies (2.3.12),

• Geographical Origin, where I investigated the distribution of all the movies 

by region (2.3.13).

2.3.1  Movie Date Distribution

A video file has two associated dates: its on-line date and document

date. The on-line date of a video is the date it was placed on-line. The document

date is the last modified time of the associated video document as reported by

the Web server. For example, if an HTML page contains links to 10 MPEG files,

the document date is the time the HTML page was modified, whereas the on-

line dates are the dates when the MPEG files were modified.

Figure 2.2 plots the number of movies placed on the Web in a given time,

using on-line dates. Figure 2.3 decomposes figure 2.2 into the three movie

types. QuickTime is clearly dominant format today, although MPEG led until mid

1995. AVI, initially the least used of the three formats, is currently comparable to

MPEG in popularity.

Figure 2.2 shows the growth to increase until May 1996, after which the

growth levels-off and declines. This behavior raises two questions:

1. Why are there movies dated April and May 1997 when the cutoff date of our

initial survey was March 1997?

2. Why is there a decline of movies coming on-line from December 1996 - May

1997?
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The answer to the first question is simply that the video documents were

modified in the time period after the retrieval of the document URLs from Alta

Vista and before they could be analyzed during the gathering phase. For exam-

ple, many of the video documents are indices with dozens of movies. Suppose

Alta Vista indexed such a document in March 1997, and that the author added a

new movie in early May. That movie’s on-line date would be correctly reported

as May 1997.
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There are a number of possible answers to the second question. These

include:

• Lag time in web indexing: recall that the list of video documents was 

obtained from Alta-Vista. If we assume that Alta-Vista takes, say, six

months to index the Web, then documents older than 6 months are certain

to have been indexed. Documents that are more recent have a decreasing

probability of being indexed. However, if Alta-Vista has not indexed the

(HTML) video document, my search strategy would not find this video. For

instance, if a video is placed on the Web in February 1997, but the associ-

ated video document is not indexed by Alta-Vista when we collect the list of

potential documents, we will not find it. Thus, I am under-reporting the

number of video files on the Web for dates close to March 1997.

• The number of videos on the web is actually declining: due to the recent 

introduction of streaming video technologies it may be possible that AVI,

QuickTime and MPEG are no longer the encoding tools of choice for pre-

senting movies on the web.

2.3.2  Frame Rate

AVI and QuickTime movies use low frame rates. Figure 2.4 displays the

frame rate spectrum for all the movies in the data set. At the low end of the

spectrum, there are peaks at 8, 10, 12 and 15. At the high end, most fps values

cluster around 30 with smaller peaks at 24 and 25. The lower valued peaks in

figure 2.4 are caused by QuickTime and AVI files, while the high peaks are

largely due to MPEG files.
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2.3.3  Size

Movie files are relatively small. Figure 2.5 plots the size distribution of all

movies in our data set. It shows that 70% of the movies are 2 Mbytes or less.

The median movie size is about 1.1 MB. Figure 2.6 breaks this distribution down

by format. It shows that AVI and QuickTime files have similar size distributions,

whereas MPEG files are smaller overall. As we shall see later, this characteristic

of MPEG files can be attributed to their better compression and relatively

smaller playback times.

2.3.4  Monthly Size

The median size of the typical movie is increasing, but the median size of

a movie file of a given format is staying the same. Figure 2.7 plots the mean and

median size of movie files versus time across all movies (top) and by movie type

(bottom). Each data point represents one three-month period, except the first
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point, which represents a fifteen-month period. The expansion of the first time

segment was required to provide sufficient data points. As the top figure shows,

the median size is clearly increasing. The bottom figure just as clearly shows

that the median size of MPEG and QuickTime movies is remaining constant.
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The reason for the rise in the top figure is the increase in popularity of Quick-

Time (figure 2.3). Since QuickTime movies are generally two to three times
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larger (in bytes) than MPEG movies, as shown in the lower figure, a high per-

centage of QuickTime movies drives the average up. The drop in the popularity

of QuickTime in 1997 accounts for the decline in the last two quarters of the

median and mean movie size in the top graph.

2.3.5  Duration

Movies on the Web are short. I calculated the duration of a movie by

dividing the number of frames in the movie by the frame rate. Figure 2.8 shows

the number of movies of a given duration, and figure 2.9 breaks down figure 2.8

by format. 90% of movies are 45 seconds or less in duration, and half of the

movies were fifteen seconds and under. The right-hand figure highlights another

interesting result: MPEG files are generally shorter than their AVI/QuickTime

counterparts. The latter two formats have almost identical duration distributions.
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2.3.6  Aspect Ratio

74% of all files have an aspect ratio (width over height) of 1.33, which

corresponds to a movie size 160x120 and 320x240. 15% of the remaining files

have aspect ratios ranging in between 1.2 and 1.5.

2.3.7  AVI

About 25% of all the AVI files had no audio. 90% of the audio/video files

used PCM as their audio codec. Radius Cinepak was the most popular video

codec (43%), followed by Microsoft Video 1 (26%) and Intel Indeo R3.2 (25%).

I used the bits/pixel metric to analyze video compression performance:

bits/pixel = video size (bits)/ (width* height* number of frames)

I computed the metric on video-only files and figure 2.10 (top) displays

the resulting distribution. The mean bits/pixel was 2.51 and the median was
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2.14. Both Radius Cinepak and Indeo had similar mean bits/pixel performances

at around 2.0 bits/pixel and Microsoft Video was slightly worse at 2.4 bits/pixel.

Figure 2.10: Typical compression performance of formats
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2.3.8  QuickTime

About a third of the QuickTime files were video only. PCM was again the

dominant audio codec for audio/video streams (84% of all the a/v QuickTime

files). Figure 2.10 (center) details the overall bits/pixel distribution. Although it is

similar to AVI, QuickTime compresses slightly better with a mean bits/pixel value

of 2.16 and median of 1.82. The most popular video codecs were Radius

Cinepak (60%) with a median bits/pixel of 1.9 and Apple Video-RPZA (22%)

with 2.6 bits/pixel. I found the best video compression to come from the JPEG

codec (6% popularity) which had a median bits/pixel of 1.6.

2.3.9  MPEG

Figure 2.10 (bottom) illustrates that MPEG’s compression is superior to

that of QuickTime or AVI, since the bits/pixel distribution is more concentrated in

the low bits/pixel range. I found the MPEG files to have a mean bits/pixel value

of 0.73 and a median of 0.53. Only 7% of MPEG files had audio, in contrast to

QuickTime or AVI. The lack of MPEG files with audio is probably due to the fact

that early MPEG encoders were video only. Recently created MPEG files tend to

have audio.

Table 2.1 provides the statistics on individual MPEG frame types: P

frames compress about twice as much as I frames, and B frames compress by a

factor of 5 better than I frames.

Table 2.1: Frame Type Analysis

Frame Type
Mean bits/

pixel Median bits/pixel

I 1.25 1.10

P 0.76 0.54

B 0.31 0.19
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Investigating the frame patterns in MPEG streams showed that about

80% of all MPEGs had some type of repeating frame pattern. Table 2.2 shows

the various patterns (in playback order) and the corresponding mean bits/pixel.

The pattern of I frames only recurred most often followed in popularity by the

sequence IBBPBB. Note that the bits/pixel value drops when more B frames,

relative to P and I, are in the pattern,. The presence of common frame patterns

indicates that MPEG users are content to use the default values in their encod-

ers.

2.3.10  Bandwidth Requirement

The Internet today is incapable of streaming most MPEG, QuickTime, or

AVI video stored on the Web. Figure 2.11 shows the average bitrate distribution,

calculated as the movie size (in bytes) divided by its duration (in seconds). As

we can see, at basic ISDN rates (around 128 Kbps) only 3%-4% of the titles can

be streamed. At 700 Kbits/sec, 52% of all movies can be streamed, and at 1.5

Table 2.2: Frame Pattern Distribution

frame pattern
% 
distribution mean bits/pixel

I 27.10% 1.17

IBBPBB 15.70% 0.7

IBBPBBPBBPBBPBB 10.40% 0.31

IBBPBBPBBPBB 8.10% 0.5

IBBBPBBBPBBB 4.40% 0.66

IPBBIBB 4.20% 0.39

IIP 3.50% 0.7

IBBBPBBBPBBBPBB
B

2.90% 0.58

IPBB 2.00% 0.62

IPBBBPBBBB 1.90% 0.28

IPBBPBBPBBPB 1.20% 0.51

IPPP 1.20% 0.79
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Mbits/sec 84% can be streamed. Clearly, a disparity exists between bitrates

achieved by established compression technologies and current modem speeds.

It is also interesting that despite the pressure to make the viewing of MPEG,

QuickTime, and AVI video tolerable over slow connections, authors seldom drop

below 500 Kbps when creating their content. This suggests that this bitrate rep-

resents a lower limit in quality for these codecs. Below this bitrate, the quality is

simply unacceptable.

To investigate bitrate distribution further, I defined the property of trans-

ferability: a file is transferable at a certain bandwidth if its average bitrate is at or

below that bandwidth. I first classified the movie collection by type and, within

each type, subdivided further depending on whether the movie was video-only

or had both audio and video. I then calculated the transferability, at various

bandwidths, of the files in each category. Table 2.3 itemizes the results.
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We observe two main points:

1. QuickTime was generally more transferable than either AVI or MPEG, and

MPEG was the least transferable. I hypothesize that this is due to its high

frame rates, which raise its average bitrate.

2. Within each format, audio/video streams are more transferable than their

video only counterparts at the higher bandwidths. At first, I found this effect

counter-intuitive - I expected the presence of audio to raise the average

bitrate, not lower it.

To investigate the cause of observation 2, I plotted uncompressed bitrate

of each video stream:

U = 8 * video width * height * fps

Figure 2.12 (top) plots the cumulative distribution of U for MPEG video-

only and audio/video files. It shows, for example, that 40% of MPEG audio/video

files have U < 6.5 Mbits/sec, and almost all have U < 20 Mbits/sec. Figure 2.12

(bottom) plots the same metric for QuickTime. The steps in the audio/video

curves are caused by files created with common picture dimensions and frame

rates. For example, the MPEG systems file curve in figure 2.12 (top) has a large

Table 2.3: Comparison of BW

Bitrate QT
QT w.o. 
audio AVI

AVI w.o. 
audio MPEG

MPEG w.o. 
audio

28,800 0% 2.70% 0% 0.20% 0% 0.06%

56,000 0% 5.55% 0% 0.99% 0% 0.19%

200,000 0.69% 12.26% 1.44% 9.34% 1% 6.35%

600,000 43.28% 42.39% 41.58% 38.22% 36% 37.58%

1,500,000 91% 79.02% 84.73% 78.28% 87% 75.51%

5,000,000 99.77% 96.67% 99.65% 97.42% 97.30% 95.43%

10,000,000 99.97% 99.33% 99.95% 99.25% 99.20% 98.91%
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step at the 5 Mbits/sec region and another around the 20 Mbits/sec region. The

magnitude of the steps indicates that the majority of the files are located around

these regions. The first step is due to 160x120 files (30 or 25 fps), and the sec-

ond step is caused by files 352x240 in dimension (30 fps) and 352x288 in

dimension (25 fps). The plot of QuickTime files shows a similar pattern. Here the

steps in U for audio/video files occur around the 2.4 bits/sec (160*120, 15fps), 2

Mbits/sec (160*120, 12 fps) and 1.6 Mbits/sec (160*120, 10 fps) regions. The

AVI uncompressed bitrate distribution is very similar to that of QuickTime, and

therefore not shown.

In contrast, video-only files have no such strong characteristics. They

have a large variety of shapes and sizes, as reflected in the distributions of U

shown in figure 2.12. Spot checking of the video files indicates that this is

because video-only movie files are often used to present the output of simula-

tions and computer animations, which do not have the size restrictions of NTSC

or PAL video, the typical source for audio/video data.

2.3.11  Movie Replication

My criteria for considering a movie to be a copy of another was as fol-

lows: if a movie on a different WWW server had the same size, type, width,

height, and fps I considered the movie to be replicated. Although this does not

directly compare the two movies, it is similar to comparing a checksum. Random

testing showed this criteria to bereliable. I found 2177 unique movies that had

been replicated. The majority of movies were replicated once with the maximum

being 53. Popular replicated movies included "standard" reference files such as

"bike.mpg", "moglie.mpg" and "RedsNightmare.mpg".
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During the gathering phase of my survey, I was careful to check URLs for

duplicates to avoid unnecessary processing and downloading. However, this

particular analysis revealed a potential gray area: how to differentiate between

movies present on the same WWW server with identical replication characteris-

tics but with different path names? For future analyses, I plan to ignore such

duplicate instances.
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2.3.12  Geographical Origin 

An obvious approach to classifying movies according to origin would be

to look at the lifetimes extension of the DNS name of the server hosting the

URL. Non-USA machines have extensions in their names that indicate their

country of origin and it would be a simple matter to parse and categorize the

URLs accordingly. However, DNS aliasing can cause machine names that

appear to originate from the USA may in fact be situated elsewhere. For exam-

ple, the machine name www.dotmusic.com is in fact an alias for www.dotmu-

sic.co.uk. To reduce the problem, I used the UNIX whois command (which

accesses the InternNIC services [96]) to verify that the postal address registered

for every US domain name from the working data set did in fact originate from

the USA. If not, I altered the data set to reflect the real country of registration.

This solution is not comprehensive since large organizations such as ISPs,

ostensibly registered to USA addresses, have networks that span continents.

Nevertheless, the findings as shown in figure 2.13 do illustrate the current

trends in physical location of movies. In figure 2.13, movies are classified

according to broad physical regions and it is not surprising to see that the major-

ity of the movies in our data set are located in North America with Europe being

the next largest. The “India and Asia” region follows next in popularity but in

reality, the majority of movies from this part of the world are situated in Japan.

Not surprisingly less developed countries in Africa, Central America and Paci-

fica (islands in the Pacific Ocean) are the regions with the least number of mov-

ies.

Figure 2.14 illustrates the type composition of movies in each region.

Most of the time, the pattern is similar to that observed in section 2.1: QuickTime

is dominant with MPEG and AVI following. The only exception is Europe where
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MPEG leads over the other two formats. This is probably because European

researchers have been more active than their American counterparts in stan-

dardizing and adopting MPEG. 

2.3.13  Movie Age

Do movies last with time? Four months after the original survey, I

rechecked the links from the working data set to verify whether they were still at

their original location or not. The process involved performing a “HEAD” query at

the WWW server given by the original URL and, if the video was still there, com-

paring the recorded size of the movie with that returned by the query. I ran the

verification process twice. The intention of the second iteration was to track

down videos that had changed locations (the first iteration indicated that 1% of
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the documents had moved) and to retry sites that could not be accessed in the

first iteration. Table 2.4 summarizes my findings.

As can be seen, the majority of files (80%) were accessible confirming

my hypothesis that video data on the web tends to be write-once-read-many in

nature. Random checking of the “file size error” reports indicated movies of this

type tended to be animated weather maps or satellite pictures that required a

constant name yet were updated on a regular basis. “Network errors” were pri-

marily due to a site being down, permanently or otherwise. 

Table 2.4: Age Analysis Results

Error Reasons (if any) % of documents

HTML code 200 (OK) 80.4%

File size changed 0.7%

HTML code 404 (Not Found) 12.9%

HTML code 406 (None Accept-
able)

2.3%

Network Errors 3.2%

Other Errors 0.5%
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2.4  Related Work

Woodruff [61] and Bray [10] have inspected WWW content. They have

looked at as much of the Web as possible in order to characterize document

sizes, HTML tag usage, file types used as URLs, and so on. Their results indi-

cate that videos do not account for a very significant portion (less than 1%) of

WWW content. Once again, their analysis is based on data collected during

1995. However, according to Woodruff, MPEGs comprise the highest proportion

of video files (0.3%) during this time, followed by QuickTime (0.2%) and AVI

(0.1%) respectively. This particular order agrees with our findings of video on the

web for the 1995 time period.

The study by Smith and Chang [56] is, to my knowledge, the only previ-

ous work that has analyzed video on the web. They have implemented a system

for traversing the web that locates and indexes images and videos. Their focus

is on merging text-based processing and content-based visual analysis to pro-

duce an easily searchable database. Videos form a small portion of the data

they have gathered (about 1%). My approach concentrates on the direct analy-

sis of videos and how they integrate into the World Wide Web. Our data is

unique since it is the first large-scale study of its type.

2.5  Conclusion and Future Work

 It is clear existing compression technologies do not provide low enough

bitrates for streaming transmission over standard modems. One solution is to

raise the network bandwidth, and my study indicates that 700 Kbits/sec to 1.5

Mbits/sec is an appropriate value. However, in the absence of sufficient network
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bandwidth, it is interesting to observe how user behavior and video technologies

have evolved to address these problems. 

 One approach is to improve video compression performance [76, 77, 79,

95] thus reducing the required bandwidth.

