CS 4110

Probabilistic Programming

- Optional, choose-your-own-adventure HW \#9 out
- Due on Friday, if you choose to turn it in.

What and Why

It's not about writing software.

What and Why

Probabilistic programming is a tool for statistical modeling.

A probabilistic programming language is a plain old programming language with rand (3) and a suite of fancy analysis tools for understanding its probabilistic behavior.

An Example Model

A Model for Humans

A Model for Humans

A Model for Humans

A Model for Humans

$$
\begin{aligned}
\operatorname{Pr}\left[A_{\text {NIPS }} \mid I_{\text {stats }} \wedge B\right] & =0.3 \\
\operatorname{Pr}\left[A_{\text {NIPS }} \mid I_{\text {stats }} \wedge \neg B\right] & =0.8 \\
\operatorname{Pr}\left[A_{\text {NIPS }} \mid \neg I_{\text {stats }}\right] & =0.1
\end{aligned}
$$

$\operatorname{Pr}\left[A_{\text {Dagstuhl }} \mid I_{\text {stats }} \wedge I_{\mathrm{PL}}\right]=0.3$
$\operatorname{Pr}\left[A_{\text {Dagstuhl }} \mid I_{\text {stats }} \wedge I_{\mathrm{PL}} \wedge \neg B\right]=0.8$
$\operatorname{Pr}\left[A_{\text {Dagstuhl }} \mid \neg\left(I_{\text {stats }} \vee I_{\mathrm{PL}}\right)\right]=0.1$

Whither intermediate variables?

$$
\begin{aligned}
& R_{1} \sim I_{\mathrm{PL}} \wedge I_{\text {stats }} \quad \text { Whither } \\
& R_{2} \sim I_{\mathrm{PL}} \\
& R_{3} \sim I_{\text {stats }}
\end{aligned} \quad \text { abstraction? }
$$

Writing even this tiny model feels like drudgery.

(and we haven't even gotten to the hard part yet)

- What and Why
- The Basics and Examples
- Applications
- Current Problems

webppl．org

webppl

webppl is a small but feature－rich probabilistic programming language embedded in Javascript．

```
// Conference attendance.
var attendance = function(i_pl, i_stats, busy) {
    var attendance = function (interest, busy, weight) {
            if (interest) {
```


Our First Probabilistic Program

$$
\begin{aligned}
& \text { var } b=\text { flip (0.5) ; } \\
& b \text { ? "yes" : "no" }
\end{aligned}
$$

Enumeration

var roll $=$ function () \{ var die1 $=$ randomInteger (6) +1 ; var die2 $=$ randomInteger (6) +1 ; return die1 + die2;
\}

Enumerate (roll)

Our Basic Model in webppl

```
 model.wppl (~/science/ppl-intro/code) - VIM
// Class attendance model.
var attendance = function(i_pl, i_stats, busy) {
    var attendance = function (interest, busy) {
        if (interest) {
            return busy ? flip(0.3) : flip(0.8);
        } else {
            return fl1p(0.1);
        }
    }
    var a_4110 = attendance(i_pl, busy);
    var a_4780 = attendance(i_stats, busy);
    var a_4242 = attendance(i_pl && i_stats, busy);
    return {cs4110: a_4110, cs4780: a_4780, cs4242: a_4242};
}
// Relevance of our three papers.
var relevance = function(i_pl, i_stats) {
    var rell = i_pl && i_stats;
    var rel2 = i_pl;
    var rel3 = i_stats;
    return {paper1: rell, paper2: rel2, papor3: rel3};
}
// A combined model
var model = function() {
    |/ Some even random priors for our "student profile."
    var i_pl = flip(0.5);
    var i_stats = flip(0.5);
    var busy = flip(0.5);
    return [relevance(i_pl, i_stats), attendance(i_pl, i_stats, busy)];
}
var dist = Enumerate(model);
viz.auto(dist);
```


Conditioning

var roll = function () \{
var die1 $=$ randomInteger (6) +1 ; var die2 $=$ randomInteger (6) +1 ; if (! (die1 === 4 || die2 === 4)) factor(-Infinity);
\}
return die1 + die2;

Enumerate (roll)

Conditioning on Observations

// Discard any executions that // don't sum to 10 . var out = die1 + die2; if (out ! == 10) \{ factor(-Infinity); \}
// Return the values on the dice. return [die1, die2];

Recommending Papers

Require my conference

attendance.
var att $=$ attendance(i_pl, i_stats, busy);
require(att.cs4110 \&\& att.cs4242 \&\& !att.cs4780) ;
return relevance(i_pl, i_stats);

Inference Algorithms

Enumerate is the simplest possible inference strategy.

