
CS5412:

REPLICATION, CONSISTENCY

AND CLOCKS

Ken Birman

1 CS5412 Spring 2014 (Cloud Computing: Birman)

Lecture X

 Recall that clouds have tiers

CS5412 Spring 2014 (Cloud Computing: Birman)

2

 Up to now our focus has been on client systems and the
network, and the way that the cloud has reshaped both

 We looked very superficially at the tiered structure of the
cloud itself

 Tier 1: Very lightweight, responsive “web page builders” that can
also route (or handle) “web services” method invocations. Limited
to “soft state”.

 Tier 2: (key,value) stores and similar services that support tier 1.
Basically, various forms of caches.

 Inner tiers: Online services that handle requests not handled in the
first tier. These can store persistent files, run transactional
services. But we shield them from load.

 Back end: Runs offline services that do things like indexing the
web overnight for use by tomorrow morning’s tier-1 services.

Replication

CS5412 Spring 2014 (Cloud Computing: Birman)

3

 A central feature of the cloud

 To handle more work, make more copies

 In the first tier, which is highly elastic, data center
management layer pre-positions inactive copies of virtual
machines for the services we might run

 Exactly like installing a program on some machine

 If load surges, creating more instances just entails

 Running more copies on more nodes

 Adjusting the load-balancer to spray requests to new nodes

 If load drops... just kill the unwanted copies!

 Little or no warning. Discard any “state” they created locally.

Replication is about keeping copies

CS5412 Spring 2014 (Cloud Computing: Birman)

4

 The term may sound fancier but the meaning isn’t

 Whenever we have many copies of something we say

that we’ve replicated that thing

 But usually replica does connote “identical”

 Instead of replication we use the term redundancy for things

like alternative communication paths (e.g. if we have two

distinct TCP connections from some client system to the cloud)

 Redundant things might not be identical. Replicated things

usually play identical roles and have equivalent data.

Things we can replicate in a cloud

CS5412 Spring 2014 (Cloud Computing: Birman)

5

 Files or other forms of data used to handle requests

 If all our first tier systems replicate the data needed for end-user
requests, then they can handle all the work!

 Two cases to consider: in one the data itself is “write once” like a
photo. Either you have a replica, or don’t

 In the other the data evolves over time, like the current inventory
count for the latest iPad in the Apple store

 Computation

 Here we replicate some request and then the work of computing
the answer can be spread over multiple programs in the cloud

 We benefit from parallelism by getting a faster answer

 Can also provide fault-tolerance

Many things “map” to replication

CS5412 Spring 2014 (Cloud Computing: Birman)

6

 As we just saw, data (or databases), computation

 Fault-tolerant request processing

 Coordination and synchronization (e.g. “who’s in
charge of the air traffic control sector over Paris?”)

 Parameters and configuration data

 Security keys and lists of possible users and the
rules for who is permitted to do what

 Membership information in a DHT or some other
service that has many participants

So... focus on replication!

CS5412 Spring 2014 (Cloud Computing: Birman)

7

 If we can get replication right, we’ll be on the road

to a highly assured cloud infrastructure

 Key is to understand what it means to correctly

replicate data at cloud scale...

 ... then once we know what we want to do, to find

scalable ways to implement needed abstraction(s)

Concept of “consistency”

CS5412 Spring 2014 (Cloud Computing: Birman)

8

 We would say that a replicated entity behaves in a

consistent manner if mimics the behavior of a non-

replicated entity

 E.g. if I ask it some question, and it answers, and then

you ask it that question, your answer is either the same

or reflects some update to the underlying state

 Many copies but acts like just one

 An inconsistent service is one that seems “broken”

