
CS5412:

HOW DURABLE SHOULD IT BE?

Ken Birman

1 CS5412 Spring 2014 (Cloud Computing: Birman)

Lecture XV

Durability

CS5412 Spring 2014 (Cloud Computing: Birman)

2

 When a system accepts an update and won’t lose it,

we say that event has become durable

 They say the cloud has a permanent memory

 Once data enters a cloud system, they rarely discard it

 More common to make lots of copies, index it…

 But loss of data due to a failure is an issue

Should Consistency “require” Durability?

CS5412 Spring 2014 (Cloud Computing: Birman)

3

 The Paxos protocol guarantees durability to the

extent that its command lists are durable

 Normally we run Paxos with the command list on

disk, and hence Paxos can survive any crash

 In Isis2, this is g.SafeSend with the “DiskLogger” active

 But costly

Consider the first tier of the cloud

CS5412 Spring 2014 (Cloud Computing: Birman)

4

 Recall that applications in the first tier are limited to

what Brewer calls “Soft State”

 They are basically prepositioned virtual machines that

the cloud can launch or shutdown very elastically

 But when they shut down, lose their “state” including any

temporary files

 Always restart in the initial state that was wrapped up

in the VM when it was built: no durable disk files

Examples of soft state?

CS5412 Spring 2014 (Cloud Computing: Birman)

5

 Anything that was cached but “really” lives in a database or
file server elsewhere in the cloud

 If you wake up with a cold cache, you just need to reload it with
fresh data

 Monitoring parameters, control data that you need to get
“fresh” in any case

 Includes data like “The current state of the air traffic control
system” – for many applications, your old state is just not used
when you resume after being offline

 Getting fresh, current information guarantees that you’ll be in sync
with the other cloud components

 Information that gets reloaded in any case, e.g. sensor values

Would it make sense to use Paxos?

CS5412 Spring 2014 (Cloud Computing: Birman)

6

 We do maintain sharded data in the first tier and

some requests certainly trigger updates

 So that argues in favor of a consistency mechanism

 In fact consistency can be important even in the first

tier, for some cloud computing uses

Control of the smart power grid
7

 Suppose that a cloud control system speaks with

“two voices”

 In physical infrastructure settings, consequences can

be very costly

“Switch on the 50KV Canadian bus”

“Canadian 50KV bus going offline”

Bang!

CS5412 Spring 2014 (Cloud Computing: Birman)

So… would we use Paxos here?

CS5412 Spring 2014 (Cloud Computing: Birman)

8

 In discussion of the CAP conjecture and their papers

on the BASE methodology, authors generally assume

that “C” in CAP is about ACID guarantees or Paxos

 Then argue that these bring too much delay to be

used in settings where fast response is critical

 Hence they argue against Paxos

By now we’ve seen a second option

CS5412 Spring 2014 (Cloud Computing: Birman)

9

 Virtual synchrony Send is “like” Paxos yet different

 Paxos has a very strong form of durability

 Send has consistency but weak durability unless you use
the “Flush” primitive. Send+Flush is amnesia-free

 Further complicating the issue, in Isis2 Paxos is called
SafeSend, and has several options

 Can set the number of acceptors

 Can also configure to run in-memory or with disk logging

How would we pick?

CS5412 Spring 2014 (Cloud Computing: Birman)

10

 The application code looks nearly identical!

 g.Send(GRIDCONTROL, action to take)

 g.SafeSend(GRIDCONTROL, action to take)

 Yet the behavior is very different!

 SafeSend is slower

 … and has stronger durability properties. Or does it?

SafeSend in the first tier

CS5412 Spring 2014 (Cloud Computing: Birman)

11

 Observation: like it or not we just don’t have a

durable place for disk files in the first tier

 The only forms of durability are

 In-memory replication within a shard

 Inner-tier storage subsystems like databases or files

 Moreover, the first tier is expect to be rapidly

responsive and to talk to inner tiers asynchronously

So our choice is simplified

CS5412 Spring 2014 (Cloud Computing: Birman)

12

 No matter what anyone might tell you, in fact the

only real choices are between two options

 Send + Flush: Before replying to the external customer,

we know that the data is replicated in the shard

 In-memory SafeSend: On an update by update basis,

before each update is taken, we know that the update

will be done at every replica in the shard

Consistency model: Virtual synchrony meets

Paxos (and they live happily ever after…)
13

 Virtual synchrony is a “consistency” model:

 Synchronous runs: indistinguishable from non-replicated object
that saw the same updates (like Paxos)

 Virtually synchronous runs are indistinguishable from
synchronous runs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

CS5412 Spring 2014 (Cloud Computing: Birman)

SafeSend versus Send

CS5412 Spring 2014 (Cloud Computing: Birman)

14

 Send can have different delivery orders if there are

different senders

 In fact Isis2 offers other options, we’ll discuss them next

time.

