
CS5412:

TRANSACTIONS (II)

Ken Birman

CS5412 Spring 2014 (Cloud Computing: Birman) 1

Lecture XVIII

Today’s topic

CS5412 Spring 2014 (Cloud Computing: Birman)

2

 How do cloud systems actually use transactions?

 Last time we saw the basic transactional model.

 But as we saw from reviewing Brewer’s CAP theorem

and the BASE methodology, transactions are sometimes

too expensive and not scalable enough

 This has led to innovations on the transaction side

 Snapshot isolation (related to serializability and ACID)

 Business transactions (related to BASE)

Snapshot Isolation

CS5412 Spring 2014 (Cloud Computing: Birman)

3

 This idea started with discussion about lock-based
(pessimistic) concurrency control in comparison with
timestamp-based concurrency control

 With locking we incur high costs to obtain one lock at a
time. In distributed settings these costs are prohibitive.

 Deadlock is a risk, must use a deadlock avoidance scheme

 With timestamped concurrency control, we just pick a
time at which transactions will run.

 If times are picked to be unique, progress guaranteed
because some transaction will have the smallest TS and won’t
abort. But others may abort and be forced to retry

Pros and cons

CS5412 Spring 2014 (Cloud Computing: Birman)

4

 Each scheme attracted a following

 Locking is easy to design and works well if transactions

do a great deal of updates/writes

 But 2PC can be costly if transactions are doing mostly

reads and few writes

 In contrast, timestamp schemes work very well for read-

mostly or pure-read workloads and do a lot of rollback

if a workload has a mixture

Snapshot isolation

CS5412 Spring 2014 (Cloud Computing: Birman)

5

 Arose from database products that offered

“multiversion” data

 Popular in the cloud, because we sometimes don’t want

to throw anything away

 Each transaction can be seen as moving the database

from a consistent state to a new consistent state
time

T1 T2 T3 T5

10:02.421 10:03.006 10:04.521

{A=2,B=7,C=4} {B=8,D=3} {C=0} {A=25,D=99}

A multiversion database

CS5412 Spring 2014 (Cloud Computing: Birman)

6

 Instead of just keeping the value of the variables in

the database, we track each revision and when the

change was committed

T1 T2 T3 T5

10:02.421 10:03.006 10:04.521

{A=2,B=7,C=4} {B=8,D=3} {C=0} {A=25,D=99}

A 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 25

B 0 0 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8

C 0 0 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 99

10:08.571

Snapshot isolation idea

CS5412 Spring 2014 (Cloud Computing: Birman)

7

 For a read transaction, just pick a time at which the

reads should be executed (ideally, a recent time

corresponding to the commit of some transaction)

 If transactions really take us from consistent state to

consistent state, this will be a “safe” time to execute

 Reads don’t change the state so execute without risk of

needing to abort

 Then use locking to execute transactions that need

to perform update operations

Fancier snapshot isolation

CS5412 Spring 2014 (Cloud Computing: Birman)

8

 Often used for all reads, not just read-only

transactions

 Runs dynamically: Instead of picking just one time at

which to run, pick a “range” of times and track it

 A single window is used even if X accesses many

variables

Fancier snapshot isolation

CS5412 Spring 2014 (Cloud Computing: Birman)

9

 ... pick a “range” of times and track it

 E.g. transaction X might initially pick time range

[0...NOW]

 As X actually accesses variables, narrow the time

window of the transaction [max(old start, new start),

min(old end, new end)]

 E.g. X tries to read variable A and because A is locked for

update by transaction Y, reads A=2

 A=2 was valid from time [10:02.421,10:08.57]

 This narrows the window of validity for transaction X

How can a window vanish?