Consistency lets us ignore implementation

A consistent distributed system will often have many

components, but users observe behavior

indistinguishable from that of a single-component

reference system

9

Reference Model Implementation

CS5412 Spring 2014 (Cloud Computing: Birman)

http://www.delldeaton.com/images/Omega 2531-80 Vanquish 1-18 20060314_002 pc-crop 1000x750.jpg
http://images.google.com/imgres?imgurl=http://image.guardian.co.uk/sys-images/Arts/Arts_/site_furniture/2008/05/08/Bond460x276.jpg&imgrefurl=http://www.guardian.co.uk/film/filmblog/2008/may/05/week&usg=__8PXW09AHBYA0e0IbUv_r-Qs5kAc=&h=276&w=460&sz=15&hl=en&start=42&um=1&tbnid=frnioDXHT-jnNM:&tbnh=77&tbnw=128&prev=/images?q=james+bond+watch&ndsp=20&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGIH_en&sa=N&start=40&um=1

Dangers of Inconsistency

 Inconsistency causes bugs

 Clients would never be able to
trust servers… a free-for-all

 Weak or “best effort” consistency?

 Common in today’s cloud replication schemes

 But strong security guarantees demand consistency

 Would you trust a medical electronic-health records
system or a bank that used “weak consistency” for
better scalability?

10
My rent check bounced?

That can’t be right!

Jason Fane Properties 1150.00

Sept 2009 Tommy Tenant

CS5412 Spring 2014 (Cloud Computing: Birman)

Leslie Lamport’s insight

CS5412 Spring 2014 (Cloud Computing: Birman)

11

 To formalize notions of consistency, start

by formalizing notions of time

 Once we do this we can be rigorous about notions

like “before” or “after” or “simultaneously”

 If we try to write down conditions for correct replication

these kinds of terms often arise

What time is it?

 In distributed system we need practical ways to

deal with time

 E.g. we may need to agree that update A occurred

before update B

 Or offer a “lease” on a resource that expires at time

10:10.0150

 Or guarantee that a time critical event will reach all

interested parties within 100ms

CS5412 Spring 2014 (Cloud Computing: Birman)

12

But what does time “mean”?

 Time on a global clock?

 E.g. on Cornell clock tower?

 ... or perhaps on a GPS receiver?

 … or on a machine’s local clock

 But was it set accurately?

 And could it drift, e.g. run fast or slow?

 What about faults, like stuck bits?

 … or could try to agree on time

CS5412 Spring 2014 (Cloud Computing: Birman)

13

Lamport’s approach

 Leslie Lamport suggested that we should reduce

time to its basics

 Time lets a system ask “Which came first: event A or

event B?”

 In effect: time is a means of labeling events so that…

 If A happened before B, TIME(A) < TIME(B)

 If TIME(A) < TIME(B), A happened before B

CS5412 Spring 2014 (Cloud Computing: Birman)

14

Drawing time-line pictures:

p

m

sndp(m)

q

rcvq(m) delivq(m)

D

CS5412 Spring 2014 (Cloud Computing: Birman)

15

Drawing time-line pictures:

 A, B, C and D are “events”.

 Could be anything meaningful to the application

 So are snd(m) and rcv(m) and deliv(m)

 What ordering claims are meaningful?

p

m

A

C

B

sndp(m)

q

rcvq(m) delivq(m)

D

CS5412 Spring 2014 (Cloud Computing: Birman)

16

Drawing time-line pictures:

 A happens before B, and C before D

 “Local ordering” at a single process

 Write and

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

BA
p

 DC
q

D

CS5412 Spring 2014 (Cloud Computing: Birman)

17

Drawing time-line pictures:

 sndp(m) also happens before rcvq(m)

 “Distributed ordering” introduced by a message

 Write

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

)m(rcv)m(snd q

M

p

D

CS5412 Spring 2014 (Cloud Computing: Birman)

18

Drawing time-line pictures:

 A happens before D

 Transitivity: A happens before sndp(m), which happens

before rcvq(m), which happens before D

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

CS5412 Spring 2014 (Cloud Computing: Birman)

19

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Drawing time-line pictures:

 B and D are concurrent

 Looks like B happens first, but D has no way to know.
No information flowed…

CS5412 Spring 2014 (Cloud Computing: Birman)

20

Happens before “relation”

 We say that “A happens before B”, written AB, if

1. A
P
B according to the local ordering, or

2. A is a snd and B is a rcv and A
M
B, or

3. A and B are related under transitive closure of rules (1) and (2)

 Notice that, so far, this is just a mathematical

notation, not a “systems tool”

 Given a trace of what happened in a system we

could use these tools to talk about the trace

 But need a way to “implement” this idea

CS5412 Spring 2014 (Cloud Computing: Birman)

21

Logical clocks

 A simple tool that can capture parts of the happens

before relation

 First version: uses just a single integer

 Designed for big (64-bit or more) counters

 Each process p maintains LTp, a local counter

 A message m will carry LTm

CS5412 Spring 2014 (Cloud Computing: Birman)

22

Rules for managing logical clocks

 When an event happens at a process p it increments LTp.