Users of MPEG, AVI or QuickTime are attempting another approach to

the bandwidth problem by creating files relatively small in size and duration

(when compared with their VHS counterparts). However, authors have not throt-

tled the bitrate of the videos at the expense of picture quality. This implies they

are not willing to sacrifice video quality for bandwidth - there is a perceptual

threshold below which authors are unwilling to descend. The corollary of this is

that every video technology has some sort of critical bandwidth associated with

it - users cannot tolerate the picture quality for videos encoded below this band-

width. 

For the purposes of this thesis, the result that video files tend to have the

write-once-read-many property is crucial, allowing the investigation of an alter-

nate cache based approach to transmitting videos over the Internet. I also use

the average file size and other properties discovered in this chapter for simula-

tion purposes. This work is presented in chapter 6. 

In the future, I plan further investigation of video movie distribution. The

need for an additional study is motivated by the following reasons:

• It would clarify the reason behind the drop in the number of movies coming 

online, as described in section 3.3.1. It would be useful to see what kind of

patterns emerge in the second study. In particular, it would be interesting to

see if the number of streaming videos coming online has increased or not.
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• It would investigate the properties of streaming videos. However, extracting 

meaningful information out of a streaming video file encoded in a propri-

etary format may be impossible.

• It would confirm the general video characteristics uncovered in the first 

study.

• It would enlarge the scope of the study. The first study relied on querying 

Alta Vista for video documents. Getting such data directly from one of the

sites that operate web crawlers would present a clearer and more compre-

hensive picture of videos on the web.

• The results of the geographical analysis is still suspect. Better methods are 

necessary for determining the origin of an URL.

• It would be interesting to see how many clips are replicated in multiple for-

mats and to develop techniques for detecting such replication.

• Investigation of MPEG-2 files.

• It would be useful for the general multimedia research community if this sort 

of study was carried out on a regular basis. Doing a second study would

provide much insight as to the additional tools and facilities needed to auto-

mate the process. The tools developed would be of value themselves.

• Local storage of video data for future analysis: if the total size of the num-

ber of movies on the Internet is indeed on the order of hundreds of

Gigabytes as the first survey suggests, it may be feasible to download and

store all of them, if not to hard disk, then at least to tape. Availability of the

movies will allow further verification of any results derived from the data

made and allow easy deployment of new analysis techniques.
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Chapter 3

Video Trace Analysis

3.1  Introduction

In the previous chapter, I analyzed characteristics of video data stored on

the web. However, such an analysis presents a partial picture of video usage:

we know about the properties of the video files but we do not know how these

files are accessed. Knowledge of access patterns can be useful to MiddleMan

design. For instance, if access patterns revealed that smaller files were more

likely to be accessed than larger files, the cache replacement policies of Middle-

Man could be optimized to retain small files. 

In this chapter, I study user access patterns and file characteristics of an

ongoing VOW experiment in Luleå University of Technology, Sweden. This

VOW experiment is unique because video material is distributed over a high

bandwidth network. Hence, users can make access decisions without the net-

work being a major factor. Similarly, the data being transmitted is also created

and placed online without regard to network conditions. Given that my study of

videos on the web in the previous chapter indicates that currently content cre-

ators, faced with large Internet latencies, deliberately throttle video sizes and

durations in an attempt to reduce download wait times, the Luleå analysis pro-

vides insights into the potential behavior of both users and content creators in

the Internet of the future where bandwidth is more plentiful. Sample findings

included:
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1. Inter-arrival times: median interarrival time of about 400 seconds indicate that 

requests for videos are nowhere near as frequent as those for HTML docu-

ments.

2. Video browsing patterns: users like to view the initial part of videos in order to 

determine if they are interested or not. If they like it, they continue watching. 

Otherwise, they stop.

3. Temporal Locality: accesses to videos also exhibit strong temporal locality. If 

a video has been accessed recently, chances are that it’ll be accessed again 

soon.

The remainder of this discussion is organized as follows. Section 3.2 pro-

vides background information on the VOW experiment and section 3.3 presents

an analysis of video file characteristics. In section 3.4, I detail my criteria for

eliminating erroneous data from the file access trace and, in section 3.5, I

present specific results from my analysis. I conclude with some observations in

section 3.6.

3.2  Background

Since 1995, the Centre for Distance-spanning Technology at Luleå Uni-

versity has been researching distance education and collaboration on the Inter-

net [97]. Specifically, it has developed a hardware/software infrastructure for

giving WWW-based courses and creating a virtual student community. The

hardware aspects include the deployment of a high speed network (2-34Mbps

backbone links) to attach the local communities to the actual University campus.

The campus is also connected to the national academic backbone by a high

speed 34 Mbps link [45] with student apartments being wired together with the
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rest of campus via 10 or 100 Mbps ethernet. On the software side, the mStar

environment, developed at CDT, provides a collection of web-based authoring,

presentation and recording tools that use the Mbone for content delivery [20]. In

particular, the mMOD (the multicast Media On Demand) system, a component

of mStar, allows for recording and playback of classroom lectures, seminars and

meetings [44]. 

The mMOD system consists of two separate programs, the VCR and the

Web Controller. The VCR allows for recording and playing back of broadcasts.

H.261 [59] is used for video compression in most cases. Recorded data is

stored on the mMOD web server. The VCR also permits the fast forwarding or

rewinding of a video stream. 

The Web Controller provides an interface for the mMOD system - it

allows users to request new video/audio playback sessions from the mMOD

server. Additionally, it also permits users to join sessions already in progress.

Users are able to view material via standard tools such as vic or vat [34]. A set

of Java applets are also available for this purpose [98].

Figure 3.1 shows the playback architecture of the mMOD system on the

Luleå University campus. User requests arrive at the mMOD server from three

main subdomains within the campus, as well as from external sources. Since

the mMOD server is the focus of both recording and playback, its log files form

the basis for video access analysis, while its file system records provide the raw

data for determining intrinsic file characteristics.
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3.3   Video File Characteristics

As of 10th March, 1998, the mMOD server (mmod.cdt.luth.se) hosted

139 audio/video titles that, according to the log traces, had been accessed at

least once. Video content ranged from classroom lectures and seminars to tradi-

tional movies. Student enrollment in the undergraduate courses ranged from

100-140 with smaller numbers attending the graduate courses. All movies were

CIF (320 x 240) in size. In the remainder of this section, I outline the basic char-

acteristics of these file - their size, durations, and bitrate distributions. 

3.3.1  Size

The file size analysis was based on detailed directory listings from the

mMOD video server. Overall, the files totalled 15.7 Gbytes in size. Individually,

each title is composed of separate audio and video files but in this analysis I

Figure 3.1: Video access structure on the mMOD system
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aggregate them together. Figure 3.2 shows the individual size distribution of

titles. 125 Mbytes is the most common file size and the mean value is about 121

Mbytes. In general, file sizes were several orders of magnitude larger than vid-

eos on the web. 

3.3.2  Duration

Since no separate record exists about the duration of the titles, I deter-

mined the length of each by hand. This involved fast forwarding each title to its

end via the mMOD VCR and noting the time elapsed. Some of the titles did not

have accurate embedded timestamps and I ignored those for this analysis. Fig-

ure 3.3 displays the duration distributions of all the remaining titles. The distribu-

tions varied widely - from 10 minutes to over two hours. 90-100 minutes proved

to be the most popular time range, most probably because this was the average

length of a class lecture. The mean duration was approximately 75 minutes.

Once again, the duration of these movies were much larger than those reported

by the study of videos on the web.

3.3.3  Bitrate Distribution

To obtain the mean bitrate for each movie, I divided the size by its dura-

tion. Figure 3.4 plots the resulting bitrate distribution. The majority of the files

exhibited bitrates between 150-250 kBits/sec, much lower than expected. This

was because the video quality of each transmission was deliberately kept low

[45] in order to save bandwidth for county viewers outside the campus with low

bandwidth network access. Additionally, H.261, the video compression scheme

used for the bulk of these streams, is mainly designed to produce low bitrates. 
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3.4  Trace Access Analysis

The trace that I analyzed was derived from the logs of the mMOD video

web server. These logs recorded accesses to mMOD files from 29th of August,

1997 to 10th March, 1998 - little more than six months. My first step, the removal

of excess and erroneous requests from this raw data, is reported in section

3.4.1. I divide my subsequent investigation of the refined data into two broad

parts:

• General: How do video requests vary by day (3.4.2)? Do accesses to movie

titles follow any specific mathematical distributions (3.4.3)? Do some

machines request more often than others (3.4.4)?

• Pattern Detection: Here, I searched for invariants in the data. Are there any

patterns in inter-access times of user requests (3.4.5)? Do users view titles all

the way through or do they stop beforehand (3.4.6)? Do accesses vary
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depending on the type of file (3.4.7)? Do requests exhibit any degree of tem-

poral locality (3.4.8)? 

3.4.1  Initial Log Filtering

The requests logged by the mMOD web server can be classified as fol-

lows:

1. Starting a video playback session: the user requests the setup of the appro-

priate video transmission environment (a multicast/unicast group) for a cer-

tain file. Playback starts from the beginning of the file by default - however the 

VCR applet can be used to fast-forward or rewind as necessary.

2. Stopping a session: the web server halts transmission and removes the multi-

cast/unicast group dedicated for the transmission of this file.

3. Joining a session already in progress: the user joins the multicast group 

devoted for the transmission of this title.

4. Obtaining HTML documents.

5. Retrieving images.

Of these, I eliminated types 3-5 from the initial logs. Session joins (3)

were too few to be statistically significant and event types 4-5 were irrelevant to

my study. The distilled log consisted of the following entries:

<timestamp> <machine-name> <command> <title>

<timestamp> was the time, in seconds, when the request was made.

<machine-name> indicated the originating machine. <command> was either

GET or STOP, depending on whether the user wanted to commence or halt a
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video playback session. Finally, <title> gave the name of the movie desired. A

sample log is shown below:

872874233 salt.cdt.luth.se GET Movie1
872875354 spock.cdt.luth.se GET ArkivX_970206
872876661 aniara.cdt.luth.se GET Movie2
872876743 aniara.cdt.luth.se STOP Movie2

After this initial cleanup, I performed further filtering on the simplified

trace, including:

1. Eliminate all requests from a particular machine which had been used for 

demo purposes and hence would have had unusual access patterns.

2. Remove dangling STOPs caused by the user hitting the STOP button too 

many times.

3. Some machines in the trace were only identified by their IP addresses. I 

replaced the IP addresses by their symbolic names.

4. Ignore consecutive GET requests from the same machine for the same movie 

if they are within 20 seconds of each other. For example, in the case of:

02:01:01 aniara.cdt.luth.se GET Movie3
02:01:15 aniara.cdt.luth.se GET Movie3

the time difference between two requests is 14 seconds, hence the first

request is ignored. The assumption is that there were problems in getting the

first request to run and that is why the user started another request for the

same movie. For time gaps more than 20 seconds, I assumed that the user

genuinely wanted multiple streams of the same movie possibly because the

same machine had multiple users or the user was editing this particular title.
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If, on the other hand, the first request had a corresponding STOP like the fol-

lowing:

02:01:01 aniara.cdt.luth.se GET Movie3
02:01:10 aniara.cdt.luth.se STOP Movie3
02:01:15 aniara.cdt.luth.se GET Movie3

then both requests were acceptable since the user had deliberately stopped

the first request.

Steps 1 and 2 eliminated about 300 playback requests leaving 5249

accesses overall. I carried out my subsequent analyses on this trace.

3.4.2  Video Access Grouped By Day

Figure 3.5 plots six months worth of server access grouped in 24 hour

periods.

Figure 3.5 shows a cyclically fluctuating pattern of access which, with the

exception of days 119-130, gradually increased with time. I found that accesses

dropped off during weekends and rose again during the weekdays. Days 119-

130 coincided with Christmas vacation when activity was minimal. Finally, the

number of accesses increased significantly post Christmas. This was probably

due to widespread deployment and usage of the mMOD system during the new

semester, especially after the initial bugs had been ironed out.

3.4.3  Video Accesses To Movie Titles

Previous research on WWW traces [18] have shown that accesses to

web documents tend to follow a Zipf distribution. Zipf’s law [65], as applied to

web access, states that given a collection of documents at a web server and a
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history of access to them, the final ranking of document popularity (p) is related

to its frequency of access (P) by:

P ~ 1/(p1-t ) where t = 0.27 (EQ 1)

This particular version of Zipf’s law is based on a study of popularity fol-

lowed by video store rentals [17]. Equation 1 implies if video accesses follow the

Zipf pattern, then a logarithmic plot of video title ranking vs. their total number of

accesses should show a straight line. Figure 3.6 indicates this is not the case

although there is definitely an access imbalance - the top ten percent ranked

titles account for about 50% of all the accesses.
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3.4.4  Video Accesses By Machine

The bulk of the machine accesses (67.4%) were local i.e. originated from

the campus. Most of these local accesses (63.5%) came from three subnets:

cdt.luth.se (16.0% of total accesses), sm.luth.se (30.1%) and campus.luth.se

(30.8%). I also found that machine accesses exhibited a skewed pattern: the top

ten percent of the requesting machines accounted for about 59% of the total

requests.

3.4.5  Inter-access Arrival Times Distribution

In an attempt to detect any patterns in request arrival times, I plotted the

distribution of inter-access times of the entire request series. This is shown in

figure 3.7. More detail about the distribution of interarrival times less than or

equal to 100 seconds is given in figure 3.8. I found the median inter-arrival time
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to be 411 seconds. With the exception of the observation that time between

requests tend to be short, no other clear indications emerged from this plot.
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3.4.6  Partial Accesses

Not all of the playback sessions in the trace went all the way to comple-

tion. Given the assumption that a user GET request for a title that didn’t have a

subsequent matching STOP meant the user viewed that title all the way through,

I found that about 55% of all requests played the entire duration. Figure 3.9

summarizes the degree of movie playback (before stoppage) for the remaining

45% requests as percentage of movie duration. Most stoppages occurred dur-

ing the first 5% of the movie playback period.

3.4.7  Access Patterns Vs. Type of Title

The titles hosted by the mMOD server fell into two categories -- general

and educational. The former type was involved sort of entertainment or movie.

The latter category included recordings of course-lectures, meetings and semi-

nars. A total of seven titles (5% of the total number of titles) were available in the
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general section including “Waterworld” and “The Life Of Brian.” Overall, general

titles accounted for 12.3% of the total number of accesses. Table 3.1 breaks

down the types of videos accessed in the three subtraces. 

Additionally, I found that accesses to general titles tended to be evenly

distributed with time, whereas educational clips exhibited very high accesses

over a smaller period. For instance, the popularity of material associated with a

particular course would be likely to rise on the eve of homework assignments

and prelims but die down shortly thereafter. Figure 3.10 provides some exam-

ples of this trend. Acesses to “Waterworld” are spread out over the entire time

period covered by the trace. In contrast, accesses to “SMD074_980210” and

“SMD104_971028,” the former being a recording of a single lecture from a Dis-

tributed Multimedia course and the latter, an Object Oriented Programming lec-

ture, show considerable variation over a relatively short period of time.

3.4.8  Temporal Locality Analysis

Temporal locality refers to the notion of the same document being re-ref-

erenced frequently within short intervals. I used the standard LRU (Least

Recently Used) stack-depth analysis [3] of the trace to measure locality. In LRU

stack-depth analysis, when a title is initially referenced, it is placed on top of the

LRU stack (ie. position 1), pushing other documents down the stack by one

location. When the document is subsequently referenced, its current location in

the stack is recorded, and the document is moved back to the top of the stack,

pushing other documents down as necessary. After the entire log has been pro-

Table 3.1: Percentage of  Accesses Accounted By General Titles 

cdt campus sm

14.8% 14.0% 8.2%
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cessed in this fashion, temporal locality is indicated if the top few positions in the

stack account for the bulk of the cumulative references. Figure 3.11 shows the

analysis results. The top few positions in the stack account for a majority of

overall references, thus indicating that the data does indeed display high tempo-

ral behavior.

3.5  General Observations

From the analysis of file characteristics, I found that content creators took

advantage of the relatively high bandwidths available in order to create large

files with lengthy durations. On the other hand, the trace analysis showed that

viewers often accessed movies only partially. This observation, coupled with the

high temporal locality present in the trace, indicates some sort of video browsing
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pattern whereby a user might click on a title and let it run for a couple of minutes.

If interested, the user lets it run to the end or he/she might stop the title, start it

again from the beginning and then let it run to conclusion. If not interested, the

user simply stops the playback session. Additionally, I found that the category of

the movie also affected the type of reference pattern. Access to general titles

tended to be even over a long period of time, whereas educational title accesses

were more bursty over a shorter time period.

