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      Recall that clouds have tiers 
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 Up to now our focus has been on client systems and the 
network, and the way that the cloud has reshaped both 

 We looked very superficially at the tiered structure of the 
cloud itself 

 Tier 1: Very lightweight, responsive “web page builders” that can 
also route (or handle) “web services” method invocations.  Limited 
to “soft state”. 

 Tier 2: (key,value) stores and similar services that support tier 1.  
Basically, various forms of caches. 

 Inner tiers: Online services that handle requests not handled in the 
first tier.  These can store persistent files, run transactional 
services.  But we shield them from load. 

 Back end: Runs offline services that do things like indexing the 
web overnight for use by tomorrow morning’s tier-1 services. 



Replication 
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 A central feature of the cloud 

 To handle more work, make more copies 

 In the first tier, which is highly elastic, data center 
management layer pre-positions inactive copies of virtual 
machines for the services we might run 

 Exactly like installing a program on some machine 

 If load surges, creating more instances just entails 

 Running more copies on more nodes 

 Adjusting the load-balancer to spray requests to new nodes 

 If load drops... just kill the unwanted copies! 

 Little or no warning.  Discard any “state” they created locally. 



Replication is about keeping copies 
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 The term may sound fancier but the meaning isn’t 

 

 Whenever we have many copies of something we say 

that we’ve replicated that thing 

 But usually replica does connote “identical” 

 Instead of replication we use the term redundancy for things 

like alternative communication paths (e.g. if we have two 

distinct TCP connections from some client system to the cloud) 

 Redundant things might not be identical.  Replicated things 

usually play identical roles and have equivalent data. 

 



Things we can replicate in a cloud 
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 Files or other forms of data used to handle requests 

 If all our first tier systems replicate the data needed for end-user 
requests, then they can handle all the work! 

 Two cases to consider: in one the data itself is “write once” like a 
photo.  Either you have a replica, or don’t 

 In the other the data evolves over time, like the current inventory 
count for the latest iPad in the Apple store 

 Computation 

 Here we replicate some request and then the work of computing 
the answer can be spread over multiple programs in the cloud 

 We benefit from parallelism by getting a faster answer 

 Can also provide fault-tolerance 



Many things “map” to replication 
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 As we just saw, data (or databases), computation 

 Fault-tolerant request processing 

 Coordination and synchronization (e.g. “who’s in 
charge of the air traffic control sector over Paris?”) 

 Parameters and configuration data 

 Security keys and lists of possible users and the 
rules for who is permitted to do what 

 Membership information in a DHT or some other 
service that has many participants 



So... focus on replication! 
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 If we can get replication right, we’ll be on the road 

to a highly assured cloud infrastructure 

 

 Key is to understand what it means to correctly 

replicate data at cloud scale... 

 

 ... then once we know what we want to do, to find 

scalable ways to implement needed abstraction(s) 



Concept of “consistency” 
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 We would say that a replicated entity behaves in a 

consistent manner if mimics the behavior of a non-

replicated entity 

 E.g. if I ask it some question, and it answers, and then 

you ask it that question, your answer is either the same 

or reflects some update to the underlying state 

 Many copies but acts like just one 

 

 An inconsistent service is one that seems “broken” 



Consistency lets us ignore implementation 

 

A consistent distributed system will often have many 

components, but users observe behavior 

indistinguishable from that of  a single-component 

reference system 

 

9 

Reference Model Implementation 
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Dangers of Inconsistency 

 Inconsistency causes bugs 

 Clients would never be able to  
trust servers… a free-for-all 

 

 Weak or “best effort” consistency? 

 Common in today’s cloud replication schemes 

 But strong security guarantees demand consistency 

 Would you trust a medical electronic-health records 
system or a bank that used “weak consistency” for 
better scalability? 

10 
My rent check bounced? 

That can’t be right! 

Jason Fane Properties               1150.00 

Sept 2009                Tommy Tenant 
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Leslie Lamport’s insight 
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 To formalize notions of consistency, start 

by formalizing notions of time 

 

 Once we do this we can be rigorous about notions 

like “before” or “after” or “simultaneously” 

 If we try to write down conditions for correct replication 

these kinds of terms often arise 



What time is it? 

 In distributed system we need practical ways to 

deal with time 

 E.g. we may need to agree that update A occurred 

before update B 

 Or offer a “lease” on a resource that expires at time 

10:10.0150  

 Or guarantee that a time critical event will reach all 

interested parties within 100ms 
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But what does time “mean”? 