 Any event that matters to p

 Normally, also snd and rcv events (since we want receive to occur “after”

the matching send)

 When p sends m, set

 LTm = LTp

 When q receives m, set

 LTq = max(LTq, LTm)+1

CS5412 Spring 2014 (Cloud Computing: Birman)

23

Time-line with LT annotations

 LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2

 LT(rcvq(m))=max(1,2)+1=3, etc…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

LTq 0 0 0 1 1 1 1 3 3 3 4 5 5

LTp 0 1 1 2 2 2 2 2 2 3 3 3 3

CS5412 Spring 2014 (Cloud Computing: Birman)

24

Logical clocks

 If A happens before B, AB,

then LT(A)<LT(B)

 But converse might not be true:

 If LT(A)<LT(B) can’t be sure that AB

 This is because processes that don’t communicate still

assign timestamps and hence events will “seem” to have

an order

CS5412 Spring 2014 (Cloud Computing: Birman)

25

Can we do better?

 One option is to use vector clocks

 Here we treat timestamps as a list

 One counter for each process

 Rules for managing vector times differ from what

did with logical clocks

CS5412 Spring 2014 (Cloud Computing: Birman)

26

History of vector clocks?

CS5412 Spring 2014 (Cloud Computing: Birman)

27

 Originated in work at UCLA on file systems that

allowed updates from multiple sources concurrently

 Jerry Popek’s FICUS system

 Today version systems (e.g. SVN, CVS) use the idea

 Also gradually adopted in distributed systems

 Most of the “formal” work was done by Fidge and

Mattern in Europe, long after idea was in wide use

Vector clocks

 Clock is a vector: e.g. VT(A)=[1, 0]

 We’ll just assign p index 0 and q index 1

 Vector clocks require either agreement on the numbering, or
that the actual process id’s be included with the vector

 Rules for managing vector clock

 When event happens at p, increment VTp[indexp]

 Normally, also increment for snd and rcv events

 When sending a message, set VT(m)=VTp

 When receiving, set VTq=max(VTq, VT(m))

CS5412 Spring 2014 (Cloud Computing: Birman)

28

Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

2
3

2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

3
0

3
0

3
0

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a
snd event. Decision depends on how the timestamps will be used.

CS5412 Spring 2014 (Cloud Computing: Birman)

29

Rules for comparison of VTs

 We’ll say that VTA ≤ VTB if

 I, VTA[i] ≤ VTB[i]

 And we’ll say that VTA < VTB if

 VTA ≤ VTB but VTA ≠ VTB

 That is, for some i, VTA[i] < VTB[i]

 Examples?

 [2,4] ≤ [2,4]

 [1,3] < [7,3]

 [1,3] is “incomparable” to [3,1]

CS5412 Spring 2014 (Cloud Computing: Birman)

30

Time-line with VT annotations

 VT(A)=[1,0]. VT(D)=[2,4]. So VT(A)<VT(D)

 VT(B)=[3,0]. So VT(B) and VT(D) are incomparable

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

2
3

2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

3
0

3
0

3
0

VT(m)=[2,0]

CS5412 Spring 2014 (Cloud Computing: Birman)

31

Vector time and happens before

 If AB, then VT(A)<VT(B)

 Write a chain of events from A to B

 Step by step the vector clocks get larger

 If VT(A)<VT(B) then AB

 Two cases: if A and B both happen at same process p, trivial

 If A happens at p and B at q, can trace the path back by

which q “learned” VTA[p]