3.6  Related Work

In the absence of any prior surveys of video access over the web, closest

related work can be classified into roughly two types: examination of Web traffic

and video access analysis for video on demand systems. Web traffic investiga-

tions can deal with requests either emanating from a cluster of clients or directly

at the server itself. Mogul [39] and Kwan [30] have investigated access patterns

at specific servers. In addition to analyzing the underlying systems and network

behavior of the server under study, they also examined incoming HTTP

requests by looking at their interarrival times, variations with time, size and type

of files desired, and requesting domain type. The same core criteria (plus some

others) were used by Arlitt [7] to extract underlying patterns from a number of

server traces. Cunha et al [18] performed client side traffic work. They instru-

mented browsers at clusters of workstations to collect individual user access

traces, which they then collated and analyzed. In all of these studies, videos

accounted for a very small percentage (less than 1%) of overall requests. How-

ever, since the traffic data in these studies were all collected during 1994 and

1995 when the web presence of videos was insignificant, they do not present an

accurate picture of current video activity.
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Most recent video on demand models rely on results reported in two

studies: Chervenak [17] and Dan, Sitaram and Shahabuddin [19]. These analy-

ses examined statistics in magazines for video rentals and reports from video

store owners. Both studies concluded that the popularity distribution of video

titles could be fitted to a Zipfian distribution.
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Chapter 4

The Design of MiddleMan

This chapter presents the architecture of MiddleMan, a video caching

proxy server, as well as the concepts and assumptions behind its design. The

goal of MiddleMan is to cache videos close to clients and to intercept and ser-

vice video requests, thus reducing dependence on Internet latencies and web

server load. MiddleMan differs from existing proxy research in that it concen-

trates exclusively on video. Other approaches are optimized for dealing with

HTML documents and images. These media possess different properties than

video. Hence, these other approaches are unlikely to cache video data effec-

tively.

The design of MiddleMan can be divided into three parts: system compo-

nents, policies, and communication protocols. System components are the

building blocks of the system and their configurations. Policies dictate system

behavior such as cache replacement and response to failures in system compo-

nents. Communication protocols provide the means by which system compo-

nents communicate. 

A thorough understanding of VOW access patterns and file characteris-

tics is an essential first step prior to designing the system. In the absence of any

such publicly available work, much of the underlying assumptions behind Mid-

dleMan are drawn from the studies reported in the previous two chapters of this

thesis. The next section summarizes these findings.
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4.1  Trace Observations

Relevant observations from chapter 2 include:

1. Web video size: Videos are around 1 Mbytes in size, an order of magnitude 

larger than HTML documents which are usually sized around 1-2 Kbytes. 

Playback time is about a minute or less.

2. WORM nature: Web videos tend to follow the write-once-read-many principle.

Once a video has been placed online, chances are that it will stay there.

Hence, cache consistency is not a major issue in video caching systems.

Additionally, snapshots of the mMOD web server file system (discussed in

Chapter 3) at various time periods during the trace indicate that once a video

file is placed online, it tends to remain online.

3. High bandwidth requirements: A high percentage of web video material can-

not be downloaded and played back in real-time as current network/modem

bandwidths are not enough to meet their implicit playback requirements.

4. Growth: the number of videos on the web are growing at an almost exponen-

tial rate.

Chapter 3 yielded the following insights:

5. Future trends: videos are becoming larger as more network bandwidth

becomes available and low bitrate streaming protocols get deployed in video

distribution. With a high bandwidth network and H.261 based multicast archi-

tecture in place, the median size of files at the Lulea University video server

was 110 MBytes. Median duration was 77 minutes.

6. Inter-arrival times: the median interarrival time of requests for videos was

about 400 seconds. This indicates requests are infrequent compared to

HTML documents.
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7. Video browsing patterns: users like to view the initial part of videos in order to

determine if they are interested or not. If they like what they see, they con-

tinue watching. Otherwise, they stop.

8. Temporal Locality: accesses to videos exhibit strong temporal locality. If a

video has been accessed recently, chances are that it will be accessed again

soon.

Observations 3, 7 and 8 hint that a caching approach could yield rich div-

idends. The remaining lessons suggest some basic requirements for the initial

blueprint of MiddleMan:

• scalability: the capacity of the caching system must be able to keep pace with

the rise in VOW popularity (observation 4). It also must be also be expand-

able to serve more local clients.

• flexibility: it should be able to handle both files with sizes in the megabyte

range (observation 1) as well as the hundreds of megabyte range (observa-

tion 5).

• partial files: since users are likely to view only part of the video (observation

7), video files need not be stored in the local caching system in their entirety. 

• cache consistency is not a significant issue in the system design (observation

2). 

4.2  The Structure of MiddleMan

MiddleMan consists of two types of components: proxy servers and coor-

dinators. A typical configuration consists of a single coordinator and a number of

proxies running within a local area network. A proxy interfaces with users and
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manages video files. A coordinator keeps track of proxy contents and makes

cache replacement decisions for the entire system.

Proxies can run on LAN servers or user machines. Each proxy is respon-

sible for a) responding to client browser requests for video and b) managing a

certain amount of local disk space where the video data is cached. Ideally, a

proxy would run on every user machine in a domain, but this might be hard to

deploy. Hence, I assume proxies run on selected machines in the network. Each

proxy services a small collection of browser clients that have been configured to

forward their requests for video data to that particular proxy. 

 Microsoft and Netscape browsers can be configured to forward their

requests to proxies via the client auto proxy configuration system [89]. Accord-

ing to this system, when a browser is first launched, it automatically downloads

a Javascript [90] configuration document from its “home” web server. The docu-

ment outlines a policy where certain types of browser requests may be redi-

rected to certain proxies while others are left untouched. MiddleMan uses the

client auto proxy configuration system to redirect requests for video documents

to the proxy server

When a proxy receives a request to fetch a video, it contacts a coordina-

tor. If the title is present in the system, the coordinator returns a list of proxies

that store the data. Otherwise, the coordinator selects a collection of dispens-

able titles currently in the system and asks the querying proxy to fetch the

requested title from the web server and replace these dispensable files. Note

that a coordinator does not directly handle video data or user requests. Instead,

it keeps track of the data managed by each proxy and responds to proxy queries

for videos. 
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A number of issues are raised by this design:

1. How should the proxies be configured or arranged with respect to the coordi-

nators? The proxies could all contact the same coordinator or there could be 

a hierarchy of proxies and coordinators.

2. How should videos be stored? A video could be stored contiguously on a sin-

gle proxy or fragmented and saved over multiple proxies.

3. Given our knowledge of video browsing patterns, should the entire video be

stored? A possibility is to only save the initial portion of a video locally and

fetch the rest from the web server as necessary.

4. How do proxies and coordinators communicate? Variables include the nature

of messages exchanges and what underlying protocol (TCP or UDP for

instance) should be used to transmit the messages.

5. How should videos be replaced? In other words, what is the most effective

cache replacement policy?

6. How to share load across multiple proxies? The design problems include

defining a “proxy load” and deciding a cache replacement policy that mini-

mizes proxy load variations.

Section 4.3 of this chapter answers question 1 by further discussing the

system component aspects of MiddleMan. I address 2 and 3 by presenting the

relevant design policies in section 4.4. Question 4 refers to the system commu-

nication protocols, which I detail those in section 4.5. Section 4.6 summarizes

related work, and section 4.7 outlines topics, such as questions 5 and 6, that

require further investigation. 
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4.3  System Component Configuration

The first design question that must be answered is: how are proxies con-

figured with respect to the coordinator? MiddleMan is a collection of proxy serv-

ers running on user machines within a local area network. The proxies are

organized by a single coordinator. Together, they form a proxy cluster. Figure

4.1 shows an example cluster consisting of three proxies and a coordinator.

Since the proxies consult a coordinator for every request, its central nature

might make it a bottleneck. However, the relatively large inter-request arrival

times for video, and the fact that the coordinator does not transfer video data,

implies this is not a cause for concern.

A proxy cluster based system provides a number of advantages:

• latency reduction: communication and data transfers amongst the cluster 

components can exploit the high bandwidths of the local area network.

• high aggregate storage space: by running on user machines, proxies can 

take advantage of cheap disk space. For instance, if 10 machines within a

cluster managed 200 Mbytes each, total space available is 2 Gbytes. Five
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Figure 4.1: Proxy Cluster
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hundred machines on campus could then store about 100 Gbytes worth of

movies (all the videos that I located and analyzed in chapter 3).

• load reduction: distributing video files on multiple machines allows the load 

induced by video requests to be distributed over multiple machines. This is

better than a central server that services all local video requests and hence

becomes a system bottleneck.

• scalability: the capacity of the system can be expanded by adding more 

proxies. Globally, multiple clusters can be linked together by allowing indi-

vidual coordinators communicate as shown in figure 4.2.

The main disadvantages of this system is that the coordinator is the cen-

tral point of failure. In case of a coordinator crash, the system loses state. One

possible solution is the coordinator-cohort approach where the coordinator

maintains a backup coordinator. The coordinator keeps the cohort updated with

its current state so that, in the event of a crash, the cohort takes over. Since

building fault tolerant central servers is a well studied problem, I did not build a

fault tolerant coordinator. Nothing in the design of MiddleMan prevents making

the coordinator fault tolerant, however.

Figure 4.2: Inter-coordinator cooperation
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Proxy crashes are easier to circumvent. The coordinator, upon detecting

the failure, updates its own state by invalidating the files managed by the

crashed proxy. The coordinator also removes the locks on resources currently

held by the proxy.

The distributed nature of the MiddleMan components also complicates

video storage since files can be stored in any number of proxies. The next sec-

tion explores the issues in more detail.

4.4  Video Storage Policies

The next design question is how much of a video should be cached in

MiddleMan. I studied two policies: partial caching and full caching. In partial

caching, a video need not be stored in its entirety by MiddleMan. Only a portion

of it may be kept by the system. In full caching, MiddleMan deals with the entire

video, storing or replacing it entirely as necessary. The next two subsections

elaborate on each policy.

4.4.1  Partial Caching

As shown in chapter 3, users are far more likely to view the opening of a

movie than play it back until its end. Hence, unlike HTML documents, an entire

video document does not have to be present in the caching system for a request

to be satisfied. Based on this observation, MiddleMan incorporates the concept

of partial video caching. When the user requests a video in the cache, it is

served by sending to them the portion of the video locally present while obtain-

ing the remainder from the main WWW server and transparently passing it on to

the client. 
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In order for the partial video caching to work, video servers and stream-

ing protocols must allow random access. Fortunately, all major streaming proto-

cols and HTTP 1.1 [91] allow random access. 

MiddleMan fragments cached videos into equal sized file blocks in the

storage system, which allows the cached title to be spread across multiple prox-

ies. The coordinator is configured with the size of a file block. Proxies receive

the block size information from the coordinator and use it for reading, storing,

and merging pieces of video files.

Blocks at a proxy are addressed via block slots. Empty slots at a proxy

implies it has space available in multiples of block sizes. A full block slot indi-

cates a portion of a title. The proxy, however, does not keep track of the full/

empty status of its own block slots. It also has no knowledge about its block con-

tents. The coordinator fills blocks and determines block content on behalf of

each proxy. 

Representing video as an ordered sequence of file blocks simplifies the

architecture considerably. It provides a convenient mechanism for spreading

portions of a single title across multiple proxies, thus allowing for better load bal-

ancing, simplification of cache replacement and partial video implementation. If

a new title T1 needs to be brought into the cache, yet the entire system is full,

blocks allow MiddleMan to simply eliminate the end portions of an unpopular

title T2 on a block by block basis. Hence, instead of getting rid of T2 entirely, we

can have a portion of it present in case it is requested in the future. Similarly, T1

grows on a block by block basis, its ultimate size depending on how much of it is

played back by the user. 
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A possible problem with this method of fetching blocks from multiple

proxies and combining them into a contiguous stream might be due to inter-

block switching delays. This can cause interruptions in the data flow from the

proxy to the user. Delays may be caused by the latencies faced by the video

data receiving proxy when it is changing its source from one proxy to another.

Such switching delays can be eliminated via fetching data at a higher rate and

double buffering against latencies. 

4.4.2  Full Caching

To study the performance effects of partial caching, I analyzed another

storage policy, full caching. In full caching, a video file is cached in the system in

its entirety or not at all. Videos are still fragmented into blocks which can be

scattered over multiple proxies, but in contrast to partial caching, these blocks

are not independent entities. Instead, if a title is deleted, all the blocks associ-

ated with it are freed. Similarly, the coordinator allocates space for a new title by

reserving all the blocks necessary to hold the entire movie in advance. If suffi-

cient blocks cannot be found, the coordinator does not allow the title to be

cached.

4.5  Communication Protocols

In this section I describe the components of the system and their commu-

nication needs. I focus on four scenarios: initialization, cache misses, cache

hits, and request cancellations, leaving other possibilities such as proxy/cache

failures for future work.These four conditions and how both variations of the

MiddleMan architecture cope with all of them are detailed in the following sub-
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sections. I start with how these four scenarios are handled when MiddleMan

adopts the full caching storage policy as described in section 4.2.2.

4.5.1  Full Caching

Table 4.1 details all the message types used by the proxies to communi-

cate with the coordinator in response to the various situations. The initialization

scenario is the simplest to outline. Upon startup, the proxy locates the coordina-

tor and sends it an addProxy request alerting it to the existence of the proxy and

the space it manages. The coordinator then modifies its own data structures to

reflect the newly available free space. The proxy can be manually configured

with the actual location of the coordinator. Alternatively, the proxy can use the

auto proxy configuration system to download the location from the default local

web server. 

The other three cases are more involved. Figure 4.3 illustrates a typical

system that will be used in the remaining three cases. The example system con-

sists of a proxy cluster and W, a WWW server external to the LAN. No block are

currently cached by the system. The proxy cluster contains a coordinator C plus

proxies P1, P2, and P3 serving three client browsers B1, B2, and B3, respec-

tively. P1, P2, and P3 all have one empty block slot each, s1, s2, and s3. W hosts

a movie M that can be logically divided into two file blocks, M1 and M2. Stored

blocks are denoted by {proxy address, block slot}, where "proxy address" is the

IP address of the proxy and "block slot" is the slot of the referenced block. I now

present how the system reacts to the three scenarios (cache miss, cache hit,

and request cancellation) in the following subsections.
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Table 4.1: Full Caching Proxy-Coordinator Communication Synopsis

 Proxy 
Command Parameters Why Coordinator action

addProxy size of cache 
locally man-

aged by 
proxy

a proxy sends this 
message to register 
itself with the coordi-

nator

Adds the size to the list of free 
blocks. Returns ok if this was suc-

cessful

query movie url a proxy sends this 
message to the coor-
dinator after receiv-

ing a request from its 
client to fetch a movie

Returns no if this title is not 
present in the system. Otherwise, 

it returns a list of blocks corre-
sponding to the movie. The coordi-
nator locks these blocks to prevent 
deletion. The locks have timeouts 
in case of a proxy crash or some 

other mishap.

doneUrl movie url a proxy sends this 
message to the coor-
dinator after it is done 
reading all the blocks 

from a query 

Unlocks the blocks corresponding 
to this movie. 

reqSpace movie url, 
space 

requested

following a cache 
miss, a proxy 

requests a certain 
number of free blocks 
from the coordinator. 
The total size of the 
blocks requested is 

greater than or equal 
to the size of the 

movie.

If sufficient free space is not avail-
able, it runs a cache replacement 

algorithm which deletes entire 
movies until enough space has 

been vacated. Returns the list of 
blocks. On the other hand, if suffi-
cient space cannot be freed, the 
coordinator simply returns no.

doneCreat-
ingUrl

movie url a proxy notifies the 
coordinator that it has 
saved a copy of the 

movie at the locations 
specified by the coor-
dinator after the reqS-

pace request

Coordinator marks the movie as 
being created.

cant-
WriteUrl

movie url the proxy cannot 
complete caching the 
movie since the cli-
ent has lost interest 
and cancelled the 

movie fetch.

If no other proxies are currently 
viewing the same movie, it returns 
stop to the proxy and, internally, it 
returns the blocks allocated to this 
movie to the list of free blocks. If 
other proxies are currently view-
ing the movie, the coordinator 
returns cont.
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4.5.1.1  Cache Miss

Figure 4.4 provides a timeline of the events that occur when a browser B1

requests a movie M that is not cached. When B1 requests M, proxy P1 performs

two actions simultaneously. First, it connects to the web server W to request M.

Second, it contacts coordinator C to ask whether M is cached locally. By con-

tacting W and C simultaneously, P1 ensures that MiddleMan will not add any

extra time in delivering M to B1. Since M is not cached, C replies in the negative.

Meanwhile, the connection to W has been established and, from the initial infor-

mation supplied in the HTTP header, P1 determines the size of M. 

P1 sends a reqSpace message to C, to request space where it can cache

M. If sufficient free space is available C replies with a list of blocks (s2, s3). P1

begins downloading M from W which it streams to both B1 and s2 at P2. When

s2 is full, P1 streams the remainder of M to s3 at P3. When playback is complete,

P1 notifies C that M has been stored. Figure 4.5 shows the state of the system

after the entire transaction is complete.

C
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If the coordinator is unable to allocate sufficient space for M, the proxy

simply fetches the data from W and passes it on B1. Space might not be avail-

able for two reasons:

• the size of the title exceeds the capacity of the entire caching system

• too many cached items are currently locked by other users and hence cannot

be deleted to free sufficient space.