CS5412 Spring 2014 (Cloud Computing: Birman)

10

 Occurs if there just isn’t any point in the serialization

order at which this set of reads could have

happened

 Result of an update that invalidates some past read

 Causes transaction to abort

Complications

CS5412 Spring 2014 (Cloud Computing: Birman)

11

 In fact, snapshot isolation doesn’t guarantee full

serializability

 An update transaction might “invalidate” a read by

updating A at an unexpectedly early time

 Unless we check the read-only transactions won’t know

which ones to abort

 Real issue: X may already have finished

 If we use s.o. for reads in read/write transactions,

we get additional “bad cases”

Snapshot isolation is widely used

CS5412 Spring 2014 (Cloud Computing: Birman)

12

 Works well with multitier cloud computing
infrastructures

 Caching structures that track validity intervals for
cached variables are common

 Several papers have shown how to make snapshot
isolation fully serializable, but methods haven’t been
widely adopted (and may never be)

 Fits nicely with BASE: Basically available, soft state
replication with eventual consistency

 Often we don’t worry about consistency for the client

Consistency: Two “views”

CS5412 Spring 2014 (Cloud Computing: Birman)

13

 Client sees a snapshot of the database

that is internally consistent and “might” be valid

 Internally, database is genuinely serializable, but

the states clients saw aren’t tracked and might

sometimes become invalidated by an update

 Inconsistency is tolerated because it yields such big

speedups, although some clients see “wrong” results

Do clients need perfect truth?

CS5412 Spring 2014 (Cloud Computing: Birman)

14

 If so, one recent idea is to “validate” at commit time

 Many systems have a core transactional system that does updates

 Collections of read-only cached replicas are created at the edge where
clients reside

 Read-only transactions run on these (true) replicas, with no risk of error

 Read/write transactions track the versions read and the changes they
“want” to make (intentions list)

 Then package these intended changes as ultra-fast transactions to
be sent to the core system

 It checks that these versions are still current,and if so, applies the
updates, like in the Sinfonia system (discussed in class)

 If not, transaction “aborts” and must be retried

 Effect is to soak up as much hard work as possible at the edge

A picture of how this works

CS5412 Spring 2014 (Cloud Computing: Birman)

15

Core

Cached

replica

Cached

replica

read only transaction

can safely execute

on cache

(1) update

transaction runs

on cache first

(2) simplified transaction

lists versions to validate,

then values to write for

updates

(3) If successful,

Core reports commit

Core issue: How much contention?

CS5412 Spring 2014 (Cloud Computing: Birman)

16

 Root challenge is to understand

 How many updates will occur

 How often those updates conflict with concurrent reads

or with concurrent updates

 In most of today’s really massive cloud applications

either contention is very rare, in which case

transactional database solutions work, or we end up

cutting corners and relaxing consistency

Tradeoff: Scale versus consistency

CS5412 Spring 2014 (Cloud Computing: Birman)

17

 With a core system we can impose strong

consistency, but doing so limits scalability

 It needs to “validate” every update

 At some point it will get overloaded

 But if we don’t use a core system we can’t

guarantee consistency

 We may be able to design the application to tolerate

small inconsistencies. Many web systems work this way

Are there other options?

CS5412 Spring 2014 (Cloud Computing: Birman)

18

 How does this approach compare with scalable

replication using Paxos or Virtual Synchrony?

 In those systems the “contention” related to the

order in which multicasts were delivered

 Virtual synchrony strives to find ways of weakening

required ordering to gain performance

 Paxos is like serializability: One size fits all. But this is

precisely why Brewer ended up proposing CAP!

Business transactions

CS5412 Spring 2014 (Cloud Computing: Birman)

19

 The Web Services standards introduces (yet)

another innovation in the space

 They define a standard transactional API for cloud

computing, and this is widely supported by

transactional products of all kinds

 But they also define what are called “business

transactions”

Think of Expedia

CS5412 Spring 2014 (Cloud Computing: Birman)

20

 You book a trip to Costa Rica

 Flight down involves two separate carriers

 Fourteen nights in a total of three hotels

 Rental car for six days, bus tours for the rest

 Two rainforest tours, one with “zip line experience”

 Dinner reservation for two on your friend’s birthday at

the Inka Grill restaurant in San Jose

 Travel insurance covering stomach ailiments (costs extra)

 Special “babysit your dog” service in Ithaca

Should this be one transaction?