 Otherwise A and B happened concurrently

CS5412 Spring 2014 (Cloud Computing: Birman)

32

Temporal distortions

 Things can be complicated because we can’t predict

 Message delays (they vary constantly)

 Execution speeds (often a process shares a machine

with many other tasks)

 Timing of external events

 Lamport looked at this question too

CS5412 Spring 2014 (Cloud Computing: Birman)

33

Temporal distortions

 What does “now” mean?

 p 0
a

f

e

p 3

b

p 2

p 1
c

d

CS5412 Spring 2014 (Cloud Computing: Birman)

34

Temporal distortions

 What does “now” mean?

 p 0
a

f

e

p 3

b

p 2

p 1
c

d

CS5412 Spring 2014 (Cloud Computing: Birman)

35

Temporal distortions

 Timelines can “stretch”…

 … caused by scheduling effects, message

delays, message loss…

 p 0
a

f

e

p 3

b

p 2

p 1
c

d

CS5412 Spring 2014 (Cloud Computing: Birman)

36

Temporal distortions

 Timelines can “shrink”

 E.g. something lets a machine speed up

 p 0
a

f

e

p 3

b

p 2

p 1
c

d

CS5412 Spring 2014 (Cloud Computing: Birman)

37

Temporal distortions

 Cuts represent instants of time.

 But not every “cut” makes sense

 Black cuts could occur but not gray ones.

 p 0
a

f

e

p 3

b

p 2

p 1
c

d

CS5412 Spring 2014 (Cloud Computing: Birman)

38

Consistent cuts and snapshots

 Idea is to identify system states that “might” have

occurred in real-life

 Need to avoid capturing states in which a message is

received but nobody is shown as having sent it

 This the problem with the gray cuts

CS5412 Spring 2014 (Cloud Computing: Birman)

39

Temporal distortions

 Red messages cross gray cuts “backwards”

 p 0
a

f

e

p 3

b

p 2

p 1
c

d

CS5412 Spring 2014 (Cloud Computing: Birman)

40

Temporal distortions

 Red messages cross gray cuts “backwards”

 In a nutshell: the cut includes a message that

“was never sent”

 p 0
a

e

p 3

b

p 2

p 1
c

CS5412 Spring 2014 (Cloud Computing: Birman)

41

Application: Deadlock detection

 p worries: perhaps we have a deadlock

 p is waiting for q, so sends “what’s your state?”

 q, on receipt, is waiting for r, so sends the same

question… and r for s…. And s is waiting on p.

CS5412 Spring 2014 (Cloud Computing: Birman)

42

Suppose we detect this state

 We see a cycle…

 … but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for

CS5412 Spring 2014 (Cloud Computing: Birman)

43

Phantom deadlocks!

 Suppose system has a very high rate of locking.

 Then perhaps a lock release message “passed” a

query message

 i.e. we see “q waiting for r” and “r waiting for s” but in fact,

by the time we checked r, q was no longer waiting!

 In effect: we checked for deadlock on a gray cut – an

inconsistent cut.

CS5412 Spring 2014 (Cloud Computing: Birman)

44

One solution is to “freeze” the system

X

Y

Z

A

B

STOP!

CS5412 Spring 2014 (Cloud Computing: Birman)

45

One solution is to “freeze” the system

X

Y

Z

A

B

STOP!

Ok…

Yes sir!

I’ll be late!

Was I speeding?

Sigh…

CS5412 Spring 2014 (Cloud Computing: Birman)

46

One solution is to “freeze” the system

X

Y

Z

A

B

Sorry to trouble you, folks. I just

need a status snapshot, please

CS5412 Spring 2014 (Cloud Computing: Birman)

47

One solution is to “freeze” the system

X

Y

Z

A

B

No problem

Hey, doesn’t a guy have a
right to privacy?

Done…

Here you go…

Sigh…

CS5412 Spring 2014 (Cloud Computing: Birman)

48

One solution is to “freeze” the system

X

Y

Z

A

B

Ok, you can go now

CS5412 Spring 2014 (Cloud Computing: Birman)

49

Why does it work?

