
CS 4110
Victory Lap

Mathematical foundations &
inductive definitions

, , ∈
, ∈

∈

::=
|
| +
| *
| := ;

×
⟨σ, ⟩ −→ ⟨σ′, ′⟩

= +

⟨σ, + ⟩ −→ ⟨σ, ⟩

−→

⟨σ, ⟩ ⇓

σ() =

⟨σ, ⟩ ⇓

⟨σ, ⟩ ⇓ ⟨σ, ⟩ ⇓ = +

⟨σ, + ⟩ ⇓

⟨σ, ⟩ ⇓ ⟨σ, ⟩ ⇓ = ×
⟨σ, × ⟩ ⇓

Operational semantics & IMP

CS 4110 – Programming Languages and Logics
Homework #4

Due Wednesday, September 28, 2016 at 11:59pm.

Instructions This assignment may be completed with one partner. You and your partner should
submit a single solution on CMS. Please do not offer or accept any other assistance on this assign-
ment. Apart from slip days, late submissions will not be accepted.

Exercise 1.

(a) Extend the denotational semantics of IMP to handle the following commands:

c ::= · · · | if b then c | do c until b

Operationally, these commands behave as follows. A one-armed conditional (if b then c)
executes the body c only if b evaluates to true, whereas a do-until loop (do c until b) executes
c one or more times until b becomes true.

(b) Extend Hoare logic with rules to handle one-armed conditionals and do-until loops.

Exercise 2. A simple way to prove two programs equivalent is to show that they denote the
same mathematical object. In particular, this is often dramatically simpler than reasoning using
the operational semantics. Using the denotational semantics, prove the following equivalences:

(a) (x := x+ 21;x := x+ 21) ∼ x := x+ 42

(b) (x := 1;do x := x+ 1 until x < 0) ∼ (while true do c)
for all commands c.

(c) (x := x) ∼ (if (x = x+ 1) then x := 0)

Exercise 3. Find a suitable invariant for the loop in the following program:

{x = n ∧ y = m}
r := x;
q := 0;
while y ≤ r do (

r := r − y;
q := q+ 1

)

{r < m ∧ n = r +m ∗ q}

You do not have to give the proof of this partial correctness statement in Hoare logic, but you may
wish to complete the proof to convince yourself your invariant is suitable.

1

Denotational semantics

Axiomatic semantics &
Hoare logic

{ = ∧ > } ⇒
{ = ∧ = ∧ > }
:= ;

{ = ∧ = ∧ > } ⇒
{ ∗ ! = ! ∧ ≥ }

> {
{ ∗ ! = ! ∧ > ∧ ≥ } ⇒
{ ∗ ∗ (−)! = ! ∧ (−) ≥ }
:= ∗ ;

{ ∗ (−)! = ! ∧ (−) ≥ }
:= −

{ ∗ ! = ! ∧ ≥ }
}
{ ∗ ! = ! ∧ (≥) ∧ ¬(>)} ⇒
{ = !}

Axiomatic semantics &
Hoare logic

vs.

Kurt Gödel Tony Hoare

λ-calculus!!!!!!!!!!!!!!!!!!1

λ

::= | | λ .
::= λ .

→ ′

→ ′
→ ′

→ ′

(λ .) → { / }
β

Types

Simple!

Algebraic!

Polymorphic!

Existential!

Inference!

Subtyping!

Advanced topics

this can never happen

Along the way…

Finished 8 (maybe 9) homework assignments,  
ranging from difficult to extremely difficult

Asked 421 questions on Piazza

Showed up to lecture at 9am every single time

The final

Saturday, December 10 at 2:00pm

Warren B25

Practice problems on CMS now

There’s more…

Compilers, JITs, garbage collection…

Language-level security, privacy…

Proof assistants, automated theorem proving…

Program synthesis, sketching, superoptimization…

Bug finding, static analysis, dynamic analysis…

Domain-specific languages, programming for GPUs…

Next steps?

CS 6110: Advanced Programming Languages

CS 7190: PL Seminar

CS 4999: Independent Research

TA for 4110 next time

Thank you!
Keep in touch.