- What and Why
- The Basics and Examples
- Applications
- Current Problems

TrueSkill

Measure Transformer Semantics for Bayesian Machine Learning

Johannes Borgström Andrew D. Gordon
Michael Greenberg James Margetson Jurgen Van Gael

```
// prior distributions, the hypothesis
let skill() = random (Gaussian(10.0,20.0))
let Alice,Bob,Cyd = skill(),skill(),skill()
// observe the evidence
let performance player = random (Gaussian(player,1.0))
observe (performance Alice > performance Bob) / /Alice beats Bob
observe (performance Bob > performance Cyd) //Bob beats Cyd
observe (performance Alice > performance Cyd) //Alice beats Cyd
// return the skills
Alice,Bob,Cyd
```


webppl Vision Demo

Forestdb.org

σ Forest
$=$

Models

Concept Learning

Inducing Arithmetic Functions

Causal Support

Rational Rules

Word Learning as Bayesian Inference

- What and Why
- The Basics and Examples
- Applications
- Current Problems

R2

Our research Connections Careers About us
All Downloads Events Groups News People Projects Publications Videos

The R2 Probabilistic Programming Tool

The R2 Probabilistic Programming Tool is a research project within the Programming Languages and Tools group at Microsoft Research on probabilistic programming. Our goal is to build a user friendly and scalable probabilistic programming system by employing powerful techniques from language design, program analysis and verification.

Details
Type
Download
Download
File Name \quad r2-0.0.1.zip

R2's weakest preconditions

var die1 $=$ randomInteger (7) +1 ; var die2 $=$ randomInteger (7) +1 ;

Discard any executions that don't sum to 10 .

var out = die1 + die2; wasted work!
require (out === 10);

R2's weakest preconditions

var die1 $=$ randomInteger (7) +1 ; var die2 $=$ randomInteger (7) +1 ;
require(
(die1 == 3 \&\& die2 == 7) || ...) ;
var out $=$ die1 + die2; require (out === 10);

R2's weakest preconditions

var die1 $=$ randomInteger (7) +1 ; var die2 $=$ randomInteger (7) +1 ;
require((die1 == 3 \&\& die2 == 7) | | ...) ;
var out = die1 + die2;

Probabilistic assertions: design goals

Work on a messy, mainstream language (C and $\mathrm{C}++$)

Efficiently check statistical properties of the output

We don't care about conditioning

passert e, P, C

e must hold with probability p at confidence c

distribution extraction

via symbolic execution

verification

float obfuscated(float n) \{
return $\mathrm{n}+$ gaussian(0.0, 1000.0);
float average_salary(float* salaries) \{
total $=0.0$;
for (int $i=0$; i < COUNT; ++i)
total += obfuscated(salaries[i]); avg $=$ total / len(salaries);
passert e, p, c
statistical optimizations

Bayesian network IR

distribution extraction

via symbolic execution

float obfuscated(float n) \{
return $\mathrm{n}+$ gaussian(0.0, 1000.0);
float average_salary(float* salaries) \{
total $=0.0$;
for (int $i=0 ; i<C O U N T ;++i)$
total $+=$ obfuscated(salaries[i]); avg = total / len(salaries);
passert e, p, c

Bayesian network IR

Distribution extraction: random draws are symbolic

symbolic heap

a	4.2

$\mathrm{b}=\mathrm{a}+$ gaussian(0.0, 1.0)

a	4.2
b	$\left.4.2+\mathrm{G}_{0.1}\right)$

input: $\mathrm{a}=4.2$
$\rightarrow \mathrm{b}=$ gaussian $(0.0,1.0)$
input: $\mathrm{a}=4.2$
$\mathrm{b}=$ gaussian ($0.0,1.0$)
$\rightarrow c=a+b$

input: $\mathrm{a}=4.2$
$\mathrm{b}=$ gaussian ($0.0,1.0$)
$c=a+b$
$\rightarrow \mathrm{d}=\mathrm{c}+\mathrm{b}$

input: $\mathrm{a}=4.2$
$\mathrm{b}=$ gaussian ($0.0,1.0$)
$\mathrm{c}=\mathrm{a}+\mathrm{b}$
$\rightarrow \mathrm{d}=\mathrm{c}+\mathrm{b}$

input: $\mathrm{a}=4.2$
$\mathrm{b}=$ gaussian (0.0, 1.0)
$\mathrm{c}=\mathrm{a}+\mathrm{b}$
$d=c+b$
if b > 0.5

$$
e=2.0
$$

else

$$
e=4.0
$$

input: a $=4.2$
b = gaussian(0.0, 1.0)
$\mathrm{c}=\mathrm{a}+\mathrm{b}$
$\mathrm{d}=\mathrm{c}+\mathrm{b}$
if b > 0.5

$$
e=2.0
$$

else

$$
e=4.0
$$

passert e <= 3.0,
$0.9,0.9$

distribution extraction

Bayesian network IR

$$
\begin{aligned}
X & \sim G\left(\mu_{X}, \sigma_{X}^{2}\right) \\
Y & \sim G\left(\mu_{Y}, \sigma_{Y}^{2}\right) \\
Z & =X+Y \\
\Rightarrow Z & \sim G\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
X & \sim U(a, b) \\
Y & =c X \\
\Rightarrow Y & \sim U(c a, c b)
\end{aligned}
$$

statistical property

passert verifier optimization

distribution extraction

via symbolic execution

verification

float obfuscated(float n) \{
return $\mathrm{n}+$ gaussian(0.0, 1000.0);
float average_salary(float* salaries) \{
total $=0.0$;
for (int $i=0$; i < COUNT; ++i)
total += obfuscated(salaries[i]); avg $=$ total / len(salaries);
passert e, p, c
statistical optimizations

Bayesian network IR

