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The Future of Computing Performance:   Game Over or Next Level?
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FIGURE S.1 Processor performance from 1986 to 2008 as measured by the bench-

mark suite SPECint2000 and consensus targets from the International Technology 

Roadmap for Semiconductors for 2009 to 2020. The vertical scale is logarithmic. A 

break in the growth rate at around 2004 can be seen. Before 2004, processor per-

formance was growing by a factor of about 100 per decade; since 2004, processor 

performance has been growing and is forecasted to grow by a factor of only about 

2 per decade. An expectation gap is apparent. In 2010, this expectation gap for 

single-processor performance is about a factor of 10; by 2020, it will have grown to 

a factor of 1,000. Most sectors of the economy and society implicitly or explicitly 

expect computing to deliver steady, exponentially increasing performance, but as 

these graphs illustrate, traditional single-processor computing systems will not 

match expectations. Note that the SPEC benchmarks are a set of artificial work-

loads intended to measure a computer system’s speed. A machine that achieves 

a SPEC benchmark score that is 30 percent faster than that of another machine 

should feel about 30 percent faster than the other machine on real workloads. 
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The multicore transition 
was a stopgap, 
not a panacea.
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Hardware support for 
disciplined approximate programming

Truffle 
CoreCompiler

int p = 5;
@Approx int a = 7;
for (int x = 0..) {

a += func(2);
@Approx int z;
z = p * 2;
p += 4;

}
a /= 9;
func2(p);
a += func(2);
@Approx int y;
z = p * 22 + z;
p += 10;

VDDH

VDDL



Approximation-aware ISA

ld    0x04 r1
ld    0x08 r2
add   r1   r2   r3
st    0x0c r3



Approximation-aware ISA

ld    0x04 r1
ld    0x08 r2
add.a r1   r2   r3
st.a  0x0c r3
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jump targets

JPEG header
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video frames
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int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

Type qualifiers



✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

Type qualifiers



✗

int a = expensive();

int p;

@Approx

@Precise

p = a;

quickChecksum(p);

output(p);

Endorsement: escape hatch



endorse(a);✓

int a = expensive();

int p;

@Approx

@Precise

p =

quickChecksum(p);

output(p);

Endorsement: escape hatch



int a = ...;

int p = ...;

@Approx

@Precise

p + p;

p + a;

a + a;

Logic approximation: 
overloading



✗

int a = ...;

int p = ...;

@Approx

@Precise

if (       
    p = 2;
}

a == 10) {

Control flow: implicit flows



✓
int a = ...;

int p = ...;

@Approx

@Precise

if (       
    p = 2;
}

a == 10 ) {endorse( )

Control flow: implicit flows



     
    float mean() { 
        calculate mean 
    } 

float[] nums = ...;
class FloatSet {

new @Approx FloatSet()
new @Precise FloatSet()

}

Objects



float[] nums = ...;
class FloatSet {

@Context

}

Objects

     
    float mean() { 
        calculate mean 
    } 



class FloatSet {

}

@Approx float mean_APPROX() 
{
    take mean of first ½
}

@Approx FloatSet someSet = ...;
someSet.mean();

float[] nums = ...;@Context     
    float mean() { 
        calculate mean 
    } 



Prg ::= Cls, C, e

Cls ::= class Cid extends C { fd md }
C ::= Cid | Object
P ::= int | float
q ::= precise | approx | top | context | lost
T ::= q C | q P

fd ::= T f ;
md ::= T m(T pid) q { e }
x ::= pid | this
e ::= null | L | x | new q C() | e.f | e0.f :=e1 | e0.m(e)

| (q C) e | e0 � e1 | if(e0) {e1} else {e2}
f field identifier pid parameter identifier
m method identifier Cid class identifier

Figure 1. The syntax of the FEnerJ programming language. The
symbol A denotes a sequence of elements A.

version) and “best effort” (the implementation may use the precise
version if energy is not constrained).

This facility makes it simple to couple algorithmic approximation
with data approximation—a single annotation makes an instance
use both approximate data (via @Context) and approximate code
(via overloading).

2.6 Arrays
The programmer can declare arrays with approximate element types,
but the array’s length is always kept precise for memory safety. We
find that programs often use large arrays of approximate primitive
elements; in this case, the elements themselves are all approximated
and only the length requires precise guarantees.

EnerJ prohibits approximate integers from being used as array
subscripts. That is, in the expression a[i], the value i must be precise.
This makes it easier for the programmer to prevent out-of-bounds
errors due to approximation.

3. Formal Semantics
To study the formal semantics of EnerJ, we define the minimal lan-
guage FEnerJ. The language is based on Featherweight Java [16] and
adds precision qualifiers and state. The formal language omits En-
erJ’s endorsements and thus can guarantee isolation of approximate
and precise program components. This isolation property suggests
that, in the absence of endorsement, approximate data in an EnerJ
program cannot affect precise state.