 When we check bank accounts, or check for
deadlock, the system is idle

 So if “P is waiting for Q” and “Q is waiting for R”
we really mean “simultaneously”

 But to get this guarantee we did something very
costly because no new work is being done!

CS5412 Spring 2014 (Cloud Computing: Birman)

50

Consistent cuts and snapshots

 Goal is to draw a line across the system state such

that

 Every message “received” by a process is shown as

having been sent by some other process

 Some pending messages might still be in communication

channels

 And we want to do this while running

CS5412 Spring 2014 (Cloud Computing: Birman)

51

Turn idea into an algorithm

 To start a new snapshot, pi …

 Builds a message: “Pi is initiating snapshot k”.

 The tuple (pi, k) uniquely identifies the snapshot

 Writes down its own state

 Starts recording incoming messages on all channels

CS5412 Spring 2014 (Cloud Computing: Birman)

52

Turn idea into an algorithm

 Now pi tells its neighbors to start a snapshot

 In general, on first learning about snapshot (pi, k), px

 Writes down its state: px’s contribution to the snapshot

 Starts “tape recorders” for all communication channels

 Forwards the message on all outgoing channels

 Stops “tape recorder” for a channel when a snapshot message for (pi, k)
is received on it

 Snapshot consists of all the local state contributions and all the
tape-recordings for the channels

CS5412 Spring 2014 (Cloud Computing: Birman)

53

Chandy/Lamport

 Outgoing wave of requests… incoming wave of

snapshots and channel state

 Snapshot ends up accumulating at the initiator, pi

 Algorithm doesn’t tolerate process failures or

message failures.

CS5412 Spring 2014 (Cloud Computing: Birman)

54

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

CS5412 Spring 2014 (Cloud Computing: Birman)

55

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start a

snapshot

CS5412 Spring 2014 (Cloud Computing: Birman)

56

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p records local state

CS5412 Spring 2014 (Cloud Computing: Birman)

57

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring

incoming channels

CS5412 Spring 2014 (Cloud Computing: Birman)

58

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-y”

CS5412 Spring 2014 (Cloud Computing: Birman)

59

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on

outgoing channels…

CS5412 Spring 2014 (Cloud Computing: Birman)

60

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

CS5412 Spring 2014 (Cloud Computing: Birman)

61

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q is done

CS5412 Spring 2014 (Cloud Computing: Birman)

62

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

CS5412 Spring 2014 (Cloud Computing: Birman)

63

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

CS5412 Spring 2014 (Cloud Computing: Birman)

64

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

z s

CS5412 Spring 2014 (Cloud Computing: Birman)

65

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

z

x

u

s

CS5412 Spring 2014 (Cloud Computing: Birman)

66

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r

CS5412 Spring 2014 (Cloud Computing: Birman)

67

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!

CS5412 Spring 2014 (Cloud Computing: Birman)

68

Chandy/Lamport “snapshot”

CS5412 Spring 2014 (Cloud Computing: Birman)

69

 Once we collect the state snapshots plus the channel

contents we have a consistent cut from the system

 It “could” have occured as a concurrent instant in the

system execution (although in fact, it obviously didn’t)

 Processing such a snapshot requires understanding the

state in this form

 But many algorithms use this pattern of messages

without necessarily writing down the whole state or

logging all the messages in the channels

Relation to vector time?

CS5412 Spring 2014 (Cloud Computing: Birman)

70

 In book the connection of consistent cuts to notion of
logical time is explored

 A consistent cut is a snapshot taken at a set of
concurrent points in a system trace

 In effect, all the members of the system concurrently
write down their states

 We can restate Chandy/Lamport to implement it
precisely in this manner!

 But out of time today, so we’ll leave that for you to
read about in Chapter 10 of the text

Conclusions

CS5412 Spring 2014 (Cloud Computing: Birman)

71

 By formalizing notion of time we can build tools for
thinking about fancier ideas such as consistency of
replicated data

 Today we looked more closely at time than at
consistency.

 We introduced idea of consistency to motivate need to look
closely at time

 But didn’t tie the logical or vector timestamp ideas back to
implementation of replicated data

 Next lectures will make this connection explicit