In the event of coordinator delay in responding to either the query or

reqSpace requests, P1 commences fetching M and streams it to both B1 and a

local buffer. After C has replied, P1 saves the buffer in the block slots specified

by C before storing the portion of M currently being streamed to B1. 
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Figure 4.4: Timeline in the event of a cache miss
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4.5.1.2  Cache Hit

Assuming the system is in the state shown in figure 4.5, and B1 requests

M again, figure 4.6 provides a timeline of the sequence of events that transpire.

This time, after P1 has queried both W and C, the latter replies that it has a

cached copy of M. P1 closes its connection with W and fetches M from the local

caching system. This involves obtaining blocks m1 from {P2, s2} and m2 from

{P3, s 3} and seamlessly passing them on as a continuous stream to B1. 

4.5.1.3  Request Cancellation

Broken requests are a side-effect of how users browse video - they com-

mence playback of a title and decide to stop if they do not like what they see.

Halting the playback results in the browser cancelling its proxy connection while

a cache hit or miss type transaction is taking place. 

If the title is being fetched from the local cache via a cache hit, dealing

with a cancellation is relatively simple. The proxy, after detecting the closed

browser channel, simply shuts down the other connections associated with the
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request and notifies the coordinator, via a doneUrl message, that it is done with

the title. 

If the request cancellation occurs during a cache miss, complications

may arise depending on whether other users in the system are also currently

accessing the same file. Figure 4.7 illustrates a cache miss situation with only a

single user involved. While viewing the second half of the movie, B1 decides to

cancel its request. P1 detects this and notifies the coordinator via a cantWriteUrl

message. As no other users are currently accessing this video, the coordinator

asks P1 to close the remaining connections. Even though block m1 has already

been copied at P2, the coordinator deletes all references to M and adds {P2,s2}
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Figure 4.6: Timeline in the event of a cache hit, full caching scenario
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to the list of free blocks. {P2,s2} is added to the free list because, under the full

caching policy, only entire titles are saved. 

Figure 4.8 presents a more complicated scenario where both B1 and B2

are concurrently interested in M (shown in part (a) of 4.8). B1 decides to cancel

during the second half of the movie playback. Once again, P1 detects the closed

connection and notifies the coordinator. However, since B2 is still interested, the

coordinator asks P1 to continue fetching the file and save it locally as shown in

figure 4.8, part (b). Hence, the final system state is the same as that of figure

4.5.
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Figure 4.7: Single user request cancellation: full caching 
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A side effect that emerges after the request cancellation in the previous

situation is that P1 bears the additional load of fetching from W and streaming to
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Figure 4.8: Multiple user request cancellation: full caching 
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P2 and P3 even though B1 is no longer viewing M. Handing off the movie fetch

from P1 to P2 would eliminate the burden on P1. However, this approach is not

implemented as it would further complicate the protocol. 

4.5.2  Partial Caching

We now consider the protocol required by MiddleMan to handle the same

four scenarios when utilizing the partial caching storage policy. Table 4.2 out-

lines the revised set of messages in the protocol. Partial caching necessitates

several changes to the original set of MiddleMan protocols. One difference is

that under full caching, proxy-coordinator communication only occurred once

per movie. Under partial caching, the proxy contacts the coordinator for each

block in a movie. The modified exchanges are illustrated in figure 4.9, which reit-
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Figure 4.9: Cache miss: partial caching policy
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erates the cache miss scenario, given the same initial system state as in figure

4.3. The system state at the end of this transaction remains the same as in fig-

ure 4.5. Similarly, figure 4.10 shows the events occurring in a cache hit in the

new system. Note the increase in proxy-coordinator traffic.

Even though the number of proxy-coordinator messages increases, the

bandwidth consumed is insignificant compared to that required by the video

data transfer. Consider a video file size of 100 Mbytes and a block size of 1

Mbyte. If a proxy-coordinator communication costs 512 byes, the total message

transfer cost is about 50 Kbytes or 0.05% of the cost of transferring the video

data. 
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Figure 4.10: Cache hit timeline: partial caching
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Note that the design outlined above is still susceptible to coordinator

delays. To address this issue, I utilize the double buffer approach outlined in

section 4.3.1.1. 

Figure 4.11 shows how the single user cancellation scenario is affected

by the modified policies. The eventual system state, as given figure 4.12, is dif-

ferent from the outcome of the full caching policy. Under full caching, nothing

Table 4.2: Partial Video Proxy-Coordinator Communication Synopsis

Command from 
Proxy Parameters Why/Notes Coordinator action

addProxy size of cache 
locally managed 

by proxy

same as before same

queryBlk movie url u, block 
number k

a proxy queries the 
coordinator whether 
the kth constituent 
block of movie u is 

cached

 If block k is available 
locally, it returns the 

block address. Other-
wise, it finds a free 

block by running the 
cache replacement 

algorithm and returns 
the block address. 

The coordinator also 
locks the block

doneBlk movie url u, block 
number k

a proxy sends this to 
the coordinator after 
it is done reading a 

block from a success-
ful queryBlk 

Unlocks the block.

doneCreatingBlk movie url u, block 
number k

lets the coordinator 
know it has saved a 

block after the query-
Blk request that 

caused a cache miss.

 marks the block as 
being created.

cantWriteBlk movie url u, block 
number k

the proxy can’t com-
plete writing this 

block since the client 
has lost interest and 
cancelled the movie 

fetch.

If no other proxies are 
currently viewing the 
same block, it returns 
stop to the proxy and, 
internally, it returns 
the block to the list of 
free blocks. If other 
proxies are currently 
viewing the block, the 
coordinator returns 
cont.
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would be kept locally. However, the final system state under partial caching has

block m1 of M cached in {P2, s2}. Hence, if M is requested again and s2 has not

already been allocated to some other title, the request can still be partially ful-

filled by the system. If multiple users concurrently request M, the eventual out-

come of a request cancellation by B1 is similar to that of full caching policy i.e.

P1 completes caching M. 

    W B1 P1 C P2 P3

queryBlk M,1

Figure 4.11: Cache miss request cancellation: partial caching
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4.6  Related Work

Current research on proxy caching has concentrated on caching HTML

documents and images [1, 9, 31]. Little prior work has been done on video proxy

caching. Most of the current proxy caching work is not applicable to MiddleMan

for the following reasons: 

• Document sizes: web proxy designs and algorithms are optimized for HTML

documents and images, which are generally much smaller than web video

files [61, 10]. Video files are undesirable in these systems since if they were

to be stored in the cache, they would potentially displace many HTML files.

As HTML files are likely to be referenced much more frequently than video

files, cache hit rates would suffer.

• Proxy architectures: MiddleMan has an unique architecture. The proxy archi-

tecture most frequently suggested is a centralized server such as the

Netscape proxy server [32]. As discussed in section 4.3, this is not an efficient

design for a video proxy server. 

C
P1

B1 P2

B2
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B3

W

Figure 4.12: Final state after request cancellation
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Squid or Harvest [16, 92] use a hierarchical design based a tree structure. In

these systems, if neighbors of a proxy cannot satisfy a request, the misses

propagate upwards through the hierarchy. The miss and propagation combi-

nation can add significant latency to final response. Additionally, parents and

children caches can potentially store the same files, leading to inefficient use

of cache storage space. Hence, such designs have significant drawbacks for

caching video. 

• Browsing patterns: MiddleMan is optimized for video browsing patterns. It

supports the notion of partial caching - only portions of video files may be

present in the system. Such an approach is not acceptable for HTML docu-

ments or images.

• Cache coherence: due to the WORM nature of the vast majority of web vid-

eos, this is not a factor for video proxy caches. However, other types of web

documents experience high turnover rates and standard proxy caches must

deal seriously with cache consistency issues.

The work by Brubeck and Rowe [11] closest to ours. They introduce the

concept of multiple video servers that can be accessed via the web. These

video servers manage other tertiary storage systems - popular movies are

cached on their local disks. They also pioneer the concept of a movie being

comprised of media objects scattered over proxy servers. Tewari et al [58]

present a resource based caching algorithm for web proxies and servers that is

able to handle a variety of object types based on their size and bandwidth

requirements. However, they still assume a central non-cooperating architec-

ture. 
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4.7  Further Work

The design of MiddleMan can be divided into three parts: system compo-

nents, policies, and communication protocols. This chapter has presented the

basic system components and communication protocols. The remaining infor-

mation, namely the component parameters (e.g., cache size and block size) and

the system policies (caching algorithms and load balancing) are studied in the

next chapter.
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Chapter 5 

The Analysis of MiddleMan

In this chapter, I investigate the performance of MiddleMan via extensive

simulations. In particular, I look at the performance effects, both in terms of

cache hit rates and load balancing among proxies, of varying the cache replace-

ment algorithm, the global cache size, and the number of proxies in the system.

I selected the simulation approach for evaluating MiddleMan because it

offers several advantages over theoretical techniques such as queueing mod-

els. These analytical approaches have difficulty modeling dynamic behavior

such as user request cancellations. Additionally, as chapter 3 illustrates,

accesses to video titles and inter-request arrival times do not follow the assump-

tions common in probabilistic analyses of video accesses. Moreover, the sheer

number of individual components within the MiddleMan architecture such as

proxies and file blocks, and their distributed locations, further complicate a theo-

retical analysis. Hence, simulations offer a better method of studying the archi-

tecture and provide insights into the dynamics of protocols that queuing analysis

does not. 

With the exception of section 1, which describes MiddleSim, the simula-

tor used to analyze MiddleMan, the remainder of this chapter is structured as a

series of analyses into the various properties of the MiddleMan architecture.

Section 5.2 explores cache replacement policies. Section 5.4 investigates load
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balancing schemes for MiddleMan. Section 5.5 discusses the performance

effects of altering the block size. I summarize overall findings in section 5.5.

5.1  MiddleSim

MiddleSim is the simulator I developed to evaluate the performance of

cache replacement policies and load balancing schemes in the MiddleMan

architecture. The final version of the simulator was about 5000 lines of Java

code. The design of MiddleSim went through several iterations. I provide a brief

history of this evolution in section 5.2.1, outline the main MiddleSim assump-

tions in section 5.2.2, describe the software architecture in section 5.2.3, sketch

the inputs and outputs of the simulator in section 5.2.4, and finally, present the

techniques I used for verifying MiddleSim in section 5.2.5.

5.1.1  History

Initially, I built a full-caching prototype of MiddleMan in order to demon-

strate proof of concept and achieve a better understanding of the design space.

The prototype was built as an extension of Jigsaw [93], a freely available web

server written entirely in Java [94]. The coordinator was a separate Java pro-

gram. The experiences gained from the prototype led to the creation of a simula-

tion environment, MiddleSim, that could be used to investigate various

MiddleMan scenarios. The current version of MiddleSim is written entirely in

plain Java. In the next section, I describe the assumptions integrated into this

version of MiddleSim.
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5.1.2   Assumptions   

Picking the right set of assumptions for a simulator can be a tricky affair.

Wrong assumptions can lead to invalid results. Too few assumptions can yield

unusable simulation results, while too many complicates implementation and

belies the ultimate purpose of a simulator, which is to explore design trade-offs.

Bearing this in mind, MiddleSim models an environment where network condi-

tions are simplified and modes of failures restricted.

5.1.2.1  Network/Message Passing 

MiddleSim makes no specific assumptions about the underlying network

or transport protocols used to transmit video, merely that video is streamed at a

steady rate. In essence, MiddleSim simulates the timely flow of video data from

one MiddleMan component to another. Additionally, MiddleSim deems the cost

of non-video communications, such as those between the proxies and the coor-

dinator, to be insignificant compared to the cost of video communication. For

example, assuming a block size of 1 Mbytes and a file rate of 100 Kbytes/sec, a

proxy only needs to contact the coordinator every 10 seconds. Assuming a

proxy-coordinator message transaction size of 100 bytes, the proxy will total 200

bytes for messages processed before and after a video block. In other words,

for every block the proxy-coordinator communication costs account for 0.02% of

all bytes processed by a proxy. Hence, given the small ratio of non-video to

video communication costs, I constrain the proxy-side non-video communication

costs to be insignificant. The coordinator, on the other hand, solely processes

protocol related messages from proxies. Given that processing a single mes-

sage essentially involves coordinator data structure manipulation, I assume its

cost to be negligible. I also ignore the aggregate costs of serving multiple mes-

sages for the following reasons:
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• a proxy only generates coordinator messages at relatively large intervals

• trace analysis shows that only a small number of proxies are active i.e. serv-

ing video streams at any given time

Hence, the total number of requests processed per second by the coordi-

nator is likely to be small. Thus, I ignore their aggregate processing costs.

5.1.2.2  Failure Model

MiddleSim assumes reliable network connections and machines. The

only failure simulated is that of clients cancelling their requests for videos.

5.1.3   Architecture

To comprehend the MiddleSim architecture one must understand the

software structure of the simulator, its inputs and outputs, its run-time behavior,

how it is verified, and finally, the simulation parameters. These are described in

the following subsections.

5.1.3.1   Software Architecture

MiddleSim is composed of a number of modules which approximate the

functionality of their real-life counterparts. Figure 5.1 illustrates all the compo-

nents and how they integrate into MiddleSim.

• The BasicServer object emulates a web server via indexing and serving a list

of files. 

• The ProxyServer object can both serve files to, and receive files from, other

ProxyServers. 
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• The Coordinator object keeps track of the state of all proxy servers and ongo-

ing data transactions, allocates blocks on proxy servers, and runs the cache

replacement algorithm as appropriate.

• The Overseer module manages user requests, directing them to the appropri-

ate proxy servers as necessary. It also manages the central event loop of the

simulator. 

Communication between the modules is accomplished via two mecha-

nisms, depending on whether the exchange involves transfer of information or

video data. All control communications are simulated via procedure calls from

one module to another and hence occur instantaneously, per MiddleSim

BS

PS

PS

Overseer

PSBS

Input
Tracefile

Coordinator

Writer

Reader

BasicServer ProxyServer

Connection

Non video communication

MiddleSim

0 GET Waterd.msim

10 GET Firoze.msim

…..

Figure 5.1: MiddleSim Architecture
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assumptions. Video data is transferred via Connection objects, which simulate

and track data flow. Reading and writing data to and from the connection is sim-

ulated by Reader and Writer objects. These objects track how many bytes to

transfer per second over the connection, the size of the data remaining, and

when to close the connection. Reader and Writer objects are used by higher

order objects, such as the BasicServer, ProxyServer and Overseer, to manage

their connections. 

In MiddleMan, a block is the basic unit for data transfer between compo-

nents. This policy is implemented in MiddleSim via the exchange of FileBlock

objects. A connection is responsible for transferring a block of data between the

reader and the writer. The block transfer rate depends on the original rate of the

video file that the block represents. 

MiddleMan also allows two different video storage policies, full and par-

tial, that determine how the component blocks of a video file are treated in the

event of a fetch, miss, or request cancellation. Testing both policies involved

creating two different versions of MiddleSim. The core modules remained the

same in both cases. However, the control protocols were different.

5.1.3.2  Inputs and Outputs

MiddleSim is a discrete-event trace driven [29] simulator. In particular, the

OverSeer uses traces from the mMOD project [44], as described in Chapter 3, in

order to trigger user request and cancellation events. The other input to Mid-

dleSim is a text file containing a list of titles that are accessed in the input trace,

including their sizes and durations. This list is used to initialize the BasicServer

object in MiddleSim. The file characteristics are used to calculate the mean
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transfer rate of that file. The mean rate then determines the speed of data trans-

fer in all transactions involving that particular file.

During a trace execution, all data transfers between components via con-

nections are logged. After a run, the simulator outputs the number of bytes

accessed from the Web server, the total number of bytes transacted in the sys-

tem, the total number of bytes exchanged between the proxies, the bytes served

by each proxy, and other statistical data. Of particular interest is the byte hit rate,

which is the percentage of the ratio of the bytes accessed locally to the total

data accessed by all the users in the system, and the proxy load information,

which indicates system balance. 

5.1.4   Runtime Behavior

After the web server and all the proxies have been initialized, the Over-

seer orchestrates the runtime behavior of the simulator by entering an event

loop. Loop events may arrive from the queue of trace events, from the list of cur-

rent connections managed by the proxies, the web server, or the Overseer itself.

The minimum unit of time within the simulator is one second. All non-data

communications are assumed to occur within this timespan. However, only one

seconds worth of video data is transferred over a connection during this time.

The simulator executes until all trace events have been exhausted and there are

no current connections remaining.

