CS 4110

Victory Lap

Schedule

Date	Topic	Notes	Assignments
August 24	Course Cverview	slides	
August 26	Introduction to Semantics	slides notes	
August 29	Inductive Definitions and Proofs	slides notes	
August 31	Inductive Proof and Large Step Semantics	slides notes	A1 out
Septernber 2	The IMP Language	slides notes	
September 5	No class (Labor Day)		
September 7	IMP Properties	slides notes scribbles	A1 due; A2 out
September 9	Denotational Semantics	slides notes	
September 12	Denotational Semantics Examples	slides notes slidest scribbles	
September 14	Axiomatic Semantics	slides notes	A2 due; A3 out
September 16	Hoare Logic	slides notes scribbles	
September 19	Hoare Logic Examples	slides notes scribbles	
September 21	Weakest Preconditions	slides notes	A. 3 due; A4 out
September 23	Lambda Calculus	notes scribbles	
September 26	More Lambda Calculus and Substitution	slides nutes	
September 28	Lambda Calculus Encodings	slides notes slidest	A4 due
September 30	Programming in the Lambda Calculus	slides notes	
October 3	Definitional Translation and Continuations	slides notes	
October 5	Preliminary Exam I		
October 7	Exam Debrief		
October 10	No class (Fall Break)		
Octeber 12	Simple Types	notes scribbles	A5 out
October 14	Prowing Type Soundiness	slides notes scribbles	
October 17	Normalization	slides notes slidest scribbles	
October 19	Advanced Types	slides notes	A. 5 due; A6 out
October 21	Polymorphism	slides notes	
October 24	Guest lecture: Yaron Minsky, Jane Street.	'GADTs for Speed Demons"	
October 26	Type Inference	slides notes slides+	As due; A7 out
October 28	Compiling with Continuations	slides notes slidest	
October 31	Records and Subtyping	slides nutes slidest	
November 2	Existential Types	slides notes	A7 clue; A8 out
November 4	Recursive Types	slides notes	
November 7	Propositions as Types	slides notes	
November 9	Featherweight Java	slides notes slidest	A8 due
November 11	Featherweight Java Properties	slides nutes slidest scribbles	
November 14	Concurrency and Parallelism	slides code	
November 16	Preliminary Exam II		
November 18	Exam Debrief		
November 21	Shared Memory Parallelism	slides code	
November 23	No dass (Thanksgiving)		
November 25	No class (Thanksgiving)		
November 28	Probabilistic Programming	slides notes code	A9 out
November 30	Approximate Computing	slides paper	

Mathematical foundations \& inductive definitions

$$
\begin{aligned}
e::= & x \\
& \mid n \\
& \mid e_{1}+e_{2} \\
& \mid e_{1} * e_{2} \\
& \mid x:=e_{1} ; e_{2}
\end{aligned}
$$

$$
\frac{p=m+n}{\langle\sigma, n+m\rangle \longrightarrow\langle\sigma, p\rangle} \text { Add }
$$

Operational semantics \& IMP

$\frac{\left\langle\sigma, e_{1}\right\rangle \Downarrow n_{1} \quad\left\langle\sigma, e_{2}\right\rangle \Downarrow n_{2} \quad n=n_{1}+n_{2}}{\left\langle\sigma, e_{1}+e_{2}\right\rangle \Downarrow n}$

$$
\frac{\left\langle\sigma, e_{1}\right\rangle \Downarrow n_{1} \quad\left\langle\sigma, e_{2}\right\rangle \Downarrow n_{2} \quad n=n_{1} \times n_{2}}{\left\langle\sigma, e_{1} \times e_{2}\right\rangle \Downarrow n}
$$

Denotational semantics

Exercise 2. A simple way to prove two programs equivalent is to show that they denote the same mathematical object. In particular, this is often dramatically simpler than reasoning using the operational semantics. Using the denotational semantics, prove the following equivalences:
(a) $(x:=x+21 ; x:=x+21) \sim x:=x+42$
(b) $(x:=1$; do $x:=x+1$ until $x<0) \sim($ while true do $c)$ for all commands c.
(c) $(x:=x) \sim($ if $(x=x+1)$ then $x:=0)$