The accompanying technical report [33] formalizes this language
and proves type soundness as well as a non-interference property
that demonstrates the desired isolation of approximate and precise
data.

3.1 Programming Language
Figure 1 presents the syntax of FEnerJ. Programs consist of a
sequence of classes, a main class, and a main expression. Execution
is modeled by instantiating the main class and then evaluating the
main expression.

A class definition consists of a name, the name of the superclass,
and field and method definitions. The @Approximable annotation
is not modeled in FEnerJ; all classes in the formal language can
have approximate and precise instances and this has @Context
type. The annotation is required only in order to provide backward-
compatibility with Java so that this in a non-approximable class has
@Precise type.

We use C to range over class names and P for the names of
primitive types. We define the precision qualifiers q as discussed in
Section 2.1, but with the additional qualifier lost; this qualifier

is used to express situations when context information is not
expressible (i.e., lost). Types T include qualifiers.

Field declarations consist of the field type and name. Method
declarations consist of the return type, method name, a sequence
of parameter types and identifiers, the method precision, and the
method body. We use the method precision qualifier to denote
overloading of the method based on the precision of the receiver
as introduced in Section 2.5.2. Variables are either a parameter
identifier or the special variable this, signifying the current object.

The language has the following expressions: the null literal, liter-
als of the primitive types, reads of local variables, instantiation, field
reads and writes, method calls, casts, binary primitive operations,
and conditionals. For brevity, the discussion below presents only the
rules for field reads, field writes, and conditionals.

Subtyping. Subtyping is defined using an ordering of the precision
qualifiers and subclassing.

The following rules define the ordering of precision qualifiers:
q <:q q 0 ordering of precision qualifiers

q 6=top

q <:q lost q <:q top q <:q q

Recall that top qualifies the common supertype of precise and
approx types. Every qualifier other than top is below lost; every
qualifier is below top; and the relation is reflexive. Note that the
precise and approx qualifiers are not related.

Subclassing is the reflexive and transitive closure of the relation
induced by the class declarations. Subtyping takes both ordering
of precision qualifiers and subclassing into account. For primitive
types, we additionally have that a precise type is a subtype of the
approximate type as described in Section 2.1.

Context adaptation. We use context adaptation to replace the
context qualifier when it appears in a field access or method
invocation. Here the left-hand side of . denotes the qualifier of
the receiver expression; the right-hand side is the precision qualifier
of the field or in the method signature.

q B q 0 = q 00 combining two precision qualifiers

q 0=context ^ (q 2 {approx, precise, context})
q B q 0 = q

q 0=context ^ (q 2 {top, lost})
q B q 0 = lost

q 0 6=context

q B q 0 = q 0

Note that context adapts to lost when the left-hand-side qualifier
is top because the appropriate qualifier cannot be determined.

We additionally define . to take a type as the right-hand side;
this adapts the precision qualifier of the type.

We define partial look-up functions FType and MSig that deter-
mine the field type and method signature for a given field/method
in an access or invocation. Note that these use the adaptation rules
described above.

Type rules. The static type environment s� maps local variables
to their declared types.

Given a static environment, expressions are typed as follows:
s� ` e : T expression typing

s� ` e0 : q C FType(q C , f ) = T

s� ` e0.f : T

s� ` e0 : q C FType(q C , f ) = T

lost /2T

s� ` e1 : T
s� ` e0.f := e1 : T

EnerJ type system

precise P  approx P
subtyping



“Havoc” rule

s� ` e0 : precise P s� ` e1 : T s� ` e2 : T
s� ` if(e0) {e1} else {e2} : T

A field read determines the type of the receiver expression and
then uses FType to determine the adapted type of the field.

A field write similarly determines the adapted type of the field
and checks that the right-hand side has an appropriate type. In
addition, we ensure that the adaptation of the declared field type did
not lose precision information. Notice that we can read a field with
lost precision information, but that it would be unsound to allow the
update of such a field.

Finally, for the conditional expression, we ensure that the condi-
tion is of a precise primitive type and that there is a common type T
that can be assigned to both subexpressions.

3.2 Operational Semantics
The runtime system of FEnerJ models the heap h as a mapping from
addresses ◆ to objects, where objects are a pair of the runtime type
T and the field values v of the object. The runtime environment r�
maps local variables x to values v.