The pseudocode for the event loop is as follows:
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while (true) {
topEvent = traceQ.peek ();
if (topEvent!= nil) {

if (topEvent.triggerTime == currentTime) { 
 // do nothing  
} else {

   if no other events on any queue (i.e. simulator is idle)      
 advance system clock to next trace event
}

 topEvent = traceQ.deq ();  
if (topEvent.eventType == GET)        

launch a local connection to a proxy on behalf of a user  
else if (topEvent.eventType == STOP)        

stop a local connection      
} else {

// no more events on the queue 
if no other events on any queue i.e. simulator is idle  

print summary statistics    
exit simulator          

}

       for all the proxies p 
 process all the current connections on p

      process all our current connections
      update stats for all the proxies
      advance current time by one second
}      

5.1.5  Verifying MiddleSim

I verified the functioning of MiddleSim via two approaches, null tests and

sample traces. Null tests are simple worst case scenarios designed to test basic

proxy caching behavior. One such test involves the generation of video requests

in strict round robin fashion and varying the size of the cache. If the cache

capacity is less than the total size of the files at the main WWW server, a round

robin sequence of cache requests will generate no hits. For instance, consider a

WWW server that serves three files, m1, m2, and m3, and a video cache that has

a total capacity less than the size of m1, m2, and m3. If the cache receives a
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series of requests in the sequence {r1, r2, r3, r1, r2, r3...} where request r1 is

intended for m1, r2 is for m2, and so on, then no file is kept long enough in the

cache for a hit to occur. Now, if the capacity of the cache is increased to greater

than or equal to the size of m1, m2, and m3, then the cache is able to store all

the files and the hit rate rises to the theoretical maximum.

In addition to the null tests, I also generated sample traces with known

results in order to manually verify the functioning of MiddleSim. Finally, I incor-

porated a number of sanity checks into the simulator responsible for tracking

conditions such as the number of bytes being transferred over a connection. If

these checkpoints detected any anomalous behavior, they would either output

an error message or halt the simulation.

5.1.6   Simulator Variables

A number of MiddleSim parameters can be varied prior to starting a sim-

ulation run. These include:

• the cache size of each proxy,

• the size of a file block,

• the mapping - a number of users can be mapped to the same proxy through-

out the run. Mapping allows us to maintain the same number of proxies

across multiple traces each of whom has a different number of machines gen-

erating requests, and

• the cache replacement policy

In the subsequent sections, I investigate the effects of varying these

parameters on the simulator output, focusing particularly on the cache replace-

ment policies.
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5.2  Cache Replacement Algorithm Analysis

My first set of experiments focused on the effectiveness of various

replacement algorithms. I use the byte hit rate (BHR) metric to evaluate the per-

formance of the various approaches. The byte hit rate (BHR) of a simulation run

is defined as:

BHR = (total bytes served from the cache)/(total bytes read by all clients) (EQ 2)

A BHR close to 1 implies good performance since most of the bytes

requested by the users are served from the local cache.

To run this experiment, the other simulator parameters must be con-

strained to reasonable values. I describe these values before providing more

detail on the caching algorithms.

5.2.1  Mapping

In order to effectively compare between the three traces from Chapter 3, I

set the total number of proxies in the system to 44 for each simulator run,

regardless of input trace. For the first trace, cdt, this involved a simple one-to-

one mapping of 44 user machines to 44 proxies such that machine0 always

sends its request to proxy0, machine1 to proxy1 and so on. The other two traces,

campus and sm, required 97 and 110 machines respectively, to direct their

requests to 44 proxies. Here, I constrained the mapping so that in addition to

machine0 always placing its request with proxy0, machine1 to proxy1, machine44

would contact proxy0, machine45 to proxy1 and so on.



95

5.2.2  File Block Size

I fixed the file block size at 1 Mbyte. This value allows MiddleMan to eas-

ily store both the relatively small web video files analyzed in chapter 3 and the

much larger video recordings analyzed in chapter 4. Files of the latter type have

much lower bitrates than web video (median bitrate of 150 kbps as opposed to

700 kbps for web video). Hence, in the partial storage case, a file block from a

video with bitrate of 150 kbps is likely to provide a proxy with a gap of about a

minute before the proxy has to contact the Coordinator again. Such a long inter-

val reduces the load on the Coordinator, especially if it is involved with a number

of simultaneous connections.

5.2.3  Proxy Cache Size

The aggregate size of all the files stored by the WWW server is about

15.7 GBytes. The total size of the proxy caches can be a small fraction of this

total. I selected three proxy cache size configurations: the first allocated 12

Mbytes of cache space to each proxy for a total of 44*12 or 528 Mbytes of global

cache storage (about 3.3% of the total size of all the video files). The second

configuration allowed 25 Mbytes * 44 or a global cache size of 1.07 GBytes

(about 6.8% of total file size) and the third configuration provided 50 Mbytes per

proxy for a total of 2.14 GBytes or 13.7% of total file size.

5.2.4  Cache Replacement Policies

I initially investigated three basic cache replacement policies -- Least

Recently Used (LRU) [53], Least Frequently Used (LFU) [53], and First In First

Out (FIFO) [53]. To compare the effectiveness of these algorithms, I imple-

mented two other approaches, Perfect and Infinite. “Perfect” implements an
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ideal cache replacement mechanism [53] that uses knowledge of the future to

replace the cache block that will not be used for the longest time. It can be

shown that, given a finite cache size, this algorithm is optimal. “Infinite” assumes

a cache configuration with space greater than the aggregate size of all the video

files. Running the simulator with this configuration yields the greatest cache hit

rate possible, regardless of the cache replacement algorithm used since no data

is ever removed from the cache.

In addition to the basic algorithms, I examined other replacement poli-

cies. Of these, I report on LRU-k and histLRUpick. LRU-k [41] maintains a his-

tory of the previous k accesses to each title in the cache. The k-distance of a

title at a certain time is defined as the difference between the current time and

the time at which the kth access was made to that title. LRU-k chooses to

replace the title with the largest k-distance. It resolves ties by picking the title

which has been referenced least recently, i.e., running the LRU algorithm on the

tied candidates. LRU itself is a special case of LRU-k where k is 1. 

HistLRUpick runs LRU-2, LRU-3, and LRU-4. Ties are resolved by pick-

ing the block that is managed by the least loaded proxy. The criteria for choosing

the least loaded proxy is presented in section 5.3 (the HistLoad metric).

5.2.5  Results and Discussion

Table 5.1 summarizes the results of running the simulations in both the

full and partial cases. The following trends emerge from the investigation:

• The hit rate in the partial caching is always higher than in full caching regard-

less of trace or replacement policy. In the full storage policy, a file being

loaded into the cache will be completely deleted if the request is cancelled.
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Hence, if the file is requested again, it will have to be re-loaded into the

cache. In the partial approach, the portion of the file read into the cache prior

to the cancellation (up to the file block boundary) would be left untouched,

resulting in a cache hit if the file is requested again.

• Byte hit rates in the sm trace are slightly higher than their cdt or campus

counterparts. Further investigation of the sm trace showed that it had higher

temporal locality than the other two traces, accounting for the better perfor-

mance.

Table 5.1: Byte Hit Rates Under Various System Configurations

Trace cdt campus sm

Caching Pol-
icy

Partial Full Partial Full Partial Full

Configuration 44 machines * 12 Mbytes (3.39%)

Perfect 48.78% 34.80% 53.01% 35.46% 61.82% 53.45%

LRU 42.95% 31.44% 49.64% 33.64% 57.76% 50.80%

LFU 43.84% 32.28% 49.03% 33.96% 57.19% 50.88%

FIFO 39.90% 31.19% 47.56% 33.39% 55.34% 50.80%

LRU-3 44.89% 31.71% 49.34% 33.79% 58.74% 51.62%

histLRUpick 44.58% 50.07% 58.85%

Configuration 44 machines * 25 Mbytes (6.8%)

Perfect 67.64% 56.38% 70.99% 56.98% 75.07% 68.56%

LRU 55.15% 49.86% 61.88% 52.01% 63.57% 61.97%

LFU 59.82% 51.97% 63.90% 50.89% 64.44% 63.02%

FIFO 50.38% 48.90% 57.89% 48.92% 63.97% 62.27%

LRU-3 59.59% 52.01% 64.30% 52.26% 70.13% 64.16%

histLRUpick 60.10% 64.77% 70.05%

Configuration 44 machines * 50 Mbytes (13.7%)

Perfect 81.44% 78.76% 86.19% 83.04% 86.17% 84.64%

LRU 65.33% 61.53% 76.33% 66.61% 74.15% 71.44%

LFU 73.79% 66.34% 75.47% 71.07% 76.27% 74.05%

FIFO 64.87% 58.82% 69.85% 60.91% 67.86% 70.16%

LRU-3 76.67% 72.93% 81.98% 77.14% 80.97% 77.30%

histLRUpick 76.05% 82.61% 81.40%

Configuration Infinite

Infinite  86.83% 85.71% 91.90% 90.98% 92.52% 92.03%
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• The difference between full and partial hit rates is more pronounced with

lower global cache sizes because the full policy becomes ineffective when the

video file size is greater than available cache space. For example, in the

44*12 scenario, video files larger than 528 Mbytes cannot be cached at all

using the full policy. In such cases, a portion of the video file can be cached

under the partial policy, resulting in higher hit rates.

• Larger global cache sizes increase the overall hit rate. As the “perfect” run for

the 44*50M scenario indicates, it is possible to approach the maximum hit

rate while employing a global cache size that is only 13.7% of the total file

size.

• The basic cache replacement algorithms do not perform well when cache

sizes grow larger. However, when the global cache space is small, the differ-

ence between the replacement policies and “perfect” is less pronounced. This

indicates overall cache size is more of a barrier to performance than replace-

ment policies when the cache size is small. As cache sizes grow, LFU gener-

ally provides the best performance, but there is still a sizeable gap between

LFU and “perfect,” suggesting further room for improvement.

• LRU-k1 improves byte hit rates significantly over LRU at large cache sizes.

The better results can be attributed to the ability of LRU-k to exploit temporal

locality better than the other caching policies. Examination of the traces

revealed that user requests for a particular file tend to arrive at the web server

in clusters. By saving the last k references and choosing on basis of the k-th

reference, LRU-k ensures that movies which have been referenced multiple

times recently are less likely to be removed from the cache since they will

1 In table 5.1, LRU-3 is explicitly shown but the performances of LRU-2, LRU-3 and LRU-4 are comparable.
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have smaller k-distances. Since these same movies will most probably be ref-

erenced soon in the future, LRU-k can achieve high hit rates.

5.2.6  Other Algorithms Investigated

In addition to the algorithms presented in this analysis, I also investigated

some others, notably LP-alpha and variations on LRU-k. LP-alpha [12] is a

hybrid of LRU and LFU. Variations on LRU-k included:

• BalLRUk is a variation on LRU-k where ties between candidates for block

replacement are broken by picking the block managed by the least loaded

proxy.

• LRUvark builds on balLRU-k. For a given value of k, LRUvark runs balLRU-k,

balLRU-k+1 and balLRU-k+2 to obtain three candidates from which it picks

the block managed by the least loaded proxy.

These variations do not perform as consistently well as HistLRUpick,

hence, I do not report their results. 

5.3  Load Balancing Analysis

Since MiddleMan is a distributed system handling large volumes of data,

it is important to examine how well it is able to balance load across multiple

proxies. In the previous section, we saw that the BHR of histLRU is within 3-8%

of an optimal policy. In this section, I explore the load balancing properties of the

various caching algorithm.  I only report the results for histLRU and LRU, since

LFU, FIFO, LRU-k, balLRUk, LRUvark, and LP-alpha  are similar to LRU.

My initial study of load balance among proxies revealed tremendous load

disparities regardless of caching policy. Upon reflection, it became clear that in
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MiddleMan, the load on a proxy is due to two types of activities: 1) servicing its

clients and 2) servicing other proxies. 

It is not possible to regulate activities of type 1, since the best way of

doing so requires a client with a request to somehow identify the least loaded

proxy in the system and contact it, as opposed to the current scheme where the

client has a designated proxy which it contacts with all requests. Implementing

such a redirection mechanism would drastically complicate the architecture of

MiddleMan and increase the delay for servicing user requests. On the other

hand, the load due to type 2 activities can be better controlled by using mecha-

nisms that carefully select the proxies where blocks should be replaced or

accessed. Since the current MiddleMan architecture does not distinguish

between the two load types, some proxies are overused for type 1 activities and

thus underutilized for type 2 activities. To address these issues, I made an archi-

tectural modification to MiddleMan that I describe in the next section.

5.3.1  MiddleMan Architectural Modification

The key alteration to MiddleMan involves the creation of two different

types of proxies: local and storage proxies. Local proxies run on the same

machine and are responsible for answering client requests. They do not store

any data and are functionally similar to browser plug-ins. Storage proxies do not

directly service client requests, they just store data blocks. Storage proxies can

be located anywhere on the local area network. The MiddleMan communication

protocol remains the same -- the coordinator merely respects the type of each of

its proxies in making decisions. Figure 5.2 shows how the new components of

MiddleMan might look in one configuration.
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In the revised architecture, I focus on load balancing between storage

proxies since the load on the local proxies depends entirely on the activity of the

clients they serve. I measured proxy load for using the following formula:

histLoad(P) = 0.5*(LP/L) + 0.3*(RmaxP/Rmax) + 0.2*(CmaxP/Cmax) (EQ 3)

where LP is the number of bytes that have passed through proxy P in the past

hour, L is the total number of bytes that have passed through the entire system,

CmaxP is the peak number of connections on P in the past hour, Cmax is the total

peak number of connections on all the proxies, RmaxP is the peak bandwidth

used by these connections on P, and Rmax is the aggregate peak rate of all prox-

ies in the system within the past hour. The histLoad metric calculates the load

on a particular proxy relative to its counterparts, hence LP, CmaxP, and RmaxP are

normalized by the aggregate values L, Cmax, and Rmax, which are computed

over all of the proxies. The weighting for the individual terms in the equation are

empirical and give maximum emphasis to the recent number of bytes that

passed through the proxy since ultimately, the goal is to minimize the variations

in byte traffic of the individual proxies within a cluster. The instantaneous rates
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and connection terms are given less precedence in the load measure but are

included, since it is also desirable to detect and prevent sudden fluctuations.

In order to test the modifications, I used a revised version of MiddleSim to

evaluate LRU and histLRUpick, which uses the HistLoad metric. The former pro-

vides an example of the load imbalance typically seen when standard cache

replacement algorithms are used, whereas the latter algorithm was shown by

the previous investigations to be effective and was designed to balance the

proxy load. I maintained the block size to be 1 Mbyte and constrained the global

cache size to 44*50 Mbytes overall with 44 storage proxies serving 50 Mbytes

each. I kept this global size since it achieved the highest byte hit rate of all the

configurations tested and hence maximized inter-proxy activity. I also investi-

gated the effect of reducing the number of proxies (but increasing the proxy size

proportionately) on individual proxy load, evaluating the 22*100 Mbyte and

11*200 Mbyte configurations. I report my findings in the next section.

5.3.2  Results and Discussion

In order to view dynamic performance of MiddleMan, I plotted the tempo-

ral variations of certain system states for each cache configuration. The param-

eters displayed were:

• Proxy Connection: graphs the number of connections currently in the proxy

system together with the max connection, the maximum number of connec-

tions currently at a proxy. Max connection is plotted on the negative axis for

ease of comparison with the total number of connections in the system.

Essentially, this plot indicates the current load imbalance. A well balanced

proxy system will have a relatively small maximum connection, even if the

total number of connections in the system is high. I define a well balanced
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system as one that evenly distributes load across proxies. At any given time,

for example, the busy proxies in such a system will have similar loads.

• Cache Rate: A figure of this type compares the total rate of all the user con-

nections served by the proxies and the WWW server against the bandwidth of

the connections served by the proxies only. Essentially, a cache rate figure

illustrates how well the cache performs with time. The system performs well if

the cache bandwidth is close to the total bandwidth.

I utilize these metrics to investigate the dynamic cache performance, load

behavior, and the effects of reducing the number of proxies in the MiddleMan

architecture. I report on these analyses in the next three subsections.

5.3.2.1  Dynamic Cache Performance

Figures 5.3 and 5.4 graph the performance of the proxy cache with time

for the cdt trace2. Total bandwidth of the files served by the system at any point

in time is given by the black regions in the plot. The gray areas show the band-

width served from the caches. A figure where the gray regions dominated over

the black implies good caching performance. The brief all-black region at the

very beginning of the trace in both figures 5.3 and 5.4 (day 1) indicate a “warm-

up” period where the proxies are filling their caches with files. Afterwards, the

cache accounts for a significant percentage of video traffic in both cases. Mid-

dleMan tracks the requests closely even in worst case scenarios such as day

140 where twenty four simultaneous connections were requested, resulting in a

peak system bandwidth of of about 1100 KBytes/sec and a corresponding cache

rate of about 9300 KBytes/sec. The lack of cache activity during days 118-130 is

2 I do not report cumulative byte hit rates as they remain the same as in the previous architecture.
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Figure 5.3: Cache Rate, LRU, 44*50 MByte

Figure 5.4: Cache Rate, histLRUpick, 44*50 MByte
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due to Christmas break. Overall, the day to day differences between the caching

performance of the two algorithms are minimal. 

5.3.2.2  Load Behavior

Figure 5.5 summarizes the normalized standard deviation of the cumula-

tive byte traffic of all the proxies under LRU and HistLRUpick. The figure shows

that the latter algorithm drastically reduces the inter-proxy standard deviation.