Axiomatic semantics \& Hoare logic

$$
\begin{aligned}
& \{\mathrm{x}=n \wedge n>0\} \Rightarrow \\
& \{1=1 \wedge \mathrm{x}=n \wedge n>0\} \\
& \mathrm{y}:=1 ; \\
& \{\mathrm{y}=1 \wedge \mathrm{x}=n \wedge n>0\} \Rightarrow \\
& \{\mathrm{y} * \mathrm{x}!=n!\wedge x \geq 0\} \\
& \text { while } \mathrm{x}>0 \text { do }\{ \\
& \quad\{\mathrm{y} * \mathrm{x}!=n!\wedge x>0 \wedge x \geq 0\} \Rightarrow \\
& \quad\{\mathrm{y} * \mathrm{x} *(\mathrm{x}-1)!=n!\wedge(x-1) \geq 0\} \\
& \quad \mathrm{y}:=\mathrm{y} * \mathrm{x} \\
& \quad\{\mathrm{y} *(\mathrm{x}-1)!=n!\wedge(x-1) \geq 0\} \\
& \quad \mathrm{x}:=\mathrm{x}-1 \\
& \quad\{\mathrm{y} * \mathrm{x}!=n!\wedge x \geq 0\} \\
& \} \quad \\
& \{\mathrm{y} * \mathrm{x}!=n!\wedge(x \geq 0) \wedge \neg(x>0)\} \Rightarrow \\
& \{\mathrm{y}=n!\}
\end{aligned}
$$

Axiomatic semantics \& Hoare logic

Kurt Gödel

Tony Hoare

λ-calculus!!!!!!!!!!!!!!!!!!1

$\overline{(\lambda x . e) v \rightarrow e\{v / x\}}^{\beta}$

Types

Simple!
Algebraic!
Polymorphic!

Existential!

Inference!
Subtyping!

Advanced topics

Along the way...

Finished 8 (maybe 9) homework assignments, ranging from difficult to extremely difficult

Asked 421 questions on Piazza
Showed up to lecture at 9am every single time

Schedule

Date	Topic	Notes	Assignments
August 24	Course Cverview	slides	
August 26	Introduction to Semantics	slides notes	
August 29	Inductive Definitions and Proofs	slides notes	
August 31	Inductive Proof and Large Step Semantics	slides notes	A1 out
Septernber 2	The IMP Language	slides notes	
September 5	No class (Labor Day)		
September 7	IMP Properties	slides notes scribbles	A1 due; A2 out
September 9	Denotational Semantics	slides notes	
September 12	Denotational Semantics Examples	slides notes slidest scribbles	
September 14	Axiomatic Semantics	slides notes	A2 due; A3 out
September 16	Hoare Logic	slides notes scribbles	
September 19	Hoare Logic Examples	slides notes scribbles	
September 21	Weakest Preconditions	slides notes	A. 3 due; A4 out
September 23	Lambda Calculus	notes scribbles	
September 26	More Lambda Calculus and Substitution	slides nutes	
September 28	Lambda Calculus Encodings	slides notes slidest	A4 due
September 30	Programming in the Lambda Calculus	slides notes	
October 3	Definitional Translation and Continuations	slides notes	
October 5	Preliminary Exam I		
October 7	Exam Debrief		
October 10	No class (Fall Break)		
Octeber 12	Simple Types	notes scribbles	A5 out
October 14	Prowing Type Soundiness	slides notes scribbles	
October 17	Normalization	slides notes slidest scribbles	
October 19	Advanced Types	slides notes	A. 5 due; A6 out
October 21	Polymorphism	slides notes	
October 24	Guest lecture: Yaron Minsky, Jane Street.	'GADTs for Speed Demons"	
October 26	Type Inference	slides notes slides+	As due; A7 out
October 28	Compiling with Continuations	slides notes slidest	
October 31	Records and Subtyping	slides nutes slidest	
November 2	Existential Types	slides notes	A7 clue; A8 out
November 4	Recursive Types	slides notes	
November 7	Propositions as Types	slides notes	
November 9	Featherweight Java	slides notes slidest	A8 due
November 11	Featherweight Java Properties	slides nutes slidest scribbles	
November 14	Concurrency and Parallelism	slides code	
November 16	Preliminary Exam II		
November 18	Exam Debrief		
November 21	Shared Memory Parallelism	slides code	
November 23	No dass (Thanksgiving)		
November 25	No class (Thanksgiving)		
November 28	Probabilistic Programming	slides notes code	A9 out
November 30	Approximate Computing	slides paper	

The final

Saturday, December 10 at 2:00pm
Warren B25

Practice problems on CMS now

There's more...

Compilers, JITs, garbage collection...
Language-level security, privacy...
Proof assistants, automated theorem proving...
Program synthesis, sketching, superoptimization...
Bug finding, static analysis, dynamic analysis...
Domain-specific languages, programming for GPUs...

Next steps?

CS 6110: Advanced Programming Languages
CS 7190: PL Seminar
CS 4999: Independent Research
TA for 4110 next time

Thank you!

 Keep in touch.