 Time on a global clock? 

 E.g. on Cornell clock tower? 

 ... or perhaps on a GPS receiver? 

 … or on a machine’s local clock 

 But was it set accurately? 

 And could it drift, e.g. run fast or slow? 

 What about faults, like stuck bits? 

 … or could try to agree on time 
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Lamport’s approach 

 Leslie Lamport suggested that we should reduce 

time to its basics 

 Time lets a system ask “Which came first: event A or 

event B?” 

 In effect: time is a means of labeling events so that… 

 If A happened before B, TIME(A) < TIME(B) 

 If TIME(A) < TIME(B), A happened before B 

CS5412 Spring 2014 (Cloud Computing: Birman) 

14 



Drawing time-line pictures: 

p 

m 

sndp(m) 

q 

rcvq(m)    delivq(m) 

D 
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Drawing time-line pictures: 

 

 

 

 

 

 A, B, C and D are “events”.  

 Could be anything meaningful to the application 

 So are snd(m) and rcv(m) and deliv(m) 

 What ordering claims are meaningful? 
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Drawing time-line pictures: 

 

 

 

 

 

 A happens before B, and C before D 

 “Local ordering” at a single process 

 Write        and  

p 

q 

m 

A 

C 

B 

rcvq(m)    delivq(m) 

sndp(m) 

BA
p

 DC
q



D 

CS5412 Spring 2014 (Cloud Computing: Birman) 

17 



Drawing time-line pictures: 

 

 

 

 

 

 sndp(m) also happens before rcvq(m) 

 “Distributed ordering” introduced by a message 

 Write 
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Drawing time-line pictures: 

 

 

 

 

 

 A happens before D 

 Transitivity: A happens before sndp(m), which happens 

before rcvq(m), which happens before D 

p 

q 

m 

D 

A 

C 

B 

rcvq(m)    delivq(m) 

sndp(m) 
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p 

q 

m 

D 

A 

C 

B 

rcvq(m)    delivq(m) 

sndp(m) 

Drawing time-line pictures: 

 

 

 

 

 

 B and D are concurrent 

 Looks like B happens first, but D has no way to know.  
No information flowed… 
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Happens before “relation” 

 We say that “A happens before B”, written AB, if 

1. A
P
B according to the local ordering, or 

2. A is a snd and B is a rcv and A
M
B, or 

3. A and B are related under transitive closure of rules (1) and (2) 

 

 Notice that, so far, this is just a mathematical 

notation, not a “systems tool” 

 Given a trace of what happened in a system we 

could use these tools to talk about the trace 

 But need a way to “implement” this idea 

CS5412 Spring 2014 (Cloud Computing: Birman) 

21 



Logical clocks 

 A simple tool that can capture parts of the happens 

before relation 

 First version: uses just a single integer 

 Designed for big (64-bit or more) counters 

 Each process p maintains LTp, a local counter 

 A message m will carry LTm 
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Rules for managing logical clocks 

 When an event happens at a process p it increments LTp.   

 Any event that matters to p 

 Normally, also snd and rcv events (since we want receive to occur “after” 

the matching send) 

 When p sends m, set 

 LTm = LTp 

 When q receives m, set 

 LTq = max(LTq, LTm)+1 
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Time-line with LT annotations 

 

 

 

 

 

 

 

 

 LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2 

 LT(rcvq(m))=max(1,2)+1=3, etc… 

p 

q 

m 

D 

A 

C 

B 

rcvq(m)    delivq(m) 

sndp(m) 

LTq 0 0 0 1 1 1 1 3 3 3 4 5 5 

LTp 0 1 1 2 2 2 2 2 2 3 3 3 3 
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Logical clocks 

 If A happens before B, AB, 

then LT(A)<LT(B) 

 But converse might not be true: 

 If LT(A)<LT(B) can’t be sure that AB  

 This is because processes that don’t communicate still 

assign timestamps and hence events will “seem” to have 

an order 
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Can we do better? 