CS5412 Spring 2014 (Cloud Computing: Birman)

21

 Traditionally the transactional community would

have argued that cases like these are precisely

what transactions were invented for

 In practice... it makes little sense to use transactions

 Multiple services, perhaps with very distinct APIs (e.g.

may just need to phone the Inka Grill directly)

 Many ways to roll back if something goes wrong, like

just cancelling the car reservation

Concept of a business transaction

CS5412 Spring 2014 (Cloud Computing: Birman)

22

 Instead of a single transaction, models something like

this as a whole series of separate transactions

 Maybe in a few cases done as true transactions

 But others might be done in business-specific ways

 The standard assumes that each has its own

specialized rollback technology available

 It also requires a “reliable message queuing” system

Reliable message queuing

CS5412 Spring 2014 (Cloud Computing: Birman)

23

 Basically, email for programs

 Like with normal email, can send messages to addresses

and they will be held until read/deleted

 Spooler is assumed to be highly available and reliable

 Generally has some kind of multi-stage structure: spools

messages near the sender until handed off to the

server, and only deleted once safely logged

How this works

CS5412 Spring 2014 (Cloud Computing: Birman)

24

 Application “sends” a set of requests, like one email

each

 Spooler accepts the set and executes them one by

one, restarting any that are disrupted by crashes

 Handling of other kinds of failures (“Sorry sir, the

restaurant is fully booked that night”) is under

programmatic control

 You need to add details to tell the system what to do

 It won’t know that the Mexicali Cafe is a fallback

Business transactions

CS5412 Spring 2014 (Cloud Computing: Birman)

25

 We create a sequence of transactions and of the

associated undo actions for each

 Spool the series of transactions, linked by a business-

transaction-identifier

 As each is executed, the undo action is spooled but in a

“disabled” state

 On commit of the final transaction in the sequence, the

undo actions are deleted

 On abort, the undo actions are enabled and run as a

kind of reverse business transaction

Business transactions and BASE

CS5412 Spring 2014 (Cloud Computing: Birman)

26

 If our reservations go part-way through but then the

dog-sitter step fails, we end up leaving the world in

a kind of inconsistent state

 But soon after we run the undo actions and this reverses

the problems we created

 Even if someone failed to get a reservation at Inka

Grill because of your temporarily booked table, they

won’t be so surprised when they try again in a few

days and now a table is free

“Consistency is much overrated”

CS5412 Spring 2014 (Cloud Computing: Birman)

27

 We hear this a lot lately

 But you also need to wonder... what about

 Medical care systems that run on the Internet?

 Google’s self-driving cars?

 The smart power grid

If eBay (BASE) ran the power grid
28

 With BASE, control system could have “two voices”

 In physical infrastructure settings, consequences can

be very costly

“Switch on the 50KV Canadian bus”

“Canadian 50KV bus going offline”

Bang!

CS5412 Spring 2014 (Cloud Computing: Birman)

The big problem

CS5412 Spring 2014 (Cloud Computing: Birman)

29

 Scalable consistency is hard!

 Not impossible... but harder than weak consistency, or

no consistency.

 Today’s most profitable web ventures manage quite

well with weak models like BASE

 Run a lot of stuff in parallel

 Replicate data when you get a chance, but no rush

 Sweep any errors under the rug

The big problem

CS5412 Spring 2014 (Cloud Computing: Birman)

30

 Not everyone is focused on
the same property

 Some care mostly about scale and performance

 Some need really rapid response times

 Some genuinely do need consistency, but even then the
definition could include different notions of ordering and
durability

 Some need dynamic membership and others don’t

 No one-size-fits-all options here! But today’s cloud is
optimized for CAP, NoSQL, BASE…

What happens tomorrow?

CS5412 Spring 2014 (Cloud Computing: Birman)

31

 Nobody can compete with the cloud “price point”

 In modern technology, the cheapest solution always wins

 It becomes the only option available

 So everything migrates to the winner

 We’ve seen this again and again

 The cloud will win. You guys will build the winning

solutions, and they will be cloud based!

Why is it hard to cloudify high assurance?

