
CS5412:

HOW DURABLE SHOULD IT BE?

Ken Birman

1 CS5412 Spring 2014 (Cloud Computing: Birman)

Lecture XV

Durability

CS5412 Spring 2014 (Cloud Computing: Birman)

2

 When a system accepts an update and won’t lose it,

we say that event has become durable

 They say the cloud has a permanent memory

 Once data enters a cloud system, they rarely discard it

 More common to make lots of copies, index it…

 But loss of data due to a failure is an issue

Should Consistency “require” Durability?

CS5412 Spring 2014 (Cloud Computing: Birman)

3

 The Paxos protocol guarantees durability to the

extent that its command lists are durable

 Normally we run Paxos with the command list on

disk, and hence Paxos can survive any crash

 In Isis2, this is g.SafeSend with the “DiskLogger” active

 But costly

Consider the first tier of the cloud

CS5412 Spring 2014 (Cloud Computing: Birman)

4

 Recall that applications in the first tier are limited to

what Brewer calls “Soft State”

 They are basically prepositioned virtual machines that

the cloud can launch or shutdown very elastically

 But when they shut down, lose their “state” including any

temporary files

 Always restart in the initial state that was wrapped up

in the VM when it was built: no durable disk files

Examples of soft state?

CS5412 Spring 2014 (Cloud Computing: Birman)

5

 Anything that was cached but “really” lives in a database or
file server elsewhere in the cloud

 If you wake up with a cold cache, you just need to reload it with
fresh data

 Monitoring parameters, control data that you need to get
“fresh” in any case

 Includes data like “The current state of the air traffic control
system” – for many applications, your old state is just not used
when you resume after being offline

 Getting fresh, current information guarantees that you’ll be in sync
with the other cloud components

 Information that gets reloaded in any case, e.g. sensor values

Would it make sense to use Paxos?

CS5412 Spring 2014 (Cloud Computing: Birman)

6

 We do maintain sharded data in the first tier and

some requests certainly trigger updates

 So that argues in favor of a consistency mechanism

 In fact consistency can be important even in the first

tier, for some cloud computing uses

Control of the smart power grid
7

 Suppose that a cloud control system speaks with

“two voices”

 In physical infrastructure settings, consequences can

be very costly

“Switch on the 50KV Canadian bus”

“Canadian 50KV bus going offline”

Bang!

CS5412 Spring 2014 (Cloud Computing: Birman)

So… would we use Paxos here?

CS5412 Spring 2014 (Cloud Computing: Birman)

8

 In discussion of the CAP conjecture and their papers

on the BASE methodology, authors generally assume

that “C” in CAP is about ACID guarantees or Paxos

 Then argue that these bring too much delay to be

used in settings where fast response is critical

 Hence they argue against Paxos

By now we’ve seen a second option

CS5412 Spring 2014 (Cloud Computing: Birman)

9

 Virtual synchrony Send is “like” Paxos yet different

 Paxos has a very strong form of durability

 Send has consistency but weak durability unless you use
the “Flush” primitive. Send+Flush is amnesia-free

 Further complicating the issue, in Isis2 Paxos is called
SafeSend, and has several options

 Can set the number of acceptors

 Can also configure to run in-memory or with disk logging

How would we pick?

CS5412 Spring 2014 (Cloud Computing: Birman)

10

 The application code looks nearly identical!

 g.Send(GRIDCONTROL, action to take)

 g.SafeSend(GRIDCONTROL, action to take)

 Yet the behavior is very different!

 SafeSend is slower

 … and has stronger durability properties. Or does it?

SafeSend in the first tier

CS5412 Spring 2014 (Cloud Computing: Birman)

11

 Observation: like it or not we just don’t have a

durable place for disk files in the first tier

 The only forms of durability are

 In-memory replication within a shard

 Inner-tier storage subsystems like databases or files

 Moreover, the first tier is expect to be rapidly

responsive and to talk to inner tiers asynchronously

So our choice is simplified

CS5412 Spring 2014 (Cloud Computing: Birman)

12

 No matter what anyone might tell you, in fact the

only real choices are between two options

 Send + Flush: Before replying to the external customer,

we know that the data is replicated in the shard

 In-memory SafeSend: On an update by update basis,

before each update is taken, we know that the update

will be done at every replica in the shard

Consistency model: Virtual synchrony meets

Paxos (and they live happily ever after…)
13

 Virtual synchrony is a “consistency” model:

 Synchronous runs: indistinguishable from non-replicated object
that saw the same updates (like Paxos)

 Virtually synchronous runs are indistinguishable from
synchronous runs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

CS5412 Spring 2014 (Cloud Computing: Birman)

SafeSend versus Send

CS5412 Spring 2014 (Cloud Computing: Birman)

14

 Send can have different delivery orders if there are

different senders

 In fact Isis2 offers other options, we’ll discuss them next

time.