 One option is to use vector clocks 

 Here we treat timestamps as a list 

 One counter for each process 

 Rules for managing vector times differ from what 

did with logical clocks 
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History of vector clocks? 
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 Originated in work at UCLA on file systems that 

allowed updates from multiple sources concurrently 

 Jerry Popek’s FICUS system 

 Today version systems (e.g. SVN, CVS) use the idea  

 

 Also gradually adopted in distributed systems 

 

 Most of the “formal” work was done by Fidge and 

Mattern in Europe, long after idea was in wide use 



Vector clocks 

 Clock is a vector: e.g. VT(A)=[1, 0] 

 We’ll just assign p index 0 and q index 1 

 Vector clocks require either agreement on the numbering, or 
that the actual process id’s be included with the vector 

 Rules for managing vector clock 

 When event happens at p, increment VTp[indexp] 

 Normally, also increment for snd and rcv events  

 When sending a message, set VT(m)=VTp 

 When receiving, set VTq=max(VTq, VT(m)) 
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Time-line with VT annotations 

 

 

 

 

 

 

 

 

 

p 

q 

m 

D 

A 

C 

B 

rcvq(m)    delivq(m) 

sndp(m) 

VTq 0 
0 

0 
0 

0 
0 

0 
1 

0 
1 

0 
1 

0 
1 

2 
2 

2 
2 

2 
2 

2
3 

2 
3 

2 
4 

VTp 0 
0 

1 
0 

1 
0 

2 
0 

2 
0 

2 
0 

2 
0 

2 
0 

2 
0 

3 
0 

3
0 

3 
0 

3 
0 

VT(m)=[2,0] 

Could also be [1,0] if we decide not to increment the clock on a 
snd event.  Decision depends on how the timestamps will be used. 
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Rules for comparison of VTs 

 We’ll say that VTA ≤ VTB if 

 I, VTA[i] ≤ VTB[i] 

 And we’ll say that VTA < VTB if 

 VTA ≤ VTB but VTA ≠ VTB 

 That is, for some i, VTA[i] < VTB[i] 

 Examples? 

 [2,4] ≤ [2,4] 

 [1,3] < [7,3] 

 [1,3] is “incomparable” to [3,1] 
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Time-line with VT annotations 

 

 

 

 

 

 

 

 VT(A)=[1,0].  VT(D)=[2,4].  So VT(A)<VT(D) 

 VT(B)=[3,0].  So VT(B) and VT(D) are incomparable 
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Vector time and happens before 

 If AB, then VT(A)<VT(B) 

 Write a chain of events from A to B 

 Step by step the vector clocks get larger 

 If VT(A)<VT(B) then AB 

 Two cases: if A and B both happen at same process p, trivial 

 If A happens at p and B at q, can trace the path back by 

which q “learned” VTA[p] 

 Otherwise A and B happened concurrently 
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Temporal distortions 

 Things can be complicated because we can’t predict 

 Message delays (they vary constantly) 

 Execution speeds (often a process shares a machine 

with many other tasks) 

 Timing of external events 

 Lamport looked at this question too 
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Temporal distortions 

 What does “now” mean? 

  p 0   
a   

f   

e   

p 3   

b   

p 2   

p 1   
c   

d   
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Temporal distortions 

 What does “now” mean? 

  p 0   
a   
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Temporal distortions 

 Timelines can “stretch”… 

 

 

 

 

 

 … caused by scheduling effects, message 

delays, message loss… 
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Temporal distortions 

 Timelines can “shrink” 

 

 

 

 

 

 E.g. something lets a machine speed up 
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Temporal distortions 

 Cuts represent instants of time.  

 

 

 

 

 

 But not every “cut” makes sense 

 Black cuts could occur but not gray ones. 

  p 0   
a   

f   

e   

p 3   
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p 1   
c   
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Consistent cuts and snapshots 

 Idea is to identify system states that “might” have 

occurred in real-life 

 Need to avoid capturing states in which a message is 

received but nobody is shown as having sent it 

 This the problem with the gray cuts 
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Temporal distortions 

 Red messages cross gray cuts “backwards” 
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Temporal distortions 

 Red messages cross gray cuts “backwards” 

 

 

 

 

 

 In a nutshell: the cut includes a message that 

“was never sent” 

  p 0   
a   

e   
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Application: Deadlock detection 

 p worries: perhaps we have a deadlock 

 p is waiting for q, so sends “what’s your state?” 

 q, on receipt, is waiting for r, so sends the same 

question… and r for s…. And s is waiting on p. 
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Suppose we detect this state 

 We see a cycle… 

 

 

 

 

 

 … but is it a deadlock? 

p q 

s r 

Waiting for 

Waiting for 

Waiting for Waiting for 
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Phantom deadlocks! 