The runtime system of FEnerJ defines a standard big-step opera-
tional semantics:

r� ` h, e  h 0
, v big-step operational semantics

r� ` h, e0  h 0
, ◆0 h 0(◆0.f )=v

r� ` h, e0.f  h 0
, v

r� ` h, e0  h0, ◆0 r� ` h0, e1  h1, v
h1[◆0.f := v] = h 0

r� ` h, e0.f := e1  h 0
, v

r� ` h, e0  h0, (q, rL) rL 6=0
r� ` h0, e1  h 0

, v

r� ` h, if(e0) {e1} else {e2}  h 0
, v

r� ` h, e0  h0, (q, 0) r� ` h0, e2  h 0
, v

r� ` h, if(e0) {e1} else {e2}  h 0
, v

These rules reflect precise execution with conventional precision
guarantees. To model computation on an execution substrate that
supports approximation, the following rule could be introduced:

r� ` h, e  h 0
, v h 0 ⇠= h̃ 0

v

⇠= ṽ

r� ` h, e  h̃ 0
, ṽ

We use ⇠= to denote an equality that disregards approximate values
for comparing heaps and values with identical types. The rule
permits any approximate value in the heap to be replaced with
any other value of the same type and any expression producing a
value of an approximate type to produce any other value of that type
instead. This rule reflects EnerJ’s lack of guarantees for approximate
values.

3.3 Properties
We prove two properties about FEnerJ: type soundness and non-
interference. The full proofs are listed in the accompanying technical
report [33].

The usual type soundness property expresses that, for a well-
typed program and corresponding static and runtime environments,
we know that (1) the runtime environment after evaluating the
expression is still well formed, and (2) a static type that can be
assigned to the expression can also be assigned to the value that is
the result of evaluating the expression. Formally:

` Prg OK ^ ` h,

r� : s�
s� ` e : T
r� ` h, e h

0
, v

)
=)

⇢
` h

0
,

r� : s�
h

0
,

r� (this) ` v : T

The proof is by rule induction over the operational semantics; in
separate lemmas we formalize that the context adaptation operation
. is sound.

MemoryCPU
L1 Data CacheFunctional UnitsRegisters

Int FP

Int FP

Figure 2. Hardware model assumed in our system. Shaded areas
indicate components that support approximation. Registers and the
data cache have SRAM storage cells that can be made approximate
by decreasing supply voltage. Functional units support approxima-
tion via supply voltage reduction. Floating point functional units
also support approximation via smaller mantissas. Main memory
(DRAM) supports approximation by reducing refresh rate.

The non-interference property of FEnerJ guarantees that approx-
imate computations do not influence precise values. Specifically,
changing approximate values in the heap or runtime environment
does not change the precise parts of the heap or the result of the
computation. More formally, we show:

` Prg OK ^ ` h,

r� : s�
s� ` e : T
r� ` h, e h

0
, v

h

⇠= h̃ ^ r� ⇠= r̃�
` h̃,

r̃� : s�

9
>>=

>>;
=)

(
r̃� ` h̃, e ! h̃

0
, ṽ

h

0 ⇠= h̃

0

v

⇠= ṽ

For the proof of this property we introduced a checked operational
semantics that ensures in every evaluation step that the precise
and approximate parts are separated. We can then show that the
evaluation of a well-typed expression always passes the checked
semantics of the programming language.

4. Execution Model
While an EnerJ program distinguishes abstractly between approxi-
mate and precise data, it does not define the particular approximation
strategies that are applied to the program. (In fact, one valid execu-
tion is to ignore all annotations and execute the code as plain Java.)
An approximation-aware execution substrate is needed to take advan-
tage of EnerJ’s annotations. We choose to examine approximation
at the architecture level. Alternatively, a runtime system on top of
commodity hardware can also offer approximate execution features
(e.g., lower floating point precision, elision of memory operations,
etc.). Also, note that algorithmic approximation (see Section 2.5) is
independent of the execution substrate. This section describes our
hardware model, the ISA extensions used for approximation, and
how the extensions enable energy savings.

4.1 Approximation-Aware ISA Extensions
We want to leverage both approximate storage and approximate op-
erations. Our hardware model offers approximate storage in the form
of unreliable registers, data caches, and main memory. Approximate
and precise registers are distinguished based on the register number.
Approximate data stored in memory is distinguished from precise
data based on address; regions of physical memory are marked as
approximate and, when accessed, are stored in approximate portions
of the data cache. For approximate operations, we assume specific
instructions for approximate integer ALU operations as well as ap-
proximate floating point operations. Approximate instructions can
use special functional units that perform approximate operations.
Figure 2 summarizes our assumed hardware model.

An instruction stream may have a mix of approximate and pre-
cise instructions. Precise instructions have the same guarantees as
instructions in today’s ISAs. Note that an approximate instruction
is simply a “hint” to the architecture that it may apply a variety of

small-step operational semantics

“precise equivalence”



s� ` e0 : precise P s� ` e1 : T s� ` e2 : T
s� ` if(e0) {e1} else {e2} : T

A field read determines the type of the receiver expression and
then uses FType to determine the adapted type of the field.