 SafeSend can’t have the strange amnesia problem

see in the top right corner on the timeline picture

 But these guarantees are pretty costly!

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

15

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Virtually synchronous execution “amnesia” example (Send but without calling Flush)

What made it odd?

CS5412 Spring 2014 (Cloud Computing: Birman)

16

 In this example a network partition occurred and,

before anyone noticed, some messages were sent

and delivered

 “Flush” would have blocked the caller, and SafeSend

would not have delivered those messages

 Then the failure erases the events in question: no

evidence remains at all

 So was this bad? OK? A kind of transient internal

inconsistency that repaired itself?

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

17

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

18

Looking closely at that “oddity”

CS5412 Spring 2014 (Cloud Computing: Birman)

19

Paxos avoided the issue… at a price

CS5412 Spring 2014 (Cloud Computing: Birman)

20

 SafeSend, Paxos and other multi-phase protocols

don’t deliver in the first round/phase

 This gives them stronger safety on a message by

message basis, but also makes them slower and less

scalable

 Is this a price we should pay for better speed?

Update the monitoring and

alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen

by end-user would

also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an

individual first-tier replica

Soft-state first-tier service

 A B C

D

 An online monitoring system might focus on real-time response

and be less concerned with data durability

21

Revisiting our medical scenario

CS5412 Spring 2014 (Cloud Computing: Birman)

Isis2: Send v.s. in-memory SafeSend
22

Send scales best, but SafeSend with

in-memory (rather than disk) logging and small

numbers of acceptors isn’t terrible.

CS5412 Spring 2014 (Cloud Computing: Birman)

Jitter: how “steady” are latencies?

CS5412 Spring 2014 (Cloud Computing: Birman)

23

The “spread” of latencies is much

better (tighter) with Send: the 2-phase

SafeSend protocol is sensitive to

scheduling delays

Flush delay as function of shard size

CS5412 Spring 2014 (Cloud Computing: Birman)

24

Flush is fairly fast if we only wait for

acks from 3-5 members, but is slow

if we wait for acks from all members.

After we saw this graph, we changed

Isis2 to let users set the threshold.

First-tier “mindset” for tolerant f faults

CS5412 Spring 2014 (Cloud Computing: Birman)

25

 Suppose we do this:

 Receive request

 Compute locally using consistent data and perform
updates on sharded replicated data, consistently

 Asynchronously forward updates to services deeper in
cloud but don’t wait for them to be performed

 Use the “flush” to make sure we have f+1replicas

 Call this an “amnesia free” solution. Will it be fast
enough? Durable enough?

Which replicas?

CS5412 Spring 2014 (Cloud Computing: Birman)

26

 One worry is this

 If the first tier is totally under control of a cloud

management infrastructure, elasticity could cause our shard

to be entirely shut down “abruptly”

 Fortunately, most cloud platforms do have some ways to

notify management system of shard membership

 This allows the membership system to shut down members of

multiple shards without ever depopulating any single shard

 Now the odds of a sudden amnesia event become low

Advantage: Send+Flush?

CS5412 Spring 2014 (Cloud Computing: Birman)

27

 It seems that way, but there is a counter-argument

 The problem centers on the Flush delay

 We pay it both on writes and on some reads

 If a replica has been updated by an unstable multicast,

it can’t safely be read until a Flush occurs

 Thus need to call Flush prior to replying to client even in

a read-only procedure

 Delay will occur only if there are pending unstable multicasts

We don’t need this with SafeSend

CS5412 Spring 2014 (Cloud Computing: Birman)

28

 In effect, it does the work of Flush prior to the

delivery (“learn”) event

 So we have slower delivery, but now any replica is

always safe to read and we can reply to the client

instantly

 In effect the updater sees delay on his critical path,

but the reader has no delays, ever

Advantage: SafeSend?