Figure 5.6 presents an alternate approach to displaying load imbalance. Using

the campus trace, and configuration, it plots the most aggregate bytes served by

a proxy and the least bytes served by a proxy in three configurations using LRU

and histLRUpick. Under LRU, there is a great difference between the most and

least loaded proxies. However, in each case, HistLRUpick reduces the overall

Figure 5.5: Normalized standard deviation for all the configs/traces
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disparity by reducing the traffic on the heavily loaded proxy and increasing traffic

to the lightly loaded one.

The dynamic load variations for the system with LRU and HistLRUpick is

illustrated via their proxy connection plots (figures 5.7 and 5.8 respectively). The

black region in the plots show the total number of connections served by the

proxy at any given time whereas the gray areas display the maximum number of

connections on a proxy in the system at the same instant, on the negative axis.

Ideally, we would like the gray areas to be small compared to the black regions.

This would imply that since the most loaded proxy was not heavily burdened,

the remaining load was distributed over the other proxies. We would also prefer

the maximum connection plot to be relatively smooth. Otherwise, excessive fluc-

tuations would hint at sudden load changes on proxies, an undesirable property

for a load balancing algorithm.

Figure 5.6: Overall max/min load report for campus trace
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Figure 5.7: Proxy Connection, LRU, 44*50 MByte

Figure 5.8: Proxy Connections, LRU, 22*100 MByte
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Comparison of figures 5.7 and 5.8 shows that with the exception of day

140, HistLRUpick produces a smoother max connection plot that is more

bounded than LRU. On day 140, both LRU and HistLRUpick have the same

maximum number of connections (5) on their maximally loaded proxy. However,

the peak max values of LRU exceed this threshold a number of times (on days

5, 40, 60, and 170, for instance) whereas HistLRUpick always stays below (or in

the case of day 140, equal to) this cutoff value.

5.3.2.3  Decreasing the Number of Proxies

Figures 5.9 - 5.12 show the proxy connection plots for the 22*100 and

11*200 scenarios. I do not report on the caching performance as they remain

similar due to the total global cache space still being the same. The figures for

the 22*100 (5.9, 5.10) and 11*200 (5.10, 5.11) scenarios show trends similar to

their 44*50 counterparts. However, the graphs also illustrate how proxy loads

are affected when the number of storage proxies in the system are reduced --

the maximum proxy connection values increase in the system. With the excep-

tion of day 140, HistLRUpick is still able to smooth and bound the disparities

better than LRU although its effectiveness drops with the number of storage

proxies. How histLRU would behave under sustained heavy load remains an

open question.
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Figure 5.9: Proxy Connections, histLRUpick, 22*100 MByte

Figure 5.10: Proxy Connections, LRU, 11*200 MByte
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Figure 5.11: Proxy Connection, histLRUpick, 44*50 MByte

Figure 5.12: Proxy Connections, histLRUpick, 11*200 MByte
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5.4  Block Size Variation Analysis

Table 5.2 illustrates the performance of the new MiddleMan architecture

with a proxy configuration of 44*50, LRU cache replacement policy and block

sizes of 1 MByte, 5 MBytes, and 10 MBytes respectively. Increased block sizes

lead to smaller byte hit ratios and increased load imbalance, as indicated by the

progressively larger standard deviations and disparities between the maximum

and minimum loaded proxies. The drop in byte hit rates is due to cache space

being utilized less effectively. Similarly, larger block sizes provide less opportuni-

ties for redistributing cache load, thus resulting in more skewed systems. How-

ever, the overall drop in performance is small indicating that in situations with

high client activity, it might be worthwhile to increase block sizes to reduce the

message processing load on the coordinator and better buffer against possible

inter block switching delays.

Table 5.2:  MiddleMan Performance With Increased Block Size

cdt sm campus

1 Mbyte block size

byte hit rate 65.32% 74.06% 76.26%

normalized std. dev. 0.3726 0.2284 0.2293

Max proxy bytes 3.234 Gbytes 4.151 GBytes 4.442 GBytes

Min proxy byes 0.098 Gbytes 1.226 GBytes 1.556 GBytes

5 Mbyte block size

byte hit rate 64.95% 73.08% 76.12%

normalized std. dev. 0.3968 0.266 0.2382

Max proxy bytes 3.285 GB 4.14 GB 4.529 GB

Min proxy byes 0.098 GB 1.006 GB 1.471 GB

10 Mbyte block size

byte hit rate 64.42% 73.27% 75.82%

normalized std. dev. 0.43 0.3165 0.2322

Max proxy bytes 3.453 GB 4.465 GB 5.071 GB

Min proxy byes 0.098 GB 0.426 GB 1.764 GB
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Another possibility not explored in the current investigation is to allow a

number of block sizes to simultaneously co-exist depending on the needs of the

user and streaming requirements of the video file. For instance, bandwidth

intensive video files might be more efficiently served with large block sizes since

this amortizes the proxy-coordinator message processing overhead costs.

5.5  Conclusion

In this chapter, I have investigated the performance of MiddleMan. I

found LRU-k to provide the highest hit rates but a variation, HistLRUpick, in con-

junction with an alteration to the system architecture yielded good hit rates as

well as effective load balancing. A relatively small global cache size of 2.14

GBbytes (44*50 Mbytes, about 13.7% of total file sizes) resulted in very high

byte hit rates. I also found that a larger number of proxies were preferable to a

smaller number of proxies even though overall global cache size would remain

the same. More proxies resulted in smaller peak loads in each proxy and hence,

better load balancing.
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Chapter 6

 Transcoding from MPEG to JPEG

6.1  Introduction

 The results from chapter 2 show MPEG to be probably the most popular

single video format, even though QuickTime files outnumber MPEG. QuickTime

is a collection of codec technologies none of whom individually exceed MPEG in

acceptance. Given the popularity of MPEG and the rising acceptance of related

compression schemes such as H.261, H.263 and MPEG-4, in this chapter I con-

centrate on fast video transcoding of MPEG to M-JPEG. Integration of such a

capability into a caching proxy is useful as it allows for more leeway in client

load control. A proxy or a client can drop arbitrary frames if necessary in

response to sudden client loads or local network bottlenecks. This is not possi-

ble with the other formats.

Transcoding is also potentially useful in other applications:

• Video editing: random access of video data is important and M-JPEG has this

property, unlike MPEG which is often preferred for storage.

• Video processing: video is usually decompressed before it can be processed.

However, compressed domain processing techniques can operate on video

without fully decompressing it. Many of these techniques operate on M-JPEG

data [55, 54, 15].
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 In this chapter, I develop a compressed domain transcoder (CDTC) for

converting MPEG-1 to M-JPEG that is 1.5 to 3 times faster than its spatial

domain counterpart. Additional speedup is possible at the expense of image

quality. The techniques are optimized for MPEG-1 but can be adapted for

MPEG-2 and H.261/H.263. I concentrate on the CDTC since much work has

already been done elsewhere on compressed domain processing. 

This chapter assumes the reader is familiar with MPEG-1 and JPEG

compression [25, 27, 60]. Nonetheless, in order to introduce basic terminology

and concepts, I briefly review these algorithms in section 6.2. To identify the

problems associated with transcoding, I describe spatial domain transcoding in

section 6.3. I provide more details on my CDTC in section 6.4 and also show

how I optimized processing while maintaining good picture quality. In sections

6.5 and 6.6 I compare the performance of the spatial and compressed domain

methods. I outline related work in section 6.7, and finally, in section 6.8, I

present some conclusions and directions for future work.

6.2  A Brief Review of JPEG and MPEG-1

To understand the compressed domain transcoder, a working knowledge

of JPEG1 and MPEG is necessary. This section briefly reviews JPEG and

MPEG. My purpose in this exposition is to remind the reader of the steps in the

algorithms and to name these steps for purposes of discussion. A more detailed

discussion of these standards are available elsewhere [25, 27, 60]. To simplify

the discussion, we only consider gray-scale video.

1 Motion-JPEG applies the JPEG algorithm to each frame in a video sequence.
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6.2.1  JPEG

The sequential (baseline) JPEG algorithm, shown in figure 6.1, consists

of the following steps:

1. Decomposition: The original image is divided into 8x8 blocks.   These blocks 

are processed in row-major order by the following steps.

2. DCT: Each block is transformed using the Discrete Cosine Transform (DCT).

The transformed block has the signal energy concentrated into a few lower

order coefficients. The (0,0) element of the transformed block is called the DC

component, and the other 63 elements are AC components.

3. Scaling: Each element in the transformed block is divided by the correspond-

ing elements in an 8x8 quantization table (QT). 

4. Rounding: The scaled coefficients are rounded to the nearest integer. Steps 3

and 4 together are called quantization.

5. Zig-zag mapping: Each quantized 8 x 8 block is converted to a 64 element

vector using a fixed one to one mapping.

6. Run Length Encoding: Strings of zeros in the AC elements of the quantized

vector are run length encoded. The block, at this stage, is called a semi-com-

pressed (SC) block. An SC-block consists of a DC element plus several (run

length, AC value) pairs.

7. DPCM: The DC coefficient of each SC block is encoded as difference from

the DC coefficient of the previous block in the sequence.

8. Huffman Coding: The SC block is converted to a bitstream via Huffman

encoding.

An important property, for our purposes, is that some of these steps can

be transposed. For example, we can swap steps 4 (rounding) and 5 (zig-zag



116

mapping). With this exchange, the first three steps, DCT, scaling and zig-zag

mapping, are all linear. Thus, they can be combined into one linear operation, a

fact I utilize in section 6.4. Also, note that SC-blocks are simply sparse repre-

sentations of the scaled DCT block. The compressed domain algorithms will

operate on SC-blocks, and we represent a JPEG image as an array of SC

blocks.

Decompression is the reverse of compression. The bitstream is entropy

decoded and the DC value of the previous block is added to the recovered dif-

ference value to produce an SC block. The SC block is de-zigzagged into an 8 x

8 quantized block. This block is multiplied by the QT (the multiplication step) and

the inverse DCT transform (IDCT) is applied.

6.2.2  MPEG

The MPEG video standard is designed to compress sequences of

images (also called frames). In MPEG-1 video (hereafter called MPEG), each

frame is divided into 16 x 16 pixel macroblocks. Each macroblock contains six 8

x 8 pixel blocks, four from the luminance channel and one from each chromi-

nance channel. As with JPEG, we ignore the chrominance channel for simplicity

of discussion. Each macroblock can be compressed in several ways. Depend-

ing on the method used, the macroblock is called an I, P, B, or Bi macroblock2.

MPEG also defines three types of frames, I, P and B, which we discuss in turn

and summarize in table 6.1.

2 Two other types of macroblocks, called D and skipped, are also defined by MPEG. We ignore them in this 
paper for simplicity.
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I frames contain only I macroblocks. The four blocks in an I macroblock

are compressed using an algorithm nearly identical3 to JPEG. In other words,

3 The bitstream syntax, entropy encoding technique, and quantization tables are different, as is the encod-
ing order of the image blocks.

236 1– 12– 5– 2 2– 3– 1

23– 18– 6– 3– 3– 0 0 1–

11– 9– 2– 2 0 1– 1– 0

7– 2– 0 2 1 0 0 0

1– 1– 2 2 0 1– 1 1

2 0 2 0 1– 2 1 1

1– 0 0 2– 1– 2 2 1–

3– 2 4– 2– 2 1 1– 0

Figure 6.1: Block Encoding

139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 156

150 155 160 163 158 156 156 156

159 161 162 160 160 159 159 159

159 160 161 162 162 155 155 155

161 161 161 161 160 157 157 157

162 162 161 163 162 157 157 157

162 162 161 161 163 158 158 158

2: DCT

4: Round

5: Zigzag Scan

6: Run-length Code
7: DPCM and 

DC component

AC components

1011100111011101010.....

Quantization
      Table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

15 0 2– 1– 1– 1– 0 0 1– 0 0 0 0 0 0 …

0 15

1 2–

0 1–

0 1–

0 1–

2 1–

0 0

15 0 1– 0 0 0 0 0

2– 1– 0 0 0 0 0 0

1– 1– 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

An SC-block

3: Scale

14.75 0.09– 1.2– 0.31– 0.08 0.05– 0.06– 0.02

1.92– 1.5– 0.43– 0.16– 0.12– 0 0 0.02–

0.79– 0.69– 0.13– 0.08 0 0.02– 0.01– 0

0.50– 0.12– 0 0.07 0.02 0 0 0

0.06– 0.05– 0.05 0.04 0 0 0 0.01

0.08 0 0.04 0 0.01– 0.02 0 0.01

0.02– 0 0 0.02– 0 0.02 0.02 0.01–
0.04– 0.02 0.04– 0.02 0.03 0.01 0 0

bitstream
Entropy Code
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the blocks are converted to SC-blocks and then compressed using Huffman

coding.

P frames exploit the temporal redundancy of video whereby adjacent

frames are likely to be similar. A P frame relies on a reference frame prior in the

sequence called a past reference frame. The past reference frame is the most

recent I or P frame in the sequence. A P frame consists of either I or P macrob-

locks. A P macroblock is a motion vector and a residual macroblock. During

decompression, the motion vector is used to extract a predicted macroblock

from the reference frame, and the residual macroblock is added to the predicted

macroblock to produce the macroblock in the output image. The residual mac-

roblock is compressed like the I macroblock, and the motion vectors are also

encoded in the bitstream using Huffman coding.

A B frame is similar to a P frame, but uses two reference frames, one

from later in the sequence (a future reference frame) and one from earlier on in

the sequence (a past reference frame). As with P frames, these reference

frames are the nearest I or P frames in the sequence (see figure 6.2). A B frame

can contain I, P, B, or Bi macroblocks. B macroblocks are identical to P, except

they use the future reference frame rather than the past reference frame. Since

B macroblocks are so similar to P macroblocks, the techniques we use to deal

with the two are identical. Hence, we refrain from discussing B macroblocks for

the remainder of this chapter.

A Bi macroblock consists of two motion vectors and a residual macrob-

lock. These motion vectors are used to extract the two predicted macroblocks

(one from each reference frame), which are averaged and added to the residual

macroblock to produce the result. The residual macroblock is compressed to an

SC-block and Huffman coded along with the two motion vectors.
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Table 6.1 summarizes the composition of MPEG frames and macrob-

locks. When the blocks in a macroblock are semi-compressed, we call the mac-

roblock an SC macroblock. Similar to JPEG, a frame can be represented as a

two dimensional array of macroblocks. If these macroblocks are semi-com-

pressed, the frame is called a SC frame. The use of reference frames in I, P, and

B frames leads to the interframe dependencies shown in figure 6.2. It is these

dependencies that complicate random access.

6.3  Spatial Domain Transcoding

Having sketched MPEG and JPEG, I now turn to the problem of convert-

ing MPEG to Motion-JPEG (MJPEG). The most straightforward approach is to

Table 6.1: Summary of MPEG frames and Macroblocks

Frame Type
Frame 

Composition
Macroblock 

Type
Macroblock 
composition

I frame I type macrob-
lock

I 4 SC blocks

P frame I, P P 4 SC + motion 
vector (mv)

B frame I, P, B, Bi B 4 SC + mv

Bi 4 SC + 2 mv

I P P IB B B B B B

I frame

P frame

B frame

Dependence

Figure 6.2: Inter-frame dependencies in MPEG
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decompress the source bitstream completely and compress the result using

JPEG. I call this technique method I. It provides a benchmark against which

other techniques can be compared.

Method I can be optimized in several ways. The first optimization is to

note that I macroblocks can be converted to JPEG blocks simply by requantiz-

ing the SC-blocks in the I-frame. Or, better yet, we can redefine the quantization

tables in the JPEG bitstream to be the same as used by MPEG and just entropy

encode the SC-blocks in the I macroblock directly (if we slightly reorder the

blocks). An important detail to remember is that MPEG uses variable quantiza-

tion and standard JPEG does not, so the coefficients in the SC block may need

to be rescaled, but the cost of this rescaling is minimal.

Transcoding P and Bi macroblocks to JPEG blocks is more complex

because a predicted macroblock(s) must be extracted from the reference

frame(s). The problem is illustrated in Figure 6.3. As we can see from the figure,

up to four reference blocks may be needed to reconstruct a predicted block.

These reference blocks, which may be contained in different macroblocks, must

be decompressed to construct the predicted block. The residual block must also

be decompressed before it is added to the predicted block, and the result com-

pressed. 

Extracting the predicted blocks is expensive, since it requires decom-

pressing the relevant macroblocks in the reference frame, but a few optimiza-

tions can be made. Experiments reveal that some macroblocks in a reference

frame are decompressed multiple times, since they can be referenced in multi-

ple B frames. We therefore decompress the macroblocks in the reference
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frames as needed and cache the decompressed macroblocks in case we need

them later.

Another optimization is to add the predicted and residual macroblocks in

the compressed domain [15]. In normal processing, the residual macroblock is

decompressed, added to the predicted macroblock, and the result is com-

pressed. But, if the predicted macroblock is first converted to an SC macroblock,

it is possible add the residual SC macroblock directly, avoiding the decompres-

sion step.