 SafeSend can’t have the strange amnesia problem

see in the top right corner on the timeline picture

 But these guarantees are pretty costly!

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

15

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Virtually synchronous execution “amnesia” example (Send but without calling Flush)

What made it odd?

CS5412 Spring 2014 (Cloud Computing: Birman)

16

 In this example a network partition occurred and,

before anyone noticed, some messages were sent

and delivered

 “Flush” would have blocked the caller, and SafeSend

would not have delivered those messages

 Then the failure erases the events in question: no

evidence remains at all

 So was this bad? OK? A kind of transient internal

inconsistency that repaired itself?

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

17

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

18

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

19

Paxos avoided the issue… at a price

CS5412 Spring 2014 (Cloud Computing: Birman)

20

 SafeSend, Paxos and other multi-phase protocols

don’t deliver in the first round/phase

 This gives them stronger safety on a message by

message basis, but also makes them slower and less

scalable

 Is this a price we should pay for better speed?

Update the monitoring and

alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen

by end-user would

also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an

individual first-tier replica

Soft-state first-tier service

 A B C

D

 An online monitoring system might focus on real-time response

and be less concerned with data durability

21

Revisiting our medical scenario

CS5412 Spring 2014 (Cloud Computing: Birman)

Isis2: Send v.s. in-memory SafeSend
22

Send scales best, but SafeSend with

in-memory (rather than disk) logging and small

numbers of acceptors isn’t terrible.

CS5412 Spring 2014 (Cloud Computing: Birman)

Jitter: how “steady” are latencies?

CS5412 Spring 2014 (Cloud Computing: Birman)

23

The “spread” of latencies is much

better (tighter) with Send: the 2-phase

SafeSend protocol is sensitive to

scheduling delays

Flush delay as function of shard size

CS5412 Spring 2014 (Cloud Computing: Birman)

24

Flush is fairly fast if we only wait for

acks from 3-5 members, but is slow

if we wait for acks from all members.

After we saw this graph, we changed

Isis2 to let users set the threshold.

First-tier “mindset” for tolerant f faults

CS5412 Spring 2014 (Cloud Computing: Birman)

25

 Suppose we do this:

 Receive request

 Compute locally using consistent data and perform
updates on sharded replicated data, consistently

 Asynchronously forward updates to services deeper in
cloud but don’t wait for them to be performed

 Use the “flush” to make sure we have f+1replicas

 Call this an “amnesia free” solution. Will it be fast
enough? Durable enough?

Which replicas?

CS5412 Spring 2014 (Cloud Computing: Birman)

26

 One worry is this

 If the first tier is totally under control of a cloud

management infrastructure, elasticity could cause our shard

to be entirely shut down “abruptly”

 Fortunately, most cloud platforms do have some ways to

notify management system of shard membership

 This allows the membership system to shut down members of

multiple shards without ever depopulating any single shard

 Now the odds of a sudden amnesia event become low

Advantage: Send+Flush?

CS5412 Spring 2014 (Cloud Computing: Birman)

27

 It seems that way, but there is a counter-argument

 The problem centers on the Flush delay

 We pay it both on writes and on some reads

 If a replica has been updated by an unstable multicast,

it can’t safely be read until a Flush occurs

 Thus need to call Flush prior to replying to client even in

a read-only procedure

 Delay will occur only if there are pending unstable multicasts

We don’t need this with SafeSend

CS5412 Spring 2014 (Cloud Computing: Birman)

28

 In effect, it does the work of Flush prior to the

delivery (“learn”) event

 So we have slower delivery, but now any replica is

always safe to read and we can reply to the client

instantly

 In effect the updater sees delay on his critical path,

but the reader has no delays, ever

Advantage: SafeSend?