CS5412 Spring 2014 (Cloud Computing: Birman)

32

 Let’s look at Isis2

 A cloud-based high assurance story...

 Can we view it as a blueprint for cloud-scale

resiliency of a kind the masses might adopt?

High assurance: Different perspectives

CS5412 Spring 2014 (Cloud Computing: Birman)

33

 A single platform has many kinds of “users”

Programmer: Depends on platform properties

but treats implementation as a black box.

End user: Seeks confidence that the system is safe

and that if it goes offline, a warning will appear

Protocol designer: Uses formal specification and

logic to prove implementation of protocols correct.
 Each brings different objectives

and requires different methods

Datacenter operator: Requires scalability,

xxxelasticity, and guarantees that applications

xxxxxxwon’t disrupt shared resources

http://images.google.com/imgres?imgurl=http://meetthetaylors.com/images/puzzled-man.jpg&imgrefurl=http://neverknewthat.wordpress.com/category/sql/&usg=__Kv_M1kmsrsSOuzcB8QkApJOty4c=&h=268&w=447&sz=81&hl=en&start=15&um=1&tbnid=KH80U7j7-f5cKM:&tbnh=76&tbnw=127&prev=/images?q=puzzled&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1

Examples of these perspectives

CS5412 Spring 2014 (Cloud Computing: Birman)

34

 The end-user (the doctor) wants the system to be trustworthy.
Means different things for different use-scenarios.

 The developer (you) needs a way to reason about
applications you build. “My code will work because…”

 The tool builder (me, or Leslie) needs to prove the protocols
in Isis2 or Paxos correct. “Paxos is safe because…”

 The cloud computing vendor wants scalability without
hassles. Doesn’t want instability or other issues.

Lessons one learns... and challenges

 Formal models are powerful conceptual tools

 Impossible to build a system like Isis2 without them

 And Isis2 in turn enables high-assurance applications

 Yet our science of formal methods remains too

narrow in its focus

 Teaches us how to reason about a single protocol

 But also need to think about communities of protocols,

concurrency everywhere, cross-process dependencies

CS5412 Spring 2014 (Cloud Computing: Birman)

35

The challenge?

 Which road leads forward?

1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”

2. Develop new formal tools for dealing with

complexities of systems built as communities of models

3. Explore completely new kinds of formal models that

might let us step entirely out of the box

CS5412 Spring 2014 (Cloud Computing: Birman)

36

The challenge?

 Which road leads forward?

1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”

2. Develop new formal tools for dealing with

complexities of systems built as communities of models

3. Explore completely new kinds of formal models that

might let us step entirely out of the box

Doubtful:

 The resulting formal model would be unwieldy

 Theorem proving obligations rise more than linearly in model size

CS5412 Spring 2014 (Cloud Computing: Birman)

37

The challenge?

 Which road leads forward?

1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”

2. Develop new formal tools for dealing with

complexities of systems built as communities of models

3. Explore completely new kinds of formal models that

might let us step entirely out of the box
Possible, but hard:

 Need to abstract behaviors of these complex “modules”

 On the other hand, this is how one debugs platforms like Isis2

CS5412 Spring 2014 (Cloud Computing: Birman)

38

The challenge?

 Which road leads forward?

1. Extend our formal execution model to cover all

elements of the desired solution: a “formal system”

2. Develop new formal tools for dealing with

complexities of systems built as communities of models

3. Explore completely new kinds of formal models that

might let us step entirely out of the box

Intriguing:
 All of this was predicated on a style of deterministic, agreement-based model

 Could self-stabilizing protocols be composed in ways that permit us to tackle

 equally complex applications but in an inherently simpler manner?

CS5412 Spring 2014 (Cloud Computing: Birman)

39

Summary

CS5412 Spring 2014 (Cloud Computing: Birman)

40

 We’ve seen several high assurance “stories”

 Paxos

 Virtual synchrony

 Transactions

 In each case the cloud community
says “too expensive” and even
proves theorems like CAP

 But while “just say no” is easy, results
are sometimes harmful.

 Must we accept a low-assurance cloud?

 And yet things that need high assurance are coming