The modified transcoding method, with these three optimizations (I-frame

conversion, caching, and adding the residual in the compressed domain), is

called Method II. Method II represents a reasonable effort to improve the perfor-

mance of a spatial domain transcoder with relatively simple compressed domain

techniques. Experiments show that the DCTs and IDCTs required by P/B mac-

roblock extraction are the bottleneck in transcoding speed for Method II. My next

approach, therefore, was to perform predicted block extraction in the com-

pressed domain. The next section describes this approach in detail.

 predicted macroblock

     

   standard block boundary

   macroblock boundary

        

Figure 6.3: Source Block Extraction Problem

 overlaps reference
 blocks

portion
of reference

image

reference blocks required to
reconstruct predicted block
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6.4  Method III - Compressed Domain Transcoding

The bottleneck in Method II is extracting predicted macroblocks from ref-

erence images. This section shows how to perform this operation in the com-

pressed domain. I first show how to decompose source block extraction into

steps that can be implemented on the SC-blocks.

As evident in figure 6.3, we can extract a predicted macroblock if we can

align the relevant macroblocks in the reference frame to a macroblock bound-

ary. Another way to think of this macroblock alignment is that it involves translat-

ing the individual blocks and combining them, as shown in figure 6.4. In this

figure, the block f00 is translated by (dx, dy). We use the notation Tdx,dyf00 to

represent this translated block. The black region in Tdx,dyf00 are pixels not con-

tained in f00, so we set them to zero. If the other three blocks are similarly trans-

lated, and the results added, one block in the predicted macroblock is extracted.

I now show how to perform these operations (translation and addition)

directly on the SC-blocks. The SC blocks can be added directly, we can perform

this entire operation on SC blocks if we can perform translation on SC blocks.

6.4.1  Deriving The Compressed Domain Translation

Operator 

Previous work [54, 55] showed how to perform a wide variety of opera-

tions, including translation, directly on SC blocks. Briefly, let F00 be the SC-block

corresponding to f00. Formally, Tdx,dy is then a matrix, F00 a sparse vector, and

translation of F00 is accomplished by matrix multiplication. The result of this mul-
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tiplication is a 64 element vector that represents the translated block after the

DCT, scaling, and zig-zag scan steps (steps 2, 3, and 5) of the JPEG algorithm

have been performed. This vector is converted to an SC block using steps 4, 6,

and 7 (rounding, DPCM, and run-length encoding) of the JPEG algorithm.

The DCT transform, quantization and zig zag scan steps in the block

encoding process can all be modelled as matrix operations.  We define the for-

ward DCT (FDCT) as a function D which operates on an 8x8 pixel block f.  D is a

8x8x8x8 matrix.  

(EQ 4)

where

(EQ 5)

macroblock boundary
in reference image

predicted
macroblock

dx

dy

Tdx,dyf00

Tdx-8,dyf01

Tdx,dy-8f10

Tdx-8,dy-8f11

f00 f01

f10 f11
Add

Figure 6.4: Block alignment using translation
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(EQ 6)

(EQ 7)

Similarly, the zig-zag operator Z maps an 8x8 block to a 64 element vec-

tor:

(EQ 8)

The quantization operator Q divides each element i,j in an 8x8 array by

q(i,j). 

(EQ 9)

The whole block encoding process is given by: 

(EQ 10)

From this we can define the JPEG operator, J to be:

 (EQ 11)

J is a 64x8x8 matrix.  By a similar derivation process, we arrive at , the

reverse JPEG operator.
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An image translation is a linear mapping operation.  To translate a block

of pixels, f, by an offset of dx in the direction of increasing x and dy in the direc-

tion of increasing y, we would say:

        (EQ 13)

The challenge is to perform the translation operation in the compressed

domain.   We know:

(EQ 14)

Applying equation 11 yields:

(EQ 15)

Shifting indices, we get:

(EQ 16)

We substitute f by (JF):

(EQ 17)
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J, J, dx and dy are known quantities.  Hence we can precompute the

translation matrix T: 

(EQ 18)

  is the translation frequency domain transform matrix for a given

dx and dy.  

Figure 6.5 shows a slightly different decomposition, where we align mac-

roblocks by translating on each axis separately. The intermediate blocks G0 and

G1 and the predicted block A are given by the equations

G0 = TdxF00 + Tdx-8F01

G1 = TdxF10 + Tdx-8F11

A   = TdyG0 + Tdy-8G1

Analysis shows that computing this decomposition is more efficient than

computing the combined operation (figure 6.4) because the matrices associated

with the translation along a single axis, Tdx and Tdy, are quite sparse. We there-

fore focus on this case. In the discussion that follows, we describe the case of

translating a block F by a positive amount dx along the x axis. Translating along

the y axis and translating by negative values are similar.

Our goal is to compute the elements of a vector G = TdxF:

(EQ 19)

Tdx dy, l k dx, ,( ) J l x dy+( ) y dx+( ), ,( )J x y k, ,( )
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Tdx dy,
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Following the development in [55], the elements of the matrix Tdx[i,j] are

given by:

(EQ 20)

where J is a 3 dimensional matrix that converts an SC block from the source

block and J performs the reverse computation. Note that scaling, zig-zag encod-

ing, DCT and IDCT are folded into J and J and hence into Tdx. We present code

to compute Tdx[i,j] in the appendix. Since the parameter dx can only assume

sixteen discrete values (dx = 0..7 plus half pixels), our task is to efficiently com-

Figure 6.5: Translating on each axis separately
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pute equation 19 for these sixteen values. We describe an efficient method in

the next section.

6.4.2  Performance Optimization I - Dynamic Threshold-

ing

The vector G in equation 19 is the product of a matrix Tdx and the vector

corresponding to the SC block F. In the calculation of G, we can tolerate some

error in the result. We can afford some error because the elements of G will be

rounded off to the nearest integer (quantized) after the computation, as part of

converting G to an SC block. Thus, introducing errors of, say, +/- 0.5 should not

unduly affect the quality of the output. Suppose we fix an allowable error maxerr

for the computation of each element of G, and that F has n non-zero elements.

Computing an element G[i] requires n multiplies (and n-1 adds) of the form

Tdx[i,j]*F[j]. We call a product term insignificant if:

(EQ 21)

or

(EQ 22)

Intuitively, insignificant terms are terms in equation 19 that we can throw

away without introducing too much error (i.e., more than maxerr). The central

idea of our optimization is that we compute the product Tdx[i,j]*F[j] only if equa-

tion 22 holds. Conceptually, we must check this condition before every multiply.

However, since Tdx is a constant, it turns out there is an elegant way of doing

this efficiently.

Tdx i j,[ ]F j[ ] maxerr
n

-------------------<

Tdx i j,[ ] maxerr
nF j[ ]

-------------------<
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Consider the calculation of G in equation 19. Using the fact that F is typi-

cally sparse, we can calculate G using the following code fragment: 

zero G[]
f or  each non- zer o F[i] do

f or  al l  j do
G[j] += T[i,j]*F[i];

endf or
endf or

If we unroll the inner loop using a switch statement, our code fragment looks like 
this:

zero G[]
f or  each non- zer o F[i] do

v = F[i];
case i i n
 0: 

G[0] += T[0,0]*v;
G[1] += T[0,1]*v;
G[2] += T[0,2]*v;
....

 1:
....

For a fixed translation dx, T is constant, so we can substitute T[0,0],

T[0,1] by precomputed values. For example, suppose T[0,0]=0.3214, T[0,1]=-

0.0027, T[0,2]=-0.271, T[0,3]=-0.027, and the remaining T[0,j] are zero. Our

code fragment becomes:

zero G[] vector
f or  each non- zer o F[i] do

v = F[i];
case i i n
 0: 

G[0] += 0.3214*v;
G[1] += -0.0027*v;
G[2] += -0.271*v;
G[3] += 0.1045*v;
....



130

Finally, we sort each case statement by the absolute value of the con-

stant, smallest value at the top:

zero G[] vector
f or  each non- zer o F[i] do

v = F[i];
case i i n
 0: 

G[1] += -0.0027*v;
G[3] += 0.1045*v;
G[2] += -0.271*v;
G[0] += 0.3214*v;
....

For a given value of F[i], only some of the terms T[i,j]*F[i] are significant.

For example, if F[i]=1, maxerr=0.5, and n=3, then by equation 22, any term with

a coefficient T[i,j] less than 0.5/3*1 = 0.167 is insignificant (i.e., the first two

terms in case 0 of the example above). Since the values are sorted, we know

that all the preceding terms are insignificant as well. Thus, if we can jump to the

first significant coefficient in the case statement, we will only evaluate the prod-

uct terms required. We call this technique dynamic thresholding. 

It is possible to implement dynamic thresholding in this case by comput-

ing an integral threshold, intThresh, which is a fixed point representation of the

coefficient threshold (equation 22):

(EQ 23)intThresh
maxerr
nF i[ ]

------------------- 16×=
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We use intThresh as an index into a jump table that skips insignificant

coefficients T[i,j]. Implementing this idea results in the following code:

zero G[]
n = number of non-zero elements in F[]
f or  each non- zer o F[i] do

v = F[i];
intThresh = abs(ceiling(16*maxerr/(F[i]*n)));
case i i n
 0:

case intThresh i n
 0, 1:

G[1] += -0.0027*v;
 2:

G[3] += 0.1045*v;
 3:

G[2] += -0.271*v;
 default:

out[0] += 0.3214*v;
...

Note that this code can execute very efficiently. Once the initial jump is

performed, the minimal number of product terms are computed as a sequence

of multiply/add instructions. Experiments show that 20%-30% of the multiplies

are avoided for typical values of maxerr. Since there is no interdependency of

terms, these instructions can be pipelined resulting in a throughput of one cycle

per term.

Since writing code of this nature is tedious, I developed a code-generator

to write the required functions. My generator produces a procedure for each off-

set dx and dy, resulting in 32 procedures, 16 each for horizontal and vertical

translations. Half pixel values were ignored, and each procedure uses fixed

point arithmetic with a 22 bit fractional part. In addition, for product term T[i,j]*F[i]

in the generated code, we approximated the fixed point coefficient T[i,j] by zero-

ing the lower eight bits, which allowed the compiler to replace the multiply with

several shifts and adds.
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However, my initial experiments showed that dynamic thresholding, by

itself, did not provide either sufficient speedup or satisfactory image quality. It

was necessary to use caching (section 4.2) and temporary requantization (sec-

tion 4.3) to improve speed and quality further.

6.4.3  Performance Optimization II - Caching

Caching is a technique that reduces the number of translation computa-

tions required. Consider the process of computing two adjacent blocks B0 and

B1 from reference blocks F0...F5, as shown in figure 6.6. B0 and B1 can be

derived as follows:

G0 = TdxF0 + Tdx-8F1

G1 = TdxF2 + Tdx-8F3

G2 = TdxF4 + Tdx-8F5

B0 = TdyG0 + Tdy-8G1

F1F0

F2 F3

F4 F5

F1F0

F2 F3

F4 F5

G0

Tdx

Tdx-8

G1

G2

Tdy

Tdy

Tdy-8

Tdy-8

B0

B1

B0

B1
target block to extract reconstructed blocks

reference blocks

Figure 6.6: Detailed Predicted Vector Extraction Example

Add

Add

Add
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B1 = TdyG1 + Tdy-8G2

Since the intermediate block G1 is required in the computation of both B0 and

B1, computing G1 once for both B0 and B1 is advantageous. By doing so, it is

possible to save a total of 4 out of 24 translation calculations per macroblock.

I generalized this idea further by caching the result of every translation of

a reference block, since P or B blocks in other frames (or in the same frame but

adjacent macroblocks) might require the reference block to be translated by

exactly the same offset. I used a directly associative cache model: each refer-

ence block had dedicated cache entries for every potential translation in the x

and y direction. This required a space allocation of 16 additional blocks per ref-

erence block. However, actual memory requirements were more reasonable

because of the following factors:

• typically, less than half the frames in an MPEG sequence are reference 

frames.

• the mpeg decoder only decodes a small subset of all available frames at a 

time. Therefore, it allocates sufficient space in its data structures only for

that small subset. Hence, allocating extra space for caching would not sig-

nificantly augment the transcoder primary memory requirements.

6.4.4  Quality Optimization - Temporary Requantization

Dynamic thresholding is only advantageous when SC blocks are sparse

(i.e., n in equation 22 is small). To achieve low coefficient density, we initially

quantized the input reference SC blocks (e.g. F0..F5 in equation 6) using the

standard MPEG quantization table, prior to performing the translation opera-

tions. Unfortunately, we found that this table scaled the coefficients too coarsely
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resulting in loss of detail in the final image. Hence, I used an intermediate table

with smaller values4 to quantize the input SC blocks. This resulted in sparser

intermediate translated blocks TdxF and TdxG and lower transcoding speed.

The performance drop, however, was offset by a significant improvement in final

image quality.

6.5  Transcoding Experiments

To compare their performance, I implemented all 3 methods (spatial

domain methods I and II and compressed domain method III). I used the Berke-

ley MPEG decoder and Independent JPEG group encoder to build the transcod-

ers. Method I was straightforward to implement, methods II and III were more

involved. I modified the decoder to store sparse 8x8 blocks as RLE vectors.

Each RLE vector has an array of (index, value) pairs and a field indicating the

size of the array. The translation transforms for the frequency domain approach

converted RLE vectors to RLE vectors via procedures produced using a code-

generator. Our transcoder is publicly available [67].

All experiments were run on an HP 735. I measured application perfor-

mance by the number of frames transcoded per second. All data was read from,

and written to, memory, so I/O was not a factor.

The quality of the output was measured using the PSNR metric: 

4 I used the MPEG quantization table scaled by 2

PSNR 20
255

mse C O–( )
imsize

-----------------------------

----------------------------------log=
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where imsize is the image size, mse is the mean square error function of an

image compared to a reference image, C is the image produced by the

transcoder and O is the corresponding image produced by decoding the MPEG

stream to a sequence of gray-scale images.

I tested all these methods on a selection of MPEG streams whose prop-

erties are summarized in table 6.2.

6.6  Results

Table 6.3 shows the transcoding performance and image quality (PSNR)

for methods I, II, and III on a typical stream (“bike.mpg”). As we can see from the

table, the PSNR for I-frames remains constant, regardless of method used. This

is expected since the processing of I frames is almost identical in all methods.

Method 1 gives the best picture quality but is also the slowest. Method II pro-

vides almost the same quality, but the speedup from method II is usually not sig-

nificant. Method III provides significant performance improvement at the cost of

slightly degraded picture quality, depending on the setting of maxerr. Perfor-

mance leveled out for values of maxerr larger than about 15. Although method

III avoids performing many operations in the translation procedures for large

Table 6.2: Properties of the test MPEG sequences

Clip Name
Frame 
Size

Avg I 
(bytes)

Avg. P 
size

Avg. B 
size Frame Pattern

Viewing 
fps 

alesi.mpg 240x192 5043 4418 2243 IBBPBBPBBPBB 3

bike.mpg 352x240 11756 7106 1606 IBBPBB 5

bus.mpg 352x240 13512 7657 2723 IBBPBBPBBPBB
PBB

4

cannon.mpg 192x144 7792 5918 1381 IBBPBB 5

us.mpg 352x240 6479 4660 1465 IBBPBB 5

raiders.mpg 160x128 1953 I 9
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maxerr, the overhead of entropy encoding and decoding limit the speedup

obtained. Profiling reveals about 50% of the code is spent in the translation pro-

cedures, with the remaining time spent in other procedures. This leads to the

conclusion that the maximum speedup possible through compressed domain

transcoding is about 3.6, and is limited by Huffman coding. It is interesting to

note that the PSNR of the B frames is higher than that of the P frames. This

property is due to the averaging techniques used in B block reconstruction,

which act as a filter that reduces errors.

Table 6.3: Speed and Quality of Various Transcoders On “ bike.mpg”  
sequence

Method frames/sec PSNR for I PSNR for P PSNR for B Speedup

Method I 5.7 36.3 37.5 37.8 1.0

Method II 5.9 36.3 37.4 37.7 1.0

Method III

maxerr=0

6.5 36.3 35.3 35.7 1.1

maxerr=5 8.1 36.3 35.0 35.3 1.4

maxerr=10 9.6 36.3 34.5 34.7 1.7

maxerr=15 10.5 36.3 33.5 33.6 1.8

Figure 6.7: B frame decoded directly to gray-scale
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The image quality of MPEG sequences with a long frame pattern of P

and B frames between successive I frames (such as “alesi.mpg”) tend to

degrade on the order of 0.1-1dB between successive P and B frames within the

group of pictures. This behavior is due to the error generation in the transcoding

of a P frame which then propagates to subsequent P and B frames. Long frame

sequences also impair transcoding performance because of the presence of

proportionately more non-reference frames and, thus, the need for more transla-

tion operations necessary to restore these frames. 

Figure 6.7 shows a sample B frame from “bus.mpg”. Figures 6.8 and 6.9

present the same still but generated via method III with maxerr 0 and 10 respec-

tively. All three images are available on-line [69].