CS5412 Spring 2014 (Cloud Computing: Birman)

29

 Argument would be that with both protocols, there is

a delay on the critical path where the update was

initiated

 But only Send+Flush ever delays in a pure reader

 So SafeSend is faster!

 But this argument is flawed…

Flaws in that argument

CS5412 Spring 2014 (Cloud Computing: Birman)

30

 The delays aren’t of the same length (in fact the

pure reader calls Flush but would rarely be

delayed)

 Moreover, if a request does multiple updates, we

delay on each of them for SafeSend, but delay just

once if we do Send…Send…Send…Flush

 How to resolve?

Only real option is to experiment

CS5412 Spring 2014 (Cloud Computing: Birman)

31

 In the cloud we often see questions that arise at

 Large scale,

 High event rates,

 … and where millisecond timings matter

 Best to use tools to help visualize performance

 Let’s see how one was used in developing Isis2

Something was… strangely slow

CS5412 Spring 2014 (Cloud Computing: Birman)

32

 We weren’t sure why or where

 Only saw it at high data rates in big shards

 So we ended up creating a visualization tool just to
see how long the system needed from when a
message was sent until it was delivered

 Here’s what we saw

Debugging: Stabilization bug
33

Eventually it pauses. The delay

is similar to a Flush delay. A

backlog was forming

At first Isis2 is running very

fast (as we later learned, too

fast to sustain)

CS5412 Spring 2014 (Cloud Computing: Birman)

Debugging : Stabilization bug fixed
34

The revised protocol is

actually a tiny bit slower, but

now we can sustain the rate

CS5412 Spring 2014 (Cloud Computing: Birman)

Debugging : 358-node run slowdown
35

Original problem but at an

even larger scale

CS5412 Spring 2014 (Cloud Computing: Birman)

358-node run slowdown: Zoom in
36

Hard to make sense of the

situation: Too much data!

CS5412 Spring 2014 (Cloud Computing: Birman)

358-node run slowdown: Filter
37

Filtering is a necessary part

of this kind of experimental

performance debugging!

CS5412 Spring 2014 (Cloud Computing: Birman)

What did we just see?

CS5412 Spring 2014 (Cloud Computing: Birman)

38

 Flow control is pretty important!

 With a good multicast flow control algorithm,
 we can garbage collect spare copies of our
Send or OrderedSend messages before they
pile up and stay in a kind of balance

 Why did we need spares?
… To resend if the sender fails.

 When can they be garbage collected?
… When they become stable

 How can the sender tell?
… Because it gets acknowledgements from recipients

What did we just see?

CS5412 Spring 2014 (Cloud Computing: Birman)

39

 … in effect, we saw that one can get a reliable

virtually synchronous ordered multicast to deliver

messages at a steady rate

Would this be true for Paxos too?

CS5412 Spring 2014 (Cloud Computing: Birman)

40

 Yes, for some versions of Paxos

 The Isis2 version of Paxos, SafeSend, works a bit like

OrderedSend and is stable for a similar reason

 There are also versions of Paxos such a ring Paxos that

have a structure designed to make them stable and to

give them a flow control property

 But not every version of Paxos is stable in this sense

Interesting insight…

CS5412 Spring 2014 (Cloud Computing: Birman)

41

 In fact, most versions of Paxos will tend to be bursty.…

 The fastest QW group members respond to a request before the
slowest N-QW, allowing them to advance while the laggards
develop a backlog

 This lets Paxos surge ahead, but suppose that conditions change
(remember, the cloud is a world of strange scheduling delays
and load shifts). One of those laggards will be needed to
reestablish a quorum of size QW

 … but it may take a while for them to deal with the backlog
and join the group!

 Hence Paxos (as normally implemented) will exhibit long
delays, triggered when cloud-computing conditions change

Conclusions?

CS5412 Spring 2014 (Cloud Computing: Birman)

42

 A question like “how much durability do I need in the first
tier of the cloud” is easy to ask… harder to answer!

 Study of the choices reveals two basic options

 Send + Flush

 SafeSend, in-memory

 They actually are similar but SafeSend has an internal
“flush” before any delivery occurs, on each request

 SafeSend seems more costly

 Steadiness of the underlying flow of messages favors optimistic
early delivery protocols such as Send and OrderedSend.
Classical versions of Paxos may be very bursty