CS5412 Spring 2014 (Cloud Computing: Birman)

29

 Argument would be that with both protocols, there is

a delay on the critical path where the update was

initiated

 But only Send+Flush ever delays in a pure reader

 So SafeSend is faster!

 But this argument is flawed…

Flaws in that argument

CS5412 Spring 2014 (Cloud Computing: Birman)

30

 The delays aren’t of the same length (in fact the

pure reader calls Flush but would rarely be

delayed)

 Moreover, if a request does multiple updates, we

delay on each of them for SafeSend, but delay just

once if we do Send…Send…Send…Flush

 How to resolve?

Only real option is to experiment

CS5412 Spring 2014 (Cloud Computing: Birman)

31

 In the cloud we often see questions that arise at

 Large scale,

 High event rates,

 … and where millisecond timings matter

 Best to use tools to help visualize performance

 Let’s see how one was used in developing Isis2

Something was… strangely slow

CS5412 Spring 2014 (Cloud Computing: Birman)

32

 We weren’t sure why or where

 Only saw it at high data rates in big shards

 So we ended up creating a visualization tool just to
see how long the system needed from when a
message was sent until it was delivered

 Here’s what we saw

Debugging: Stabilization bug
33

Eventually it pauses. The delay

is similar to a Flush delay. A

backlog was forming

At first Isis2 is running very

fast (as we later learned, too

fast to sustain)

CS5412 Spring 2014 (Cloud Computing: Birman)

Debugging : Stabilization bug fixed
34

The revised protocol is

actually a tiny bit slower, but

now we can sustain the rate

CS5412 Spring 2014 (Cloud Computing: Birman)

Debugging : 358-node run slowdown
35

Original problem but at an

even larger scale

CS5412 Spring 2014 (Cloud Computing: Birman)

358-node run slowdown: Zoom in
36

Hard to make sense of the

situation: Too much data!

CS5412 Spring 2014 (Cloud Computing: Birman)

358-node run slowdown: Filter
37

Filtering is a necessary part

of this kind of experimental

performance debugging!

CS5412 Spring 2014 (Cloud Computing: Birman)

What did we just see?

CS5412 Spring 2014 (Cloud Computing: Birman)

38

 Flow control is pretty important!

 With a good multicast flow control algorithm,
 we can garbage collect spare copies of our
Send or OrderedSend messages before they
pile up and stay in a kind of balance

 Why did we need spares?
… To resend if the sender fails.

 When can they be garbage collected?
… When they become stable

 How can the sender tell?
… Because it gets acknowledgements from recipients

What did we just see?

CS5412 Spring 2014 (Cloud Computing: Birman)

39

 … in effect, we saw that one can get a reliable

virtually synchronous ordered multicast to deliver

messages at a steady rate

Would this be true for Paxos too?

CS5412 Spring 2014 (Cloud Computing: Birman)

40

 Yes, for some versions of Paxos

 The Isis2 version of Paxos, SafeSend, works a bit like

OrderedSend and is stable for a similar reason

 There are also versions of Paxos such a ring Paxos that

have a structure designed to make them stable and to

give them a flow control property

 But not every version of Paxos is stable in this sense

Interesting insight…

CS5412 Spring 2014 (Cloud Computing: Birman)

41

 In fact, most versions of Paxos will tend to be bursty.…

 The fastest QW group members respond to a request before the
slowest N-QW, allowing them to advance while the laggards
develop a backlog

 This lets Paxos surge ahead, but suppose that conditions change
(remember, the cloud is a world of strange scheduling delays
and load shifts). One of those laggards will be needed to
reestablish a quorum of size QW

 … but it may take a while for them to deal with the backlog
and join the group!

 Hence Paxos (as normally implemented) will exhibit long
delays, triggered when cloud-computing conditions change

Conclusions?

CS5412 Spring 2014 (Cloud Computing: Birman)

42

 A question like “how much durability do I need in the first
tier of the cloud” is easy to ask… harder to answer!

 Study of the choices reveals two basic options

 Send + Flush

 SafeSend, in-memory

 They actually are similar but SafeSend has an internal
“flush” before any delivery occurs, on each request

 SafeSend seems more costly

 Steadiness of the underlying flow of messages favors optimistic
early delivery protocols such as Send and OrderedSend.
Classical versions of Paxos may be very bursty