 Suppose system has a very high rate of locking. 

 Then perhaps a lock release message “passed” a 

query message 

 i.e. we see “q waiting for r” and “r waiting for s” but in fact, 

by the time we checked r, q was no longer waiting! 

 In effect: we checked for deadlock on a gray cut – an 

inconsistent cut. 
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One solution is to “freeze” the system 

X 

Y 

Z 

A 

B 

STOP! 
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One solution is to “freeze” the system 

X 

Y 

Z 

A 

B 

STOP! 

Ok… 

Yes sir! 

I’ll be late! 

Was I speeding? 

Sigh… 
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One solution is to “freeze” the system 

X 

Y 

Z 

A 

B 

Sorry to trouble you, folks.  I just 

need a status snapshot, please 
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One solution is to “freeze” the system 

X 

Y 

Z 

A 

B 

No problem 

Hey, doesn’t a guy have a 
right to privacy? 

Done… 

Here you go… 

Sigh… 
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One solution is to “freeze” the system 

X 

Y 

Z 

A 

B 

Ok, you can go now 
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Why does it work? 

 When we check bank accounts, or check for 
deadlock, the system is idle 

 So if “P is waiting for Q” and “Q is waiting for R” 
we really mean “simultaneously” 

 But to get this guarantee we did something very 
costly because no new work is being done! 
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Consistent cuts and snapshots 

 Goal is to draw a line across the system state such 

that 

 Every message “received” by a process is shown as 

having been sent by some other process 

 Some pending messages might still be in communication 

channels 

 And we want to do this while running 

CS5412 Spring 2014 (Cloud Computing: Birman) 

51 



Turn idea into an algorithm 

 To start a new snapshot, pi … 

 Builds a message: “Pi is initiating snapshot k”.   

 The tuple (pi, k) uniquely identifies the snapshot 

 Writes down its own state 

 Starts recording incoming messages on all channels 
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Turn idea into an algorithm 

 Now pi tells its neighbors to start a snapshot 

 In general, on first learning about snapshot (pi, k), px 

 Writes down its state: px’s contribution to the snapshot 

 Starts “tape recorders” for all communication channels 

 Forwards the message on all outgoing channels 

 Stops “tape recorder” for a channel when a snapshot message for (pi, k) 
is received on it 

 Snapshot consists of all the local state contributions and all the 
tape-recordings for the channels 
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Chandy/Lamport 

 Outgoing wave of requests… incoming wave of 

snapshots and channel state 

 Snapshot ends up accumulating at the initiator, pi 

 Algorithm doesn’t tolerate process failures or 

message failures. 
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Chandy/Lamport 
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A network 
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Chandy/Lamport 
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Chandy/Lamport 
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p records  local state 
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Chandy/Lamport 

p 

q 
r 

s 

t 

u 

v 

w 

x 
y 

z 

A network 

p starts monitoring 

incoming channels 
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Chandy/Lamport 
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“contents of channel p-y” 

CS5412 Spring 2014 (Cloud Computing: Birman) 

59 



Chandy/Lamport 
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p floods message on 

outgoing channels… 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport 
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Chandy/Lamport “snapshot” 
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 Once we collect the state snapshots plus the channel 

contents we have a consistent cut from the system 

 It “could” have occured as a concurrent instant in the 

system execution (although in fact, it obviously didn’t) 

 Processing such a snapshot requires understanding the 

state in this form 

 But many algorithms use this pattern of messages 

without necessarily writing down the whole state or 

logging all the messages in the channels 



Relation to vector time? 
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 In book the connection of consistent cuts to notion of 
logical time is explored 

 A consistent cut is a snapshot taken at a set of 
concurrent points in a system trace 

 In effect, all the members of the system concurrently 
write down their states 

 We can restate Chandy/Lamport to implement it 
precisely in this manner! 

 But out of time today, so we’ll leave that for you to 
read about in Chapter 10 of the text 



Conclusions 
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 By formalizing notion of time we can build tools for 
thinking about fancier ideas such as consistency of 
replicated data 

 

 Today we looked more closely at time than at 
consistency. 

 We introduced idea of consistency to motivate need to look 
closely at time 

 But didn’t tie the logical or vector timestamp ideas back to 
implementation of replicated data 

 

 Next lectures will make this connection explicit 