Table 6.4 compares the performance of all three techniques on a variety

of streams. These measurements show that the speedup from method II is usu-

ally small. The compressed domain approach typically improves performance

Figure 6.8: Same frame decoded with maxerr=0, PSNR = 35.7
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by 1.5 to 3 times. Notable exceptions are “bus.mpg” and “raiders.mpg”. The

former is encoded via intra- and non intra-block quantization tables that are not

the default values recommended by the official MPEG-1 standard. Since the

translation procedures are optimized for the standard tables, both transcoding

performance and image quality suffer. The long frame pattern length of

“bus.mpg” is also another reason for its poor transcoding performance. “Raid-

ers.mpg” consists of nothing but I-frames, which explains why the frame rate of

“raiders.mpg” remains the same for all values of maxerr in method III. The

Table 6.4: Speed of Various Transcoders (frames transcoded/second)

MPEG Clip
Method 

I
Method 

II

Method 
III

maxerr=0

Method 
III

maxerr=1

Method 
III

maxerr=5
Method III
maxerr=10

alesi.mpg 9.7 11.2 9.7 10.0 11.8 14.3

bike.mpg 5.7 5.9 6.5 6.6 8.1 9.6

bus.mpg 5.3 5.1 3.8 3.8 4.4 5.4

cannon.mpg 15.7 16.1 28.0 28.6 31.4 34.4

us.mpg 6.0 6.3 13.6 14.1 15.9 17.1

raiders.mpg 20.5 90.0 143.8 143.8 143.8 143.8

Figure 6.9: Same frame decoded with maxerr=10, PSNR = 33.6
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dynamic thresholding routines only work for P and B motion compensated

frames.

Table 6.4 also shows that despite being similar in picture size, there is a

noticeable performance difference between “bike.mpg” and “us.mpg”. This is

explained by the frame sizes of the MPEG bitstreams. On average, each com-

pressed I frame from “bike.mpg” is 11756 bytes in size. P and B frames are

7106 and 1606 bytes respectively. In contrast, each I frame from “us.mpg” is

6479 bytes. P and B frames are 4660 and 1465 bytes. The smaller data sizes

for “us.mpg” implies sparser blocks resulting in a greater speedup for the com-

pressed domain processing. Another reason is that “bike.mpg” has a longer

frame pattern than “us.mpg”. Hence, the transcoder has to perform relatively

more block extraction operations in the former sequence than the latter resulting

in poorer performance for “bike.mpg”. 

Caching saved about 37%-40% of all potential translation operations in

all our test streams except “cannon.mpg” where a high cache hit rate of 46%

and a small frame sequence greatly offset the transcoding costs of a stream

with a relatively high bit rate.

Overall, the performance of compressed domain transcoding depends on

the bitrate of the streams, the length of the frame pattern and the degree of

caching achieved.

6.7  Related Work 

Chang and Messerschmitt [13, 14, 15] developed the first techniques for

solving the macroblock alignment problem in the compressed domain. Their

approach is to pre- and post-multiply the reference blocks by appropriate matri-
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ces. By using the distributive property of matrix multiplication with respect to the

DCT , they are able to pre-compute the pre- and post matrices for a range of

effects in the compressed domain. They report on the performance of software

simulations for video compositing in the compressed domain for motion com-

pensated video in [15], a process that involves block translation as well as scal-

ing, compositing and motion vector search, all in the compressed domain.

Additionally, they mention the need for intermediate quantization to preserve

image quality. Keesman et al provide an overview of the design space and

describe a generalized architecture for MPEG transcoding in [28].

Merhav and Bhaskaran [36, 37, 38] propose optimizations to the algo-

rithms presented by Chang and Messerschmitt. In particular, they concentrate

on the scaling (downsampling) and source block extraction (they refer to it as

inverse motion compensation) techniques. They observe that the original meth-

ods work best if the input DCT blocks are sparse and the degree of translation

for a large fraction of the reference blocks are zero in either dx or dy. Their

improvements are largely based on effective factorization of the pre- and post-

matrices as well as the input blocks.

Sethi and Shen [47] examine the special case of inner block transforms

(IBTs), which are form of factoring compressed domain operations. They utilize

the computational symmetry present in the calculations of certain image opera-

tions in the DCT domain to simplify their IBTs. IBTs, together with pixel addition,

can be used to implement a wide variety of image operations. They also [48]

examine the decomposition of complex affine transforms, such as shearing and

perspective mapping, into simpler multipass operations. Our choice to imple-

ment the translation operation as a sequence of translations in the x and y

access follows similar logic.
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In contrast to the first three approaches, the work presented in this chap-

ter explores more of the design space by comparing spatial and compressed

domain transcoding, and is more systems-oriented. This led to insights that

would not have been possible by a theoretical-only treatment of the problem.

For example, I found that the computational complexity involved in the transla-

tion operations was not the only major bottleneck to transcoding. Entropy

encoding and decoding and conversion of the translated matrix to run length

vectors also accounted for significant computational costs. 

Other compressed domain processing techniques typically focus on spe-

cialized (but important) problems. Yeo and Liu have studied the problem of cut-

detection on MPEG data [62]. They approximate Chang’s techniques to extract

the DC values from a compressed video stream [63] and build a sequence of

DC images.  They use the DC images to compute various forms of scene

changes between successive frames via a collection of threshold-based met-

rics. Natarajan and Bhaskaran [40] show that the operation of shrinking an

image by a factor of two can be implemented in the compressed domain using

only shifts and adds. Their method approximates the transform matrices as

powers of 2. Sethi and Shen [48] have examined the role of convolution in the

DCT domain and used their techniques to implement compressed domain edge

detection. They employ the post- and pre- matrix multiplication technique to

absorb the computation of the convolution masks in the DCT domain. Further

savings are possible if the convolution mask is symmetric.

Content-based search on images and video is another related area of

research. Seales [46] has done work on object recognition using an eigenspace

method in the compressed domain, and Arman et al [5, 6] have shown how to

perform cut detection in motion-JPEG video data. They rely on a thresholding
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metric computed from the inner product of two vectors formed from the coeffi-

cients of the DCT blocks of the frames under consideration. The metric reduces

the number of frames that have to decompressed to the spatial domain for more

detailed analysis.

6.8  Conclusions

In this chapter I have evaluated the performance of software implementa-

tions of compressed domain processing for the problem of MPEG to JPEG

transcoding.

The method of implementing compressed domain processing is based on

code generation and dynamic thresholding. Transcoding speed is proportional

to the bitrate of the compressed video stream, the length of the frame pattern

and the degree of caching possible. Transcoding speed can also be dynamically

varied, a useful feature in real-time systems where time is critical.

The MPEG to JPEG transcoding speed obtained by almost any imagin-

able compressed domain technique is ultimately limited by the entropy coding

methods used in MPEG and JPEG, which are not well suited for software imple-

mentation. This observation applies to other types of compressed domain pro-

cessing as well. Perhaps we may conclude from this that next generation

compression standards should consider alternative entropy coding techniques

that are more well suited for software implementations. Given the complexity of

compression standard like MPEG-4, such a change would cost very little in

complexity, but improve our ability to process the compressed data.
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Chapter 7

Future Work and Conclusions

This section enumerates the specific contributions of this thesis in the

domain of multimedia communications and indicates directions for extending

this work.

7.1  Video Surveys

The first contribution of this thesis are two surveys that investigate the

characteristics of videos on the web (chapter 2) and how videos are accessed

(chapter 3). In chapter 2, I developed a suite of tools that detected, downloaded,

and analyzed about 57000 video files on the web -- about one hundred GB of

data. My findings included:

1. Web video size: Videos are around 1 Mbytes in size, an order of magnitude 

larger than HTML documents which are usually sized around 1-2 Kbytes. 

Playback time is about a minute or less.

2. WORM nature: Web videos tend to follow the write-once-read-many principle.

Once a video has been placed online, chances are that it will stay there.

Hence, cache consistency is not a major issue in video caching systems.

3. High bandwidth requirements: A high percentage of web video material can-

not be downloaded and played back in real-time as current network/modem

bandwidths are not enough to meet their implicit playback requirements.
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4. Growth: the number of videos on the web are growing at an almost exponen-

tial rate.

The results in chapter 2 indicate a number of directions for future work. A

followup study with a broader scope, for example, could be used to confirm the

general video characteristics uncovered in the first study. The second study

could also clarify the reason behind the drop in the number of movies coming

online. Such a study would also provide an opportunity to inspect the popularity

and content of streaming videos.

In chapter 3, I analyzed access logs to a video server for a VOW experi-

ment in Lulea University in Sweden. The Lulea server stores 140 files containing

seven movies and 133 recordings of class lectures and seminars. The analysis

yielded the following insights:

1. Future trends: videos become larger when network bandwidth increases and 

low bitrate streaming protocols are used. The median size and duration of 

files at the Lulea University video server was 110 MBytes and 77 minutes. 

Lulea uses a high-bandwidth (34  megabits/second) network and H.261 

based multicast architecture.

2. Inter-arrival times: the median interarrival time of requests for videos at Lulea

was about 400 seconds. This indicates requests are infrequent compared to

HTML documents.

3. Video browsing patterns: users like to view the initial part of videos in order to

determine if they are interested or not. If they like it, they continue watching.

Otherwise, they stop.
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4. Temporal Locality: accesses to videos also exhibit strong temporal locality. If

a video has been accessed recently, chances are that it will be accessed

again soon.

Like chapter 2, chapter 3 would also benefit from further studies that cor-

roborated its findings. In particular, two types of studies are necessary. The first

type would repeat the chapter 3 analysis on the same server but for a longer

duration of accesses. Given that the log data for the initial study ranged for six

months, it would be interesting to see if similar patterns emerge from inspecting

a year’s worth of data. The second type of study would repeat the analysis on

traces from other VOW projects to see if the same patterns emerge.

7.2  MiddleMan

The second contribution of this thesis is the architecture and analysis of

MiddleMan, a video caching web proxy system. By caching videos close to cli-

ents and achieving high hit rates, MiddleMan is able to dramatically reduce

overall access latencies. Typically, 60-90% of all off-campus requests can be

served from the cache. Additionally, the caching algorithm used in the system is

effectively able to balance load across multiple proxies and quickly adjust to

sudden increases in the number of client requests. From the point of view of the

server, MiddleMan dramatically reduces load by intercepting a large number of

server accesses. Hence, the net effect of MiddleMan is to greatly increase the

effective bandwidth of the entire video delivery system by a factor between three

and ten, allowing more clients to be serviced at any given time.

MiddleMan shows promise, but raises a number of issues that need to be

addressed. These include:
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• Fault tolerance: the current architecture of MiddleMan renders it susceptible

to proxy or coordinator crashes. In particular, a coordinator crash causes the

system to become unusable since only the coordinator maintains global sys-

tem state. Standard techniques such as reliable backup servers may provide

a possible solution but leads to two further problems. First, proxies must be

able to detect the location of the new coordinator. Second, the process of

switching from one coordinator to another might stall ongoing proxy-client

connections. One possible approach to the first problem is to maintain a sep-

arate multicast channel within the cluster which can be used to inform all

proxies of any configuration changes. The second problem might be avoided

by the proxy bypassing MiddleMan and fetching the next block directly from

the WWW server.

• Fast-forward/Rewind Support: clients may wish to fast-forward or rewind

through video material. Currently, MiddleMan does not explicitly support such

functionality. However, both the proxies and the cache replacement policy

can be altered so that once the proxy detects a fast-forward or rewind request

from the client, it is able to request the right sequence of blocks from the coor-

dinator. 

• Security/Authentication: the proxy cache might contain "pay per view" type

movies which, if not checked, might allow clients to access titles without

authorization from the original movie provider. Hence, an authentication

scheme is necessary which would allow MiddleMan to verify whether a client

is allowed to retrieve a certain title from the cache. It might also be necessary

to encrypt cache contents to prevent unauthorized access to files.

• Proxy Cluster Cooperation: chapters 4 and 5 have investigated the protocols

and algorithms necessary for the functioning of a single proxy cluster. An



147

obvious next step would be to increase the scope of the system by allowing

multiple proxy clusters to interact. In this scenario, if a file was not available in

the local proxy, the coordinator might redirect the request to a proxy in a dif-

ferent cluster which does have the file cached. One possible method for

achieving such cooperation is for coordinators to periodically exchange data

about cache contents on some well known multicast channel. 

Future work on MiddleMan will focus on addressing these issues as well

as building and deploying a prototype.

7.3  Transcoding

Chapter 6 described a novel, high-performance technique for fast

transcoding from MPEG to M-JPEG. The technique was based on the observa-

tion that the JPEG compression algorithm (and the compression scheme for

MPEG I frames) can be decomposed into a linear transformation (e.g., DCT +

zig-zag scan + constant division) followed by a lossy, non-linear step (e.g., inte-

ger rounding) followed by an entropy coding step (e.g., Huffman coding). By

writing the calculation of a pixel translation as a linear transformation and com-

bining it with the linear transformation of the JPEG algorithm, I developed a

compressed domain translation operator. By exploiting the approximation intro-

duced by the lossy step in JPEG (and part of MPEG), and by introducing a

framework for selectively skipping multiplies, I developed a technique called

dynamic condensation that reduced the complexity of compressed domain cal-

culation in proportion to the computational error desired in the final output. I

used this approach to implement a compressed domain translation operator, the

core of my compressed domain transcoder. In general, I found the transcoder to
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be about 1.5 to 3 times faster than its spatial domain counterpart. Transcoding

speed can also be dynamically varied at the expense of picture quality, a useful

feature in real-time systems where time is critical.

Though the technology has promise, further work remains before it can

be integrated into the MiddleMan infrastructure. In particular, the transcoder has

to be combined with a proxy-client video delivery protocol that is able to detect

client and local network loads and control transcoder output accordingly. 

Additionally, techniques developed for this transcoder, such as the com-

pressed domain translation and dynamic thresholding, can be utilized in a JPEG

to MPEG transcoder. Such a transcoder could be used for off-line recompres-

sion of proxy contents since MPEG typically is more efficient at video storage

than JPEG. Additionally, this transcoder could also be used to adapt high bitrate

videos to low bandwidth proxy-client connections.
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Appendix A

Computing the J and J operators

#define U       0

#define V       1

// Lookup table to encode the zig-zag scan order

static int zz[64][2] = {

    {1, 1},

    {2, 1}, {1, 2},

    {1, 3}, {2, 2}, {3, 1},

    {4, 1}, {3, 2}, {2, 3}, {1, 4},

    {1, 5}, {2, 4}, {3, 3}, {4, 2}, {5, 1},

    {6, 1}, {5, 2}, {4, 3}, {3, 4}, {2, 5}, {1, 6},

    {1, 7}, {2, 6}, {3, 5}, {4, 4}, {5, 3}, {6, 2}, {7, 1},

    {8, 1}, {7, 2}, {6, 3}, {5, 4}, {4, 5}, {3, 6}, {2, 7}, {1, 8},

    {2, 8}, {3, 7}, {4, 6}, {5, 5}, {6, 4}, {7, 3}, {8, 2},

    {8, 3}, {7, 4}, {6, 5}, {5, 6}, {4, 7}, {3, 8},

    {4, 8}, {5, 7}, {6, 6}, {7, 5}, {8, 4},

    {8, 5}, {7, 6}, {6, 7}, {5, 8},

    {6, 8}, {7, 7}, {8, 6},

    {8, 7}, {7, 8},

    {8, 8}};

// The default quantization table

static double q[8][8] = {

    { 16,  11,  12,  14,  12,  10,  16,  14},
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    { 13,  14,  18,  17,  16,  19,  24,  40},

    { 26,  24,  22,  22,  24,  49,  35,  37},

    { 29,  40,  58,  51,  61,  60,  57,  51},

    { 56,  55,  64,  72,  92,  78,  64,  68},

    { 87,  69,  55,  56,  80, 109,  81,  87},

    { 95,  98, 103, 104, 103,  62,  77, 113},

   {121, 112, 100, 120,  92, 101, 103,  99}};

// The following functions compute the compressed domain operators, 

// as desribed by Smith []

#define A(u)    ((u)? 0.5 : 0.5/SQRT2)

double C(int i,u) {

    return A(u)*cos((2*i+1)*u*PI/16.0);

}

double J(int i,j,k) {

    int u = zz[k][U]-1;

    int v = zz[k][V]-1;

    return C(i,u)*C(j,v)/q[u][v];

}

double Jhat(int k,i,j) {

    int u = zz[k][U]-1;

    int v = zz[k][V]-1;

    return C(i,u)*C(j,v)*q[u][v];

}

{

    double sum, T[64][64]; 

      for (k=0; k<64; k++) {

            for (l=0; l<64; l++) {

                sum = 0.0;

                for (i=0; i<8; i++)
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                    for (j=0; j<8-dx; j++)

                        sum += J(i, j+dx, l)*Jhat(k,i,j);

                T[k][l] = sum;

            }

}

Code To Compute Tdx
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