A field write similarly determines the adapted type of the field
and checks that the right-hand side has an appropriate type. In
addition, we ensure that the adaptation of the declared field type did
not lose precision information. Notice that we can read a field with
lost precision information, but that it would be unsound to allow the
update of such a field.

Finally, for the conditional expression, we ensure that the condi-
tion is of a precise primitive type and that there is a common type T
that can be assigned to both subexpressions.

3.2 Operational Semantics
The runtime system of FEnerJ models the heap h as a mapping from
addresses ◆ to objects, where objects are a pair of the runtime type
T and the field values v of the object. The runtime environment r�
maps local variables x to values v.

The runtime system of FEnerJ defines a standard big-step opera-
tional semantics:

r� ` h, e  h 0
, v big-step operational semantics

r� ` h, e0  h 0
, ◆0 h 0(◆0.f )=v

r� ` h, e0.f  h 0
, v

r� ` h, e0  h0, ◆0 r� ` h0, e1  h1, v
h1[◆0.f := v] = h 0

r� ` h, e0.f := e1  h 0
, v

r� ` h, e0  h0, (q, rL) rL 6=0
r� ` h0, e1  h 0

, v

r� ` h, if(e0) {e1} else {e2}  h 0
, v

r� ` h, e0  h0, (q, 0) r� ` h0, e2  h 0
, v

r� ` h, if(e0) {e1} else {e2}  h 0
, v

These rules reflect precise execution with conventional precision
guarantees. To model computation on an execution substrate that
supports approximation, the following rule could be introduced:

r� ` h, e  h 0
, v h 0 ⇠= h̃ 0

v

⇠= ṽ

r� ` h, e  h̃ 0
, ṽ

We use ⇠= to denote an equality that disregards approximate values
for comparing heaps and values with identical types. The rule
permits any approximate value in the heap to be replaced with
any other value of the same type and any expression producing a
value of an approximate type to produce any other value of that type
instead. This rule reflects EnerJ’s lack of guarantees for approximate
values.

3.3 Properties
We prove two properties about FEnerJ: type soundness and non-
interference. The full proofs are listed in the accompanying technical
report [33].

The usual type soundness property expresses that, for a well-
typed program and corresponding static and runtime environments,
we know that (1) the runtime environment after evaluating the
expression is still well formed, and (2) a static type that can be
assigned to the expression can also be assigned to the value that is
the result of evaluating the expression. Formally:
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The proof is by rule induction over the operational semantics; in
separate lemmas we formalize that the context adaptation operation
. is sound.
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Figure 2. Hardware model assumed in our system. Shaded areas
indicate components that support approximation. Registers and the
data cache have SRAM storage cells that can be made approximate
by decreasing supply voltage. Functional units support approxima-
tion via supply voltage reduction. Floating point functional units
also support approximation via smaller mantissas. Main memory
(DRAM) supports approximation by reducing refresh rate.

The non-interference property of FEnerJ guarantees that approx-
imate computations do not influence precise values. Specifically,
changing approximate values in the heap or runtime environment
does not change the precise parts of the heap or the result of the
computation. More formally, we show:
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For the proof of this property we introduced a checked operational
semantics that ensures in every evaluation step that the precise
and approximate parts are separated. We can then show that the
evaluation of a well-typed expression always passes the checked
semantics of the programming language.

4. Execution Model
While an EnerJ program distinguishes abstractly between approxi-
mate and precise data, it does not define the particular approximation
strategies that are applied to the program. (In fact, one valid execu-
tion is to ignore all annotations and execute the code as plain Java.)
An approximation-aware execution substrate is needed to take advan-
tage of EnerJ’s annotations. We choose to examine approximation
at the architecture level. Alternatively, a runtime system on top of
commodity hardware can also offer approximate execution features
(e.g., lower floating point precision, elision of memory operations,
etc.). Also, note that algorithmic approximation (see Section 2.5) is
independent of the execution substrate. This section describes our
hardware model, the ISA extensions used for approximation, and
how the extensions enable energy savings.

4.1 Approximation-Aware ISA Extensions
We want to leverage both approximate storage and approximate op-
erations. Our hardware model offers approximate storage in the form
of unreliable registers, data caches, and main memory. Approximate
and precise registers are distinguished based on the register number.
Approximate data stored in memory is distinguished from precise
data based on address; regions of physical memory are marked as
approximate and, when accessed, are stored in approximate portions
of the data cache. For approximate operations, we assume specific
instructions for approximate integer ALU operations as well as ap-
proximate floating point operations. Approximate instructions can
use special functional units that perform approximate operations.
Figure 2 summarizes our assumed hardware model.

An instruction stream may have a mix of approximate and pre-
cise instructions. Precise instructions have the same guarantees as
instructions in today’s ISAs. Note that an approximate instruction
is simply a “hint” to the architecture that it may apply a variety of